blib/lib/GO/TermFinder.pm | |||
---|---|---|---|
Criterion | Covered | Total | % |
statement | 306 | 360 | 85.0 |
branch | 80 | 120 | 66.6 |
condition | 22 | 38 | 57.8 |
subroutine | 45 | 47 | 95.7 |
pod | 6 | 6 | 100.0 |
total | 459 | 571 | 80.3 |
line | stmt | bran | cond | sub | pod | time | code |
---|---|---|---|---|---|---|---|
1 | package GO::TermFinder; | ||||||
2 | |||||||
3 | # File : TermFinder.pm | ||||||
4 | # Author : Gavin Sherlock | ||||||
5 | # Date Begun : December 31st 2002 | ||||||
6 | |||||||
7 | # $Id: TermFinder.pm,v 1.52 2009/11/19 17:27:52 sherlock Exp $ | ||||||
8 | |||||||
9 | # License information (the MIT license) | ||||||
10 | |||||||
11 | # Copyright (c) 2003-2006 Gavin Sherlock; Stanford University | ||||||
12 | |||||||
13 | # Permission is hereby granted, free of charge, to any person | ||||||
14 | # obtaining a copy of this software and associated documentation files | ||||||
15 | # (the "Software"), to deal in the Software without restriction, | ||||||
16 | # including without limitation the rights to use, copy, modify, merge, | ||||||
17 | # publish, distribute, sublicense, and/or sell copies of the Software, | ||||||
18 | # and to permit persons to whom the Software is furnished to do so, | ||||||
19 | # subject to the following conditions: | ||||||
20 | |||||||
21 | # The above copyright notice and this permission notice shall be | ||||||
22 | # included in all copies or substantial portions of the Software. | ||||||
23 | |||||||
24 | # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | ||||||
25 | # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | ||||||
26 | # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | ||||||
27 | # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | ||||||
28 | # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | ||||||
29 | # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||||||
30 | # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||||||
31 | # SOFTWARE. | ||||||
32 | |||||||
33 | =pod | ||||||
34 | |||||||
35 | =head1 NAME | ||||||
36 | |||||||
37 | GO::TermFinder - identify GO nodes that annotate a group of genes with a significant p-value | ||||||
38 | |||||||
39 | =head1 DESCRIPTION | ||||||
40 | |||||||
41 | This package is intended to provide a method whereby the P-values of a | ||||||
42 | set of GO annotations can be determined for a set of genes, based on | ||||||
43 | the number of genes that exist in the particular genome (or in a | ||||||
44 | selected background distribution from the genome), and their | ||||||
45 | annotation, and the frequency with which the GO nodes are annotated | ||||||
46 | across the provided set of genes. The P-value is simply calculated | ||||||
47 | using the hypergeometric distribution as the probability of x or more | ||||||
48 | out of n genes having a given annotation, given that G of N have that | ||||||
49 | annotation in the genome in general. We chose the hypergeometric | ||||||
50 | distribution (sampling without replacement) since it is more accurate, | ||||||
51 | though slower to calculate, than the binomial distribution (sampling | ||||||
52 | with replacement). | ||||||
53 | |||||||
54 | In addition, a corrected p-value can be calculated, to correct for | ||||||
55 | multiple hypothesis testing. The correction factor used is the total | ||||||
56 | number of nodes to which the provided list of genes are annotated, | ||||||
57 | excepting any nodes which have only a single annotation in the | ||||||
58 | background, as a priori, we know that these cannot be significantly | ||||||
59 | enriched. The client has access to both the corrected and uncorrected | ||||||
60 | values. It is also possible to correct the p-value using 1000 | ||||||
61 | simulations, which control the Family Wise Error Rate - using this | ||||||
62 | option suggests that the Bonferroni correction is in fact somewhat | ||||||
63 | liberal, rather than conservative, as might be expected. Finally, the | ||||||
64 | False Discovery Rate can also be calculated. | ||||||
65 | |||||||
66 | The general idea is that a list of genes may have been identified for | ||||||
67 | some reason, e.g. they are co-regulated, and TermFinder can be used to | ||||||
68 | find out if any nodes annotate the set of genes to a level which is | ||||||
69 | extremely improbable if the genes had simply been picked at random. | ||||||
70 | |||||||
71 | =head1 TODO | ||||||
72 | |||||||
73 | 1. May want the client to decide the behavior for ambiguous names, | ||||||
74 | rather than having it hard coded (e.g. always ignore; use if | ||||||
75 | standard name (current implementation); use all databaseIds for | ||||||
76 | the ambiguous name; decide on a case by case basis (potentially | ||||||
77 | useful if running on command line)). | ||||||
78 | |||||||
79 | 2. Create new GO::Hypothesis and GO::HypothesisSet objects, so that | ||||||
80 | it is easier to access the information generated about the p-value | ||||||
81 | etc. of any particular GO node that annotates a set of genes. | ||||||
82 | |||||||
83 | 3. Instead of all the global variables, $k..., replace them with | ||||||
84 | constants, which may improve runtime, as the optimizer should | ||||||
85 | optimize the hash look ups to look like hard-coded strings at | ||||||
86 | runtime, rather than variable lookups. | ||||||
87 | |||||||
88 | 4. Lots of other stuff.... | ||||||
89 | |||||||
90 | =cut | ||||||
91 | |||||||
92 | 1 | 1 | 210558 | use strict; | |||
1 | 3 | ||||||
1 | 44 | ||||||
93 | 1 | 1 | 6 | use warnings; | |||
1 | 3 | ||||||
1 | 36 | ||||||
94 | 1 | 1 | 5 | use diagnostics; | |||
1 | 2 | ||||||
1 | 8 | ||||||
95 | |||||||
96 | 1 | 1 | 37 | use vars qw ($PACKAGE $VERSION $WARNINGS); | |||
1 | 2 | ||||||
1 | 64 | ||||||
97 | |||||||
98 | 1 | 1 | 620 | use GO::Node; | |||
1 | 2 | ||||||
1 | 30 | ||||||
99 | 1 | 1 | 906 | use GO::TermFinder::Native; | |||
1 | 3 | ||||||
1 | 5965 | ||||||
100 | |||||||
101 | $VERSION = '0.86'; | ||||||
102 | $PACKAGE = 'GO::TermFinder'; | ||||||
103 | |||||||
104 | $WARNINGS = 1; # toggle this to zero if you don't want warnings | ||||||
105 | |||||||
106 | # class variables | ||||||
107 | |||||||
108 | my @kRequiredArgs = qw (annotationProvider ontologyProvider aspect); | ||||||
109 | |||||||
110 | my $kArgs = $PACKAGE.'::__args'; | ||||||
111 | my $kPopulationNamesHash = $PACKAGE.'::__populationNamesHash'; | ||||||
112 | my $kBackgroundDatabaseIds = $PACKAGE.'::__backgroundDatabaseIds'; | ||||||
113 | my $kTotalGoNodeCounts = $PACKAGE.'::__totalGoNodeCounts'; | ||||||
114 | my $kGoCounts = $PACKAGE.'::__goCounts'; | ||||||
115 | my $kGOIDsForDatabaseIds = $PACKAGE.'::__goidsForDatabaseIds'; | ||||||
116 | my $kDatabaseIds = $PACKAGE.'::__databaseIds'; | ||||||
117 | my $kTotalNumAnnotatedGenes = $PACKAGE.'::__totalNumAnnotatedGenes'; | ||||||
118 | my $kCorrectionMethod = $PACKAGE.'::__correctionMethod'; | ||||||
119 | my $kShouldCalculateFDR = $PACKAGE.'::__shouldCalculateFDR'; | ||||||
120 | my $kPvalues = $PACKAGE.'::__pValues'; | ||||||
121 | my $kDatabaseId2OrigName = $PACKAGE.'::__databaseId2OrigName'; | ||||||
122 | my $kDistributions = $PACKAGE.'::__distributions'; | ||||||
123 | my $kDiscardedGenes = $PACKAGE.'::__discardedGenes'; | ||||||
124 | my $kDirectAnnotationToAspect = $PACKAGE.'::__directAnnotationToAspect'; | ||||||
125 | |||||||
126 | # the methods by which the p-value can be corrected | ||||||
127 | |||||||
128 | my %kAllowedCorrectionMethods = ('bonferroni' => undef, | ||||||
129 | 'none' => undef, | ||||||
130 | 'simulation' => undef); | ||||||
131 | |||||||
132 | # set up a GO node that corresponds to anything passed in that has no | ||||||
133 | # annotation | ||||||
134 | |||||||
135 | my $kUnannotatedNode = GO::Node->new(goid => "GO:XXXXXXX", | ||||||
136 | term => "unannotated"); | ||||||
137 | |||||||
138 | my $kFakeIdPrefix = "NO_DETERMINED_DATABASE_ID_"; | ||||||
139 | |||||||
140 | ##################################################################### | ||||||
141 | sub new{ | ||||||
142 | ##################################################################### | ||||||
143 | =pod | ||||||
144 | |||||||
145 | =head1 Instance Constructor | ||||||
146 | |||||||
147 | =head2 new | ||||||
148 | |||||||
149 | This is the constructor. It expects to be passed named arguments for | ||||||
150 | an annotationProvider, and an ontologyProvider. In addition, it must | ||||||
151 | be told the aspect of the ontology provider, so that it knows how to | ||||||
152 | query the annotationProvider. | ||||||
153 | |||||||
154 | There are also some additional, optional arguments: | ||||||
155 | |||||||
156 | population: | ||||||
157 | |||||||
158 | This argument allows a client to indicate the population that should | ||||||
159 | used to calculate a background distribution of GO terms. In the | ||||||
160 | absence of population argument, then the background distribution will | ||||||
161 | be drawn from all genes in the annotationProvider. This should be | ||||||
162 | provided as an array reference, and no ambiguous names should be | ||||||
163 | provided (see AnnotationProvider for details of name ambiguity). This | ||||||
164 | option is particularly pertinent in a case where for example you | ||||||
165 | assayed only 2000 genes in a two hybrid experiment, and found 20 | ||||||
166 | interesting ones. To find significant terms, you need to do it in the | ||||||
167 | context of the genes that you assayed, not in the context of all genes | ||||||
168 | with annotation. | ||||||
169 | |||||||
170 | Note, new in version 0.71, if you provided a population as the | ||||||
171 | background distribution from which genes have been drawn, any genes | ||||||
172 | provided to the findTerms method that are not in the background | ||||||
173 | distribution will be discarded from the calculations. The identity of | ||||||
174 | these genes can be retrieved using the discardedGenes() method, after | ||||||
175 | the findTerms() method has been called. | ||||||
176 | |||||||
177 | totalNumGenes: | ||||||
178 | |||||||
179 | This argument allows a client to indicate that the size of the | ||||||
180 | background distribution is in fact larger that the number of genes | ||||||
181 | that exist in the annotation provider, and the extra genes are merely | ||||||
182 | assumed to be entirely unannotated. | ||||||
183 | |||||||
184 | NB: This is an API change, as totalNumGenes was previously required. | ||||||
185 | |||||||
186 | Thus - if using 'population', the total number of genes considered as | ||||||
187 | the background will be the number of genes in the provided population. | ||||||
188 | If not using 'population', then the number of genes that will be | ||||||
189 | considered as the total population will be the number of genes in the | ||||||
190 | annotationProvider. However, if the totalNumGenes argument is | ||||||
191 | provided, then that number will be used as the size of the population. | ||||||
192 | If it is not larger than the total number of genes in the | ||||||
193 | annotationParser, then the number of genes in the annotationParser | ||||||
194 | will be used. The totalNumGenes and the population arguments are | ||||||
195 | mutually exclusive, and both should not be provided at the same time. | ||||||
196 | |||||||
197 | Usage ($num is larger than the number of genes with annotations): | ||||||
198 | |||||||
199 | my $termFinder = GO::TermFinder->new(annotationProvider=> $annotationProvider, | ||||||
200 | ontologyProvider => $ontologyProvider, | ||||||
201 | totalNumGenes => $num, | ||||||
202 | aspect => ); |
||||||
203 | |||||||
204 | |||||||
205 | Usage (use all annotated genes as population): | ||||||
206 | |||||||
207 | my $termFinder = GO::TermFinder->new(annotationProvider=> $annotationProvider, | ||||||
208 | ontologyProvider => $ontologyProvider, | ||||||
209 | aspect => ); |
||||||
210 | |||||||
211 | Usage (use a subset of genes as the background population): | ||||||
212 | |||||||
213 | my $termFinder = GO::TermFinder->new(annotationProvider=> $annotationProvider, | ||||||
214 | ontologyProvider => $ontologyProvider, | ||||||
215 | population => \@genes, | ||||||
216 | aspect => ); |
||||||
217 | |||||||
218 | =cut | ||||||
219 | |||||||
220 | 4 | 4 | 1 | 120 | my ($class, %args) = @_; | ||
221 | |||||||
222 | 4 | 15 | my $self = {}; | ||||
223 | |||||||
224 | 4 | 21 | bless $self, $class; | ||||
225 | |||||||
226 | 4 | 36 | $self->__checkAndStoreArgs(%args); | ||||
227 | |||||||
228 | 4 | 26 | $self->__init; # initialize counts for all GO nodes | ||||
229 | |||||||
230 | 4 | 48 | return $self; | ||||
231 | |||||||
232 | } | ||||||
233 | |||||||
234 | ##################################################################### | ||||||
235 | sub __checkAndStoreArgs{ | ||||||
236 | ##################################################################### | ||||||
237 | # This private method simply checks that all the required arguments | ||||||
238 | # have been provided, and stores them within the object | ||||||
239 | |||||||
240 | 4 | 4 | 19 | my ($self, %args) = @_; | |||
241 | |||||||
242 | # first check that the required arguments were provided | ||||||
243 | |||||||
244 | 4 | 16 | foreach my $arg (@kRequiredArgs){ | ||||
245 | |||||||
246 | 12 | 50 | 64 | if (!exists ($args{$arg})){ | |||
50 | |||||||
247 | |||||||
248 | 0 | 0 | die "You did not provide a $arg argument."; | ||||
249 | |||||||
250 | }elsif (!defined ($args{$arg})){ | ||||||
251 | |||||||
252 | 0 | 0 | die "Your $arg argument is not defined"; | ||||
253 | |||||||
254 | } | ||||||
255 | |||||||
256 | 12 | 59 | $self->{$kArgs}{$arg} = $args{$arg}; # store in object | ||||
257 | |||||||
258 | } | ||||||
259 | |||||||
260 | # store the population, and also create a hash of the population | ||||||
261 | # names for quick look up | ||||||
262 | |||||||
263 | 4 | 100 | 21 | if (exists($args{'population'})){ | |||
264 | |||||||
265 | 2 | 9 | $self->{$kArgs}{'population'} = $args{'population'}; | ||||
266 | |||||||
267 | 2 | 5 | my %population; | ||||
268 | |||||||
269 | 2 | 4 | foreach my $name (@{$args{'population'}}){ | ||||
2 | 6 | ||||||
270 | |||||||
271 | 6489 | 10134 | $population{$name} = undef; | ||||
272 | |||||||
273 | } | ||||||
274 | |||||||
275 | 2 | 13 | $self->{$kPopulationNamesHash} = \%population; | ||||
276 | |||||||
277 | } | ||||||
278 | |||||||
279 | 4 | 100 | 24 | if (exists($args{'totalNumGenes'})){ | |||
280 | |||||||
281 | 1 | 4 | $self->{$kArgs}{'totalNumGenes'} = $args{'totalNumGenes'}; | ||||
282 | |||||||
283 | } | ||||||
284 | |||||||
285 | # now check that we didn't get a funky combination | ||||||
286 | |||||||
287 | 4 | 50 | 66 | 52 | if (exists($args{'population'}) && exists($args{'totalNumGenes'})){ | ||
288 | |||||||
289 | 0 | 0 | die "The population and totalNumGenes arguments are mutually exclusive, but you have provided both."; | ||||
290 | |||||||
291 | } | ||||||
292 | |||||||
293 | } | ||||||
294 | |||||||
295 | ##################################################################### | ||||||
296 | sub __init{ | ||||||
297 | ##################################################################### | ||||||
298 | # This private method determines all counts to all GO nodes, as the | ||||||
299 | # background frequency of annotations in the genome | ||||||
300 | |||||||
301 | 4 | 4 | 12 | my ($self) = @_; | |||
302 | |||||||
303 | # first we determine the databaseIds for the background | ||||||
304 | # distribution | ||||||
305 | |||||||
306 | 4 | 12 | my @databaseIds; | ||||
307 | |||||||
308 | 4 | 100 | 24 | if ($self->__isUsingPopulation){ | |||
309 | |||||||
310 | # we need to get databaseids for the provided population | ||||||
311 | |||||||
312 | 2 | 10 | my ($databaseIdsRef, $databaseId2OrigNameRef) = $self->__determineDatabaseIdsFromGenes($self->__population); | ||||
313 | |||||||
314 | 2 | 10 | @databaseIds = @{$databaseIdsRef}; | ||||
2 | 24892 | ||||||
315 | |||||||
316 | }else{ | ||||||
317 | |||||||
318 | # we simply use all databaseIds from the annotationProvider | ||||||
319 | |||||||
320 | 2 | 12 | @databaseIds = $self->__annotationProvider->allDatabaseIds(); | ||||
321 | |||||||
322 | } | ||||||
323 | |||||||
324 | 4 | 6428 | my $populationSize = scalar(@databaseIds); | ||||
325 | |||||||
326 | # check that they said there's at least as many genes in total | ||||||
327 | # as the annotation provider says that there is. | ||||||
328 | |||||||
329 | 4 | 100 | 43 | if (! defined $self->totalNumGenes){ | |||
50 | |||||||
330 | |||||||
331 | # in this case, no 'totalNumGenes' argument was provided | ||||||
332 | |||||||
333 | 3 | 12 | $self->{$kArgs}{totalNumGenes} = $populationSize; | ||||
334 | |||||||
335 | }elsif ($populationSize > $self->totalNumGenes){ | ||||||
336 | |||||||
337 | # in this case, they are using an annotation provider, and | ||||||
338 | # have provided a totalNumGenes that is less than the number | ||||||
339 | # of genes that the annotation provider knows about | ||||||
340 | |||||||
341 | 0 | 0 | 0 | if ($WARNINGS){ | |||
342 | |||||||
343 | 0 | 0 | print STDERR "The annotation provider indicates that there are more genes than the client indicated.\n"; | ||||
344 | 0 | 0 | print STDERR "The annotation provider indicates there are $populationSize, while the client indicated only ", $self->totalNumGenes, ".\n"; | ||||
345 | 0 | 0 | print STDERR "Thus, assuming the correct total number of genes is that indicated by the annotation provider.\n"; | ||||
346 | |||||||
347 | } | ||||||
348 | |||||||
349 | 0 | 0 | $self->{$kArgs}{totalNumGenes} = $populationSize; | ||||
350 | |||||||
351 | } | ||||||
352 | |||||||
353 | # now determine the level of annotation for each GO node in the | ||||||
354 | # population of genes to be used as the background distribution | ||||||
355 | |||||||
356 | 4 | 28 | my $totalNodeCounts = $self->__buildHashRefOfAnnotations(\@databaseIds); | ||||
357 | |||||||
358 | # adjust those counts if needs be | ||||||
359 | |||||||
360 | 4 | 100 | 27 | if ($populationSize < $self->totalNumGenes){ | |||
361 | |||||||
362 | # if there are extra, entirely unannotated genes (indicated by | ||||||
363 | # the total number of genes provided being greater than the | ||||||
364 | # number that existed in the annotation provider), we must | ||||||
365 | # make sure that it's treated that they will at least be | ||||||
366 | # annotated to the root (Gene Ontology), and its immediate | ||||||
367 | # child (which is the name of the Ontology, eg | ||||||
368 | # Biological_process, Molecular_function, and | ||||||
369 | # Cellular_component), and the 'unannotated' node | ||||||
370 | |||||||
371 | # so simply add extra annotations | ||||||
372 | |||||||
373 | 1 | 5 | my $rootNodeId = $self->__ontologyProvider->rootNode->goid; | ||||
374 | |||||||
375 | 1 | 3 | my $childNodeId = ($self->__ontologyProvider->rootNode->childNodes())[0]->goid; | ||||
376 | |||||||
377 | 1 | 3 | $totalNodeCounts->{$rootNodeId} = $self->totalNumGenes; | ||||
378 | |||||||
379 | 1 | 4 | $totalNodeCounts->{$childNodeId} += ($self->totalNumGenes - $populationSize); | ||||
380 | |||||||
381 | 1 | 4 | $totalNodeCounts->{$kUnannotatedNode->goid} += ($self->totalNumGenes - $populationSize); | ||||
382 | |||||||
383 | } | ||||||
384 | |||||||
385 | # and now store the information | ||||||
386 | |||||||
387 | 4 | 16 | $self->{$kTotalGoNodeCounts} = $totalNodeCounts; | ||||
388 | 4 | 81 | $self->{$kTotalNumAnnotatedGenes} = $populationSize; | ||||
389 | |||||||
390 | # set the discarded genes to be a reference to an empty list | ||||||
391 | # (technically they shouldn't ask to retrieve the discarded genes | ||||||
392 | # before calling findTerms, but this will prevent such behavior | ||||||
393 | # from being fatal | ||||||
394 | |||||||
395 | 4 | 14 | $self->{$kDiscardedGenes} = []; | ||||
396 | |||||||
397 | # store a hash of the databaseIDs that are in the background set of genes | ||||||
398 | |||||||
399 | 4 | 11 | my %databaseIds; | ||||
400 | |||||||
401 | 4 | 11 | foreach my $databaseId (@databaseIds){ | ||||
402 | |||||||
403 | 19429 | 42438 | $databaseIds{$databaseId} = undef; | ||||
404 | |||||||
405 | } | ||||||
406 | |||||||
407 | 4 | 35 | $self->{$kBackgroundDatabaseIds} = \%databaseIds; | ||||
408 | |||||||
409 | # create a Distributions object, which has C code for all the various | ||||||
410 | # Math that we will do. | ||||||
411 | |||||||
412 | 4 | 36 | $self->{$kDistributions} = GO::TermFinder::Native::Distributions->new($self->totalNumGenes); | ||||
413 | |||||||
414 | } | ||||||
415 | |||||||
416 | =pod | ||||||
417 | |||||||
418 | =head1 Instance Methods | ||||||
419 | |||||||
420 | =cut | ||||||
421 | |||||||
422 | ##################################################################### | ||||||
423 | sub findTerms{ | ||||||
424 | ##################################################################### | ||||||
425 | =pod | ||||||
426 | |||||||
427 | =head2 findTerms | ||||||
428 | |||||||
429 | This method returns an array of hash references, one for each GO::Node | ||||||
430 | that was tested as a hypothesis, that indicates which terms annotate | ||||||
431 | the list of genes with what P-values. The contents of the hashes in | ||||||
432 | the returned array depend on some of the run time options. They are: | ||||||
433 | |||||||
434 | key value | ||||||
435 | ------------------------------------------------------------------------- | ||||||
436 | |||||||
437 | Always Present: | ||||||
438 | |||||||
439 | NODE A GO::Node | ||||||
440 | |||||||
441 | PVALUE The P-value for having the observed number of | ||||||
442 | annotations that the provided list of genes | ||||||
443 | has to that node. | ||||||
444 | |||||||
445 | NUM_ANNOTATIONS The number of genes within the provided list that | ||||||
446 | are annotated to the node. | ||||||
447 | |||||||
448 | TOTAL_NUM_ANNOTATIONS The number of genes in the population (total | ||||||
449 | or provided) that are annotated to the node. | ||||||
450 | |||||||
451 | ANNOTATED_GENES A hash reference, whose keys are the | ||||||
452 | databaseIds that are annotated to the node, | ||||||
453 | and whose values are the original name | ||||||
454 | supplied to the findTerms() method. | ||||||
455 | |||||||
456 | Present if corrected p-values are calculated: | ||||||
457 | |||||||
458 | CORRECTED_PVALUE The CORRECTED_PVALUE is the PVALUE, but corrected | ||||||
459 | for multiple hypothesis testing, due to the | ||||||
460 | fact that you are more likely to generate | ||||||
461 | significant looking p-values if you test a | ||||||
462 | lot of hypotheses. See below for details of | ||||||
463 | how this pvalue is calculated, and the | ||||||
464 | options associated with it. | ||||||
465 | |||||||
466 | Present if p-values were corrected by simulation: | ||||||
467 | |||||||
468 | NUM_OBSERVATIONS The number of simulations in which a p-value as | ||||||
469 | good as this one, or better, was observed. | ||||||
470 | |||||||
471 | Present if the False Discovery Rate is calculated: | ||||||
472 | |||||||
473 | FDR_RATE The False Discovery Rate - this is a fraction | ||||||
474 | of how many of the nodes with p-values as good or | ||||||
475 | better than the node with this FDR would be expected | ||||||
476 | to be false positives. | ||||||
477 | |||||||
478 | FDR_OBSERVATIONS The average number of nodes during simulations | ||||||
479 | that had an uncorrected p-value as good or better | ||||||
480 | than the p-value of this node. | ||||||
481 | |||||||
482 | EXPECTED_FALSE_POSITIVES The expected number of false positives if this node | ||||||
483 | is chosen as the cut-off. | ||||||
484 | |||||||
485 | The entries in the returned array are sorted by increasing p-value | ||||||
486 | (i.e. least likely is first). If there is a tie in the p-value, then | ||||||
487 | the sort order is determined by GOID, using a cmp comparison. | ||||||
488 | |||||||
489 | findTerm() expects to be passed, by reference, a list of gene names | ||||||
490 | for which terms will be found. If a passed in name is ambiguous (see | ||||||
491 | AnnotationProvider), then the following will occur: | ||||||
492 | |||||||
493 | 1) If the name can be used as a standard name, it will assume that | ||||||
494 | it is that. | ||||||
495 | |||||||
496 | 2) Otherwise it will not use it. | ||||||
497 | |||||||
498 | Currently a warning will be printed to STDOUT in the case of an | ||||||
499 | ambiguous name being used. | ||||||
500 | |||||||
501 | The passed in gene names are converted into a list of databaseIds. If | ||||||
502 | a gene does not map to a databaseId, then an undef is put in the list | ||||||
503 | - however, if the same gene name, which does not map to a databaseId, | ||||||
504 | is used twice then it will produce only one undef in the list. If | ||||||
505 | more than one gene name maps to the same databaseId (either because | ||||||
506 | you used the same name twice, or you used an alias as well), then that | ||||||
507 | databaseId is only put into the list once, and a warning is printed. | ||||||
508 | |||||||
509 | If a gene name does not have any information returned from the | ||||||
510 | AnnotationProvider, then it is assumed that the gene is entirely | ||||||
511 | unannotated. For these purposes, TermFinder annotates such genes to | ||||||
512 | the root node (Gene_Ontology), its immediate child (which indicates | ||||||
513 | the aspect of the ontology (such as biological_process), and a dummy | ||||||
514 | go node, corresponding to unannotated. This node will have a goid of | ||||||
515 | 'GO:XXXXXXX', and a term name of 'unannotated'. No other information | ||||||
516 | will be set up for this GO::Node, so you should not count on being | ||||||
517 | able to retrieve it. What it does mean is that you can determine if | ||||||
518 | the predominant feature of a set of genes is that they have no | ||||||
519 | annotation. | ||||||
520 | |||||||
521 | If more genes are provided that have been indicated exist in the | ||||||
522 | genome (as provided during object construction), then an error message | ||||||
523 | will be printed out, and an empty list will be returned. | ||||||
524 | |||||||
525 | In addition, it is possible that for a small list of genes, that no | ||||||
526 | hypotheses will be tested - in this case, those genes will only have | ||||||
527 | annotated nodes with a count of 1, other than the Gene_Ontology node | ||||||
528 | itself, and the node corresponding to the aspect of the ontology. | ||||||
529 | Neither of these are considered for p-value testing, as a priori they | ||||||
530 | must have a p-value of 1. | ||||||
531 | |||||||
532 | MULTIPLE HYPOTHESIS CORRECTION | ||||||
533 | |||||||
534 | An optional argument, 'correction' may be used, which indicates what | ||||||
535 | method of multiple hypothesis correction should be used. Multiple | ||||||
536 | hypothesis correction attempts to keep the overall chance of getting | ||||||
537 | any false positives at the same level (e.g. 0.05). Acceptable values | ||||||
538 | are: | ||||||
539 | |||||||
540 | bonferroni, none, simulation | ||||||
541 | |||||||
542 | : 'bonferroni' will correct the p-values by using as the correction | ||||||
543 | factor the total number of nodes to which the provided list of | ||||||
544 | genes are annotated, either directly or indirectly, excepting any | ||||||
545 | nodes that are annotated only once in the background distribution, | ||||||
546 | as, a priori, these cannot be overrepresented. | ||||||
547 | |||||||
548 | : 'none' will perform no multiple hypothesis correction | ||||||
549 | |||||||
550 | : 'simulation' will run 1000 simulations with random lists of genes | ||||||
551 | (the same size as the originally provided gene list), and determine | ||||||
552 | a corrected value by how many simulations produced a p-value better | ||||||
553 | than the p-value associated with one of the real hypotheses. | ||||||
554 | E.g. if a node from the real data has a p-value of 0.05, but a | ||||||
555 | p-value that good or better is generated in 500 out of 1000 trials, | ||||||
556 | the corrected pvalue will be 0.5. In the case that a p-value | ||||||
557 | generated from a real list of genes is never seen in the | ||||||
558 | simulations, it will be given a corrected p-value of < 0.001, and | ||||||
559 | the NUM_OBSERVATIONS attribute of the hypothesis will be 0. Using | ||||||
560 | this option takes 1000 time as long! | ||||||
561 | |||||||
562 | The default for this argument, if not provided, is bonferroni. | ||||||
563 | |||||||
564 | FALSE DISCOVERY RATE | ||||||
565 | |||||||
566 | As a way of preempting the potential problems of using p-values | ||||||
567 | corrected for multiple hypothesis testing, the False Discovery Rate | ||||||
568 | can instead be calculated, and you can instead set your cutoff based | ||||||
569 | on an acceptable false discovery rate, such as 0.01 (1%), or 0.05 (5%) | ||||||
570 | etc. Thus, the optional argument 'calculateFDR' can be used. A | ||||||
571 | non-zero value means that the False Discovery Rate will be calculated | ||||||
572 | for each node, such that you can determine, if you chose your p-value | ||||||
573 | cut-off at that node, what the FDR would be. The FDR is calculated by | ||||||
574 | running 50 simulations, and counting the average number of times a | ||||||
575 | p-value as good or better that a p-value generated from the real data | ||||||
576 | is seen. This is used as the numerator. The denominator is the | ||||||
577 | number of p-values in the real data that are as good or better than | ||||||
578 | it. | ||||||
579 | |||||||
580 | Usage example - in this example, the default (Bonferroni) correction | ||||||
581 | is used to calculate a corrected p-value, and in addition, the False | ||||||
582 | Discovery Rate is also calculated: | ||||||
583 | |||||||
584 | my @pvalueStructures = $termFinder->findTerms(genes => \@genes, | ||||||
585 | calculateFDR => 1); | ||||||
586 | |||||||
587 | my $hypothesis = 1; | ||||||
588 | |||||||
589 | foreach my $pvalue (@pvalueStructures){ | ||||||
590 | |||||||
591 | print "-- $hypothesis of ", scalar @pvalueStructures, "--\n", | ||||||
592 | |||||||
593 | "GOID\t", $pvalue->{NODE}->goid, "\n", | ||||||
594 | |||||||
595 | "TERM\t", $pvalue->{NODE}->term, "\n", | ||||||
596 | |||||||
597 | "P-VALUE\t", $pvalue->{PVALUE}, "\n", | ||||||
598 | |||||||
599 | "CORRECTED P-VALUE\t", $pvalue->{CORRECTED_PVALUE}, "\n", | ||||||
600 | |||||||
601 | "FALSE DISCOVERY RATE\t", $pvalue->{FDR_RATE}, "\n", | ||||||
602 | |||||||
603 | "NUM_ANNOTATIONS\t", $pvalue->{NUM_ANNOTATIONS}, " (of ", $pvalue->{TOTAL_NUM_ANNOTATIONS}, ")\n", | ||||||
604 | |||||||
605 | "ANNOTATED_GENES\t", join(", ", values (%{$pvalue->{ANNOTATED_GENES}})), "\n\n"; | ||||||
606 | |||||||
607 | $hypothesis++; | ||||||
608 | |||||||
609 | } | ||||||
610 | |||||||
611 | If a background population had been provided when the object was | ||||||
612 | constructed, you should check to see if any of your genes for which | ||||||
613 | you are finding terms were discarded, due to not being found in the background | ||||||
614 | population, e.g.: | ||||||
615 | |||||||
616 | my @pvalueStructures = $termFinder->findTerms(genes => \@genes, | ||||||
617 | calculateFDR => 1); | ||||||
618 | |||||||
619 | my @discardedGenes = $termFinder->discardedGenes; | ||||||
620 | |||||||
621 | if (@discardedGenes){ | ||||||
622 | |||||||
623 | print "The following genes were not considered in the pvalue | ||||||
624 | calculations, as they were not found in the provided background | ||||||
625 | population.\n\n", join("\n", @discardedGenes), "\n\n"; | ||||||
626 | |||||||
627 | } | ||||||
628 | |||||||
629 | =cut | ||||||
630 | |||||||
631 | 2116 | 2116 | 1 | 155093 | my ($self, %args) = @_; | ||
632 | |||||||
633 | # let's check that they have provided the required information | ||||||
634 | |||||||
635 | 2116 | 17338 | $self->__checkAndStoreFindTermsArgs(%args); | ||||
636 | |||||||
637 | # now we determine all the count for direct and indirect | ||||||
638 | # annotations for the provided list of genes. | ||||||
639 | |||||||
640 | 2115 | 8499 | $self->{$kGoCounts} = $self->__buildHashRefOfAnnotations([$self->genesDatabaseIds]); | ||||
641 | |||||||
642 | # now we have these counts, and because we determined the counts | ||||||
643 | # of the background distribution during object construction, we | ||||||
644 | # can determine the p-values for the annotations of our list of | ||||||
645 | # genes of interest. | ||||||
646 | |||||||
647 | 2115 | 113522 | $self->__calculatePValues; | ||||
648 | |||||||
649 | # now we want to add in which genes were annotated to each node | ||||||
650 | # so that the client can determine them | ||||||
651 | |||||||
652 | 2115 | 269020 | $self->__addAnnotationsToPValues; | ||||
653 | |||||||
654 | # now what we want to do is calculate pvalues that are corrected | ||||||
655 | # for multiple hypothesis testing, unless it is specifically | ||||||
656 | # requested not to. | ||||||
657 | |||||||
658 | 2115 | 100 | 17675 | $self->__correctPvalues unless ($self->__correctionMethod eq 'none'); | |||
659 | |||||||
660 | # now calculate the False Discovery Rate, if requested to | ||||||
661 | |||||||
662 | 2115 | 100 | 10200 | $self->__calculateFDR if ($self->__shouldCalculateFDR); | |||
663 | |||||||
664 | 2115 | 10226 | return $self->__pValues; | ||||
665 | |||||||
666 | } | ||||||
667 | |||||||
668 | ##################################################################### | ||||||
669 | sub __checkAndStoreFindTermsArgs{ | ||||||
670 | ##################################################################### | ||||||
671 | # This private method checks the arguments that are passed into the | ||||||
672 | # findTerms() method, and stores various variables internally. | ||||||
673 | |||||||
674 | 2116 | 2116 | 8237 | my ($self, %args) = @_; | |||
675 | |||||||
676 | # check they gave us a list of genes | ||||||
677 | |||||||
678 | 2116 | 50 | 14951 | if (!exists ($args{'genes'})){ | |||
50 | |||||||
679 | |||||||
680 | 0 | 0 | die "You must provide a genes argument"; | ||||
681 | |||||||
682 | }elsif (!defined ($args{'genes'})){ | ||||||
683 | |||||||
684 | 0 | 0 | die "Your genes argument is undefined"; | ||||
685 | |||||||
686 | } | ||||||
687 | |||||||
688 | # see if they gave us an allowable method by which to correct for | ||||||
689 | # multiple hypotheses | ||||||
690 | |||||||
691 | 2116 | 100 | 18663 | $self->{$kCorrectionMethod} = $args{'correction'} || 'bonferroni'; | |||
692 | |||||||
693 | 2116 | 50 | 11549 | if (!exists $kAllowedCorrectionMethods{$self->__correctionMethod}){ | |||
694 | |||||||
695 | 0 | 0 | die $self->__correctionMethod." is not an allowed correction method. Use one of :". | ||||
696 | |||||||
697 | join(", ", keys %kAllowedCorrectionMethods); | ||||||
698 | |||||||
699 | } | ||||||
700 | |||||||
701 | # store whether to calculate the FDR | ||||||
702 | |||||||
703 | 2116 | 100 | 100 | 20342 | if (exists $args{'calculateFDR'} && $args{'calculateFDR'} != 0){ | ||
704 | |||||||
705 | 2 | 9 | $self->{$kShouldCalculateFDR} = 1; | ||||
706 | |||||||
707 | }else{ | ||||||
708 | |||||||
709 | # default is not to calculate it | ||||||
710 | |||||||
711 | 2114 | 7086 | $self->{$kShouldCalculateFDR} = 0; | ||||
712 | |||||||
713 | } | ||||||
714 | |||||||
715 | # what we want to do now is build up an array of identifiers that | ||||||
716 | # are unambiguous - ie databaseIds | ||||||
717 | # | ||||||
718 | # This means that when retrieving GOID's, we can always retrieve | ||||||
719 | # them by databaseId, which is unambiguous. | ||||||
720 | |||||||
721 | 2116 | 12666 | my ($databaseIdsRef, $databaseId2OrigNameRef) = $self->__determineDatabaseIdsFromGenes($args{'genes'}); | ||||
722 | |||||||
723 | # now we want to make sure that if they provided a population as | ||||||
724 | # the background, then all of the provided genes that are being | ||||||
725 | # tested for enriched GO terms are sampled from that population | ||||||
726 | |||||||
727 | 2116 | 4922 | my @discardedGenes; | ||||
728 | |||||||
729 | 2116 | 100 | 11528 | if ($self->__isUsingPopulation){ | |||
730 | |||||||
731 | 1058 | 3501 | my @missingIds; | ||||
732 | |||||||
733 | # go through each databaseID, and see if it is in the databaseIDs | ||||||
734 | # associated with the GO counts for the background population. If | ||||||
735 | # it's a fake ID, then see if the original name is in the names | ||||||
736 | # that were passed in. | ||||||
737 | |||||||
738 | 1058 | 1959 | foreach my $databaseId (@{$databaseIdsRef}){ | ||||
1058 | 3556 | ||||||
739 | |||||||
740 | # if it's a fake databaseId, we have to see if the orig | ||||||
741 | # name was in the provided population, otherwise, if it's | ||||||
742 | # a real databaseId, check that the databaseId is in the | ||||||
743 | # background | ||||||
744 | |||||||
745 | 20103 | 100 | 66 | 77043 | if (( | ||
66 | |||||||
746 | |||||||
747 | $databaseId =~ /^$kFakeIdPrefix/o && | ||||||
748 | !$self->__origNameInPopulation($databaseId2OrigNameRef->{$databaseId})) | ||||||
749 | |||||||
750 | || | ||||||
751 | |||||||
752 | !$self->__databaseIdIsInBackground($databaseId)){ | ||||||
753 | |||||||
754 | 16 | 34 | push(@missingIds, $databaseId); | ||||
755 | |||||||
756 | } | ||||||
757 | |||||||
758 | } | ||||||
759 | |||||||
760 | # Now see if we have any missing names | ||||||
761 | |||||||
762 | # If we have as many missing names as there were genes | ||||||
763 | # provided, then we'll die, as there is nothing that can be | ||||||
764 | # done, as no gene remain for any enrichment calculations | ||||||
765 | |||||||
766 | 1058 | 100 | 2282 | if (@missingIds == @{$databaseIdsRef}){ | |||
1058 | 3578 | ||||||
767 | |||||||
768 | 1 | 12 | die "None of the genes provided for analysis are found in the background population.\n"; | ||||
769 | |||||||
770 | } | ||||||
771 | |||||||
772 | # Otherwise, we will print a warning that genes were | ||||||
773 | # discarded, but we also provide an API for them to retrieve | ||||||
774 | # the names of genes that were discarded. | ||||||
775 | |||||||
776 | 1057 | 100 | 4426 | if (@missingIds){ | |||
777 | |||||||
778 | 3 | 50 | 13 | if ($WARNINGS){ | |||
779 | |||||||
780 | 0 | 0 | print STDERR "\nThe following names in the provided list of genes do not have a\n", | ||||
781 | |||||||
782 | "counterpart in the background population that you provided.\n", | ||||||
783 | |||||||
784 | "These genes will not be used in the analysis for enriched GO terms.\n\n"; | ||||||
785 | |||||||
786 | 0 | 0 | foreach my $databaseId (@missingIds){ | ||||
787 | |||||||
788 | 0 | 0 | print STDERR $databaseId2OrigNameRef->{$databaseId}, "\n"; | ||||
789 | |||||||
790 | } | ||||||
791 | |||||||
792 | 0 | 0 | print STDERR "\n"; | ||||
793 | |||||||
794 | } | ||||||
795 | |||||||
796 | # now we have to actually remove them from the list of | ||||||
797 | # considered genes | ||||||
798 | |||||||
799 | # create a dummy hash of the databaseIds, delete the | ||||||
800 | # elements, and then assign the remaining keys back to the | ||||||
801 | # $databaseIdsRef | ||||||
802 | |||||||
803 | # we'll also remember it | ||||||
804 | |||||||
805 | 3 | 7 | my %dummyDatabaseIdsHash = %{$databaseId2OrigNameRef}; | ||||
3 | 57 | ||||||
806 | |||||||
807 | 3 | 12 | foreach my $databaseId (@missingIds){ | ||||
808 | |||||||
809 | 12 | 23 | push (@discardedGenes, $databaseId2OrigNameRef->{$databaseId}); | ||||
810 | |||||||
811 | 12 | 26 | delete $dummyDatabaseIdsHash{$databaseId}; | ||||
812 | |||||||
813 | } | ||||||
814 | |||||||
815 | 3 | 33 | $databaseIdsRef = [keys %dummyDatabaseIdsHash] | ||||
816 | |||||||
817 | } | ||||||
818 | |||||||
819 | } | ||||||
820 | |||||||
821 | # now remember the genes that were discarded | ||||||
822 | |||||||
823 | 2115 | 11073 | $self->__setDiscardedGenes(\@discardedGenes); | ||||
824 | |||||||
825 | # now store them the databaseIDs for the genes that can be used to | ||||||
826 | # determine enriched GO terms in the self object | ||||||
827 | |||||||
828 | 2115 | 7881 | $self->{$kDatabaseIds} = $databaseIdsRef; | ||||
829 | |||||||
830 | # also store the mapping of the databaseId to its original name | ||||||
831 | |||||||
832 | 2115 | 25434 | $self->{$kDatabaseId2OrigName} = $databaseId2OrigNameRef; | ||||
833 | |||||||
834 | # note, we need to provide the client with a way of determining | ||||||
835 | # how many genes were used when calculating p-values for | ||||||
836 | # annotations | ||||||
837 | |||||||
838 | 2115 | 50 | 26829 | if (scalar ($self->genesDatabaseIds) > $self->totalNumGenes){ | |||
839 | |||||||
840 | 0 | 0 | 0 | if ($WARNINGS){ | |||
841 | |||||||
842 | 0 | 0 | print "You have provided a list corresponding to ", scalar ($self->genesDatabaseIds), "genes, ", | ||||
843 | |||||||
844 | "yet you have indicated that there are only ", $self->totalNumGenes, " in the genome.\n"; | ||||||
845 | |||||||
846 | 0 | 0 | print "No probabilities can be calculated.\n"; | ||||
847 | |||||||
848 | } | ||||||
849 | |||||||
850 | 0 | 0 | return (); # simply return an empty list | ||||
851 | |||||||
852 | } | ||||||
853 | |||||||
854 | |||||||
855 | |||||||
856 | } | ||||||
857 | |||||||
858 | ##################################################################### | ||||||
859 | sub discardedGenes { | ||||||
860 | ##################################################################### | ||||||
861 | =pod | ||||||
862 | |||||||
863 | =head2 discardedGenes | ||||||
864 | |||||||
865 | This method returns an array of genes which were discarded from the | ||||||
866 | pvalue calculations, because they could not be found in the background | ||||||
867 | population. It should only be called after findTerms. It will either | ||||||
868 | return an empty list, if no genes were discarded, or an array of genes | ||||||
869 | that were discarded. | ||||||
870 | |||||||
871 | Usage: | ||||||
872 | |||||||
873 | my @pvalueStructures = $termFinder->findTerms(genes => \@genes, | ||||||
874 | calculateFDR => 1); | ||||||
875 | |||||||
876 | my @discardedGenes = $termFinder->discardedGenes; | ||||||
877 | |||||||
878 | if (@discardedGenes){ | ||||||
879 | |||||||
880 | print "The following genes were not considered in the pvalue | ||||||
881 | calculations, as they were not found in the provided background | ||||||
882 | population.\n\n", join("\n", @discardedGenes), "\n\n"; | ||||||
883 | |||||||
884 | } | ||||||
885 | |||||||
886 | =cut | ||||||
887 | |||||||
888 | 3 | 3 | 1 | 37 | return @{$_[0]->{$kDiscardedGenes}}; | ||
3 | 21 | ||||||
889 | |||||||
890 | } | ||||||
891 | |||||||
892 | |||||||
893 | # | ||||||
894 | # PRIVATE INSTANCE METHODS | ||||||
895 | # | ||||||
896 | |||||||
897 | ##################################################################### | ||||||
898 | sub __databaseIdIsInBackground{ | ||||||
899 | ##################################################################### | ||||||
900 | # This private method will return a Boolean to indicate whether the | ||||||
901 | # supplied databaseId is in the set of databaseIds determined for the | ||||||
902 | # background set of genes. Note, it does not check if the databaseId | ||||||
903 | # is a fake one, so the client should do that if it needs to | ||||||
904 | |||||||
905 | 20087 | 20087 | 106417 | return exists $_[0]->{$kBackgroundDatabaseIds}{$_[1]}; | |||
906 | |||||||
907 | } | ||||||
908 | |||||||
909 | ##################################################################### | ||||||
910 | sub __isUsingPopulation{ | ||||||
911 | ##################################################################### | ||||||
912 | # This private method returns a boolean to indicate whether the client | ||||||
913 | # passed in a population of genes to use as the background distribution | ||||||
914 | |||||||
915 | 2124 | 2124 | 13375 | return exists $_[0]->{$kArgs}{population}; | |||
916 | |||||||
917 | } | ||||||
918 | |||||||
919 | ##################################################################### | ||||||
920 | sub __population{ | ||||||
921 | ##################################################################### | ||||||
922 | # This private method returns a reference to an array of identifiers | ||||||
923 | # that were passed in to be used as a background population | ||||||
924 | |||||||
925 | 4 | 4 | 3741 | return $_[0]->{$kArgs}{population}; | |||
926 | |||||||
927 | } | ||||||
928 | |||||||
929 | ##################################################################### | ||||||
930 | sub __origNameInPopulation{ | ||||||
931 | ##################################################################### | ||||||
932 | # This private method returns a Boolean to indicate whether the | ||||||
933 | # provided name is in the list of names that were provided as a | ||||||
934 | # background population | ||||||
935 | |||||||
936 | 16 | 16 | 104 | return exists $_[0]->{$kPopulationNamesHash}{$_[1]}; | |||
937 | |||||||
938 | } | ||||||
939 | |||||||
940 | ##################################################################### | ||||||
941 | sub __setDiscardedGenes{ | ||||||
942 | ##################################################################### | ||||||
943 | # This private method will store the passed in array reference, which | ||||||
944 | # points to a list of genes that had to be discarded. | ||||||
945 | |||||||
946 | 2115 | 2115 | 9981 | $_[0]->{$kDiscardedGenes} = $_[1]; | |||
947 | |||||||
948 | } | ||||||
949 | |||||||
950 | ##################################################################### | ||||||
951 | sub __totalNumAnnotatedGenes{ | ||||||
952 | ##################################################################### | ||||||
953 | # This private method returns the number of genes that have any annotation, | ||||||
954 | # as determined from the AnnotationProvider. This is set during object | ||||||
955 | # initialization. | ||||||
956 | |||||||
957 | 38 | 38 | 149 | return $_[0]->{$kTotalNumAnnotatedGenes}; | |||
958 | |||||||
959 | } | ||||||
960 | |||||||
961 | ##################################################################### | ||||||
962 | sub __numAnnotatedNodesInBackground{ | ||||||
963 | ##################################################################### | ||||||
964 | # This private method returns the number of nodes in the ontology that | ||||||
965 | # have any annotation in the background distribution. This is stored | ||||||
966 | # during object initialization as a hash of GOID to the number of | ||||||
967 | # counts. | ||||||
968 | |||||||
969 | 0 | 0 | 0 | return scalar keys %{$_[0]->{$kTotalGoNodeCounts}}; | |||
0 | 0 | ||||||
970 | |||||||
971 | } | ||||||
972 | |||||||
973 | ##################################################################### | ||||||
974 | sub __allGoIdsForBackground{ | ||||||
975 | ##################################################################### | ||||||
976 | # This private method returns as an array all the GOIDs of nodes in | ||||||
977 | # the ontology that have any annotation in the background | ||||||
978 | # distribution. This is stored during object initialization as a hash | ||||||
979 | # of GOID to the number of counts. | ||||||
980 | |||||||
981 | 0 | 0 | 0 | return keys %{$_[0]->{$kTotalGoNodeCounts}}; | |||
0 | 0 | ||||||
982 | |||||||
983 | } | ||||||
984 | |||||||
985 | ##################################################################### | ||||||
986 | sub genesDatabaseIds{ | ||||||
987 | ##################################################################### | ||||||
988 | =pod | ||||||
989 | |||||||
990 | =head2 genesDatabaseIds | ||||||
991 | |||||||
992 | This method returns an array of databaseIds corresponding to the genes | ||||||
993 | that were used for the findTerms() method. Thus it allows a client to | ||||||
994 | find out how many actual entities their list of genes that were passed | ||||||
995 | in mapped to, e.g. they may have passed in the same thing with two | ||||||
996 | different names. Using this method, immediately following use of the | ||||||
997 | findTerms method, they will determine how many genes their list | ||||||
998 | collapsed to. | ||||||
999 | |||||||
1000 | =cut | ||||||
1001 | |||||||
1002 | 8464 | 8464 | 1 | 10124 | return @{$_[0]->{$kDatabaseIds}}; | ||
8464 | 68182 | ||||||
1003 | |||||||
1004 | } | ||||||
1005 | |||||||
1006 | ##################################################################### | ||||||
1007 | sub __origNameForDatabaseId{ | ||||||
1008 | ##################################################################### | ||||||
1009 | # This method returns the original name that was provided to the term | ||||||
1010 | # finder for the databaseId that it was translated to. | ||||||
1011 | |||||||
1012 | 554230 | 554230 | 2489849 | return $_[0]->{$kDatabaseId2OrigName}->{$_[1]}; | |||
1013 | |||||||
1014 | } | ||||||
1015 | |||||||
1016 | ##################################################################### | ||||||
1017 | sub __pValues{ | ||||||
1018 | ##################################################################### | ||||||
1019 | # This method returns an array of pValues structures | ||||||
1020 | |||||||
1021 | 2125 | 2125 | 3799 | return @{$_[0]->{$kPvalues}}; | |||
2125 | 42010 | ||||||
1022 | |||||||
1023 | } | ||||||
1024 | |||||||
1025 | ##################################################################### | ||||||
1026 | sub __correctionMethod{ | ||||||
1027 | ##################################################################### | ||||||
1028 | # This method returns the name of the method by which the client has | ||||||
1029 | # chosen to have their p-values corrected - either none, bonferroni, | ||||||
1030 | # custom, or simulation. | ||||||
1031 | |||||||
1032 | 4245 | 4245 | 26473 | return $_[0]->{$kCorrectionMethod}; | |||
1033 | |||||||
1034 | } | ||||||
1035 | |||||||
1036 | ##################################################################### | ||||||
1037 | sub __shouldCalculateFDR{ | ||||||
1038 | ##################################################################### | ||||||
1039 | # This method returns a boolean, to indicate whether the false discovery | ||||||
1040 | # rate should be calculated | ||||||
1041 | |||||||
1042 | 2115 | 2115 | 12108 | return $_[0]->{$kShouldCalculateFDR}; | |||
1043 | |||||||
1044 | } | ||||||
1045 | |||||||
1046 | ##################################################################### | ||||||
1047 | sub __determineDatabaseIdsFromGenes{ | ||||||
1048 | ##################################################################### | ||||||
1049 | # This method determines a list of databaseIds for a list of genes | ||||||
1050 | # passed in by reference. It then returns a reference to that list, | ||||||
1051 | # and a reference to a hash that maps the databaseIds to the | ||||||
1052 | # originally supplied name | ||||||
1053 | # | ||||||
1054 | # If more than one gene maps to the same databaseId, then the | ||||||
1055 | # databaseId is only put in the list once, and a warning is printed. | ||||||
1056 | # | ||||||
1057 | # If a gene does not map to a databaseId, then an undef is put in the | ||||||
1058 | # list - however, if the same gene name, which does not map to a | ||||||
1059 | # databaseId, is used twice then it will produce only one undef in the | ||||||
1060 | # list. | ||||||
1061 | # | ||||||
1062 | # In addition, it removes leading and trailing whitespace from supplied | ||||||
1063 | # gene names (assuming they should have none) and will skip any names that | ||||||
1064 | # are either empty, or whitespace only. | ||||||
1065 | |||||||
1066 | 2118 | 2118 | 4765 | my ($self, $genesRef) = @_; | |||
1067 | |||||||
1068 | 2118 | 3823 | my (@databaseIds, $databaseId, %databaseIds, %genes, %duplicates, %warned); | ||||
1069 | |||||||
1070 | 2118 | 3790 | foreach my $gene (@{$genesRef}){ | ||||
2118 | 5548 | ||||||
1071 | |||||||
1072 | # strip leading and trailing spaces | ||||||
1073 | |||||||
1074 | 53129 | 115625 | $gene =~ s/^\s+//; | ||||
1075 | 53129 | 81347 | $gene =~ s/\s+$//; | ||||
1076 | |||||||
1077 | 53129 | 50 | 105878 | next if $gene eq ""; # skip empty names | |||
1078 | |||||||
1079 | # skip and warn if we've already seen the gene | ||||||
1080 | |||||||
1081 | 53129 | 50 | 115059 | if (exists ($genes{$gene})){ | |||
1082 | |||||||
1083 | 0 | 0 | 0 | 0 | if ($WARNINGS && !exists($warned{$gene})){ | ||
1084 | |||||||
1085 | 0 | 0 | print "The gene name '$gene' was used more than once.\n"; | ||||
1086 | 0 | 0 | print "It will only be considered once.\n\n"; | ||||
1087 | |||||||
1088 | 0 | 0 | $warned{$gene} = undef; | ||||
1089 | |||||||
1090 | } | ||||||
1091 | |||||||
1092 | 0 | 0 | next; # just skip to the next supplied gene | ||||
1093 | |||||||
1094 | } | ||||||
1095 | |||||||
1096 | # determine if the gene is ambiguous | ||||||
1097 | |||||||
1098 | 53129 | 50 | 107115 | if ($self->__annotationProvider->nameIsAmbiguous($gene)){ | |||
1099 | |||||||
1100 | 0 | 0 | 0 | print "$gene is an ambiguous name.\n" if $WARNINGS; | |||
1101 | |||||||
1102 | 0 | 0 | 0 | if ($self->__annotationProvider->nameIsStandardName($gene)){ | |||
1103 | |||||||
1104 | 0 | 0 | 0 | if ($WARNINGS){ | |||
1105 | |||||||
1106 | 0 | 0 | print "Since $gene is used as a standard name, it will be assumed to be one.\n\n"; | ||||
1107 | |||||||
1108 | } | ||||||
1109 | |||||||
1110 | 0 | 0 | $databaseId = $self->__annotationProvider->databaseIdByStandardName($gene); | ||||
1111 | |||||||
1112 | 0 | 0 | push (@databaseIds, $databaseId); | ||||
1113 | |||||||
1114 | }else{ | ||||||
1115 | |||||||
1116 | 0 | 0 | 0 | if ($WARNINGS){ | |||
1117 | |||||||
1118 | 0 | 0 | print "Since $gene is an ambiguous alias, it will not be used.\n\n"; | ||||
1119 | |||||||
1120 | } | ||||||
1121 | |||||||
1122 | } | ||||||
1123 | |||||||
1124 | }else{ | ||||||
1125 | |||||||
1126 | # note, if the gene has no annotation, then we will want | ||||||
1127 | # to create a fake databaseId, that we can easily | ||||||
1128 | # recognize, and will have to make sure that we deal with | ||||||
1129 | # this later when getting annotations. | ||||||
1130 | |||||||
1131 | 53129 | 103779 | $databaseId = $self->__annotationProvider->databaseIdByName($gene); | ||||
1132 | |||||||
1133 | # if the total number of genes is equal to the number of | ||||||
1134 | # things with some annotation, then there should be no | ||||||
1135 | # genes that do not return a databaseId. If this is the | ||||||
1136 | # case, we will warn them. | ||||||
1137 | |||||||
1138 | 53129 | 100 | 110433 | if (!defined $databaseId){ | |||
1139 | |||||||
1140 | # If we've already defined the total number of genes | ||||||
1141 | # with annotation, and it's equal to the number of | ||||||
1142 | # genes for the background distribution, and we're not | ||||||
1143 | # using a population, we'll print a warning, as under | ||||||
1144 | # these circumstances we shouldn't not get a | ||||||
1145 | # databaseId. | ||||||
1146 | |||||||
1147 | 19 | 50 | 66 | 48 | if (defined ($self->__totalNumAnnotatedGenes) && | ||
66 | |||||||
33 | |||||||
1148 | $self->__totalNumAnnotatedGenes == $self->totalNumGenes && | ||||||
1149 | $WARNINGS && | ||||||
1150 | !$self->__isUsingPopulation){ | ||||||
1151 | |||||||
1152 | 0 | 0 | print "\nThe name '$gene' did not correspond to an entry from the AnnotationProvider.\n"; | ||||
1153 | 0 | 0 | print "However, the client has indicated that all genes have annotation.\n"; | ||||
1154 | 0 | 0 | print "You should probably check that '$gene' is a real name.\n\n"; | ||||
1155 | |||||||
1156 | } | ||||||
1157 | |||||||
1158 | # Now we need to deal with the lack of databaseId | ||||||
1159 | # We'll simply create a fake one, that we can easily | ||||||
1160 | # recognize later, so we can deal with it accordingly | ||||||
1161 | |||||||
1162 | 19 | 50 | $databaseId = $kFakeIdPrefix.$gene; | ||||
1163 | |||||||
1164 | } | ||||||
1165 | |||||||
1166 | 53129 | 89340 | push (@databaseIds, $databaseId); | ||||
1167 | |||||||
1168 | } | ||||||
1169 | |||||||
1170 | # if we have a databaseId that we've already seen, we want to | ||||||
1171 | # make sure we only consider it once. | ||||||
1172 | |||||||
1173 | 53129 | 50 | 33 | 244646 | if (defined ($databaseId) && exists($databaseIds{$databaseId})){ | ||
1174 | |||||||
1175 | 0 | 0 | pop (@databaseIds); # get rid of the extra | ||||
1176 | |||||||
1177 | # and let's remember what it was, as well as the previous | ||||||
1178 | # name associated with this databaseId, so we can give an | ||||||
1179 | # appropriate warning | ||||||
1180 | |||||||
1181 | 0 | 0 | $duplicates{$databaseId}{$gene} = undef; | ||||
1182 | 0 | 0 | $duplicates{$databaseId}{$databaseIds{$databaseId}} = undef; | ||||
1183 | |||||||
1184 | |||||||
1185 | } | ||||||
1186 | |||||||
1187 | # remember the databaseId and gene, in case we see them again | ||||||
1188 | |||||||
1189 | 53129 | 50 | 158519 | $databaseIds{$databaseId} = $gene if (defined ($databaseId)); | |||
1190 | 53129 | 102744 | $genes{$gene} = undef; | ||||
1191 | |||||||
1192 | } | ||||||
1193 | |||||||
1194 | |||||||
1195 | 2118 | 0 | 33 | 10093 | if (%duplicates && $WARNINGS){ | ||
1196 | |||||||
1197 | 0 | 0 | print "The following databaseIds were represented multiple times:\n\n"; | ||||
1198 | |||||||
1199 | 0 | 0 | foreach my $duplicate (sort keys %duplicates){ | ||||
1200 | |||||||
1201 | 0 | 0 | print $duplicate, " represented by ", join(", ", (sort keys %{$duplicates{$duplicate}})), "\n"; | ||||
0 | 0 | ||||||
1202 | |||||||
1203 | } | ||||||
1204 | |||||||
1205 | 0 | 0 | print "\nEach of these databaseIds will only be considered once.\n"; | ||||
1206 | |||||||
1207 | } | ||||||
1208 | |||||||
1209 | # return databaseIds, and their mapping to the originally supplied | ||||||
1210 | # name | ||||||
1211 | |||||||
1212 | 2118 | 72567 | return (\@databaseIds, \%databaseIds); | ||||
1213 | |||||||
1214 | } | ||||||
1215 | |||||||
1216 | ############################################################################ | ||||||
1217 | sub __buildHashRefOfAnnotations{ | ||||||
1218 | ############################################################################ | ||||||
1219 | # This private method takes a reference to an array of databaseIds and | ||||||
1220 | # calculates the level of annotations for all GO nodes that those | ||||||
1221 | # databaseIds have either direct or indirect annotation for. It | ||||||
1222 | # returns a reference to a hash of GO node counts, with the goids | ||||||
1223 | # being the keys, and the number of annotations they have from the | ||||||
1224 | # list of databaseId's being the values. | ||||||
1225 | |||||||
1226 | 2119 | 2119 | 7269 | my ($self, $databaseIdsRef) = @_; | |||
1227 | |||||||
1228 | 2119 | 5107 | my %goNodeCounts; | ||||
1229 | |||||||
1230 | # keep track of how many are annotated to the aspect node | ||||||
1231 | # (e.g. such as molecular function). See comments for | ||||||
1232 | # __allGOIDsForDatabaseId for more information | ||||||
1233 | |||||||
1234 | 2119 | 5726 | my $aspectNodeDirectAnnotations = 0; | ||||
1235 | |||||||
1236 | 2119 | 13550 | my $aspectNodeGoid = ($self->__ontologyProvider->rootNode->childNodes())[0]->goid; | ||||
1237 | |||||||
1238 | # If gene has no annotation, annotate it to the top node | ||||||
1239 | # (Gene_Ontology), and its immediate child (the aspect itself) and | ||||||
1240 | # the 'unannotated' node. | ||||||
1241 | |||||||
1242 | 2119 | 12253 | my @noAnnotationNodes = ($aspectNodeGoid, | ||||
1243 | $self->__ontologyProvider->rootNode->goid, | ||||||
1244 | $kUnannotatedNode->goid); | ||||||
1245 | |||||||
1246 | 2119 | 7133 | foreach my $databaseId (@{$databaseIdsRef}) { | ||||
2119 | 6559 | ||||||
1247 | |||||||
1248 | # get goids count, if the databaseId is not a fake one | ||||||
1249 | |||||||
1250 | 66053 | 91736 | my $goidsRef; | ||||
1251 | |||||||
1252 | 66053 | 100 | 151956 | if ($databaseId !~ /^$kFakeIdPrefix/o){ | |||
1253 | |||||||
1254 | 66050 | 167048 | $goidsRef = $self->__allGOIDsForDatabaseId($databaseId); | ||||
1255 | |||||||
1256 | } | ||||||
1257 | |||||||
1258 | 66053 | 100 | 66 | 181424 | if (!defined $goidsRef || !(@{$goidsRef})) { | ||
66050 | 166152 | ||||||
1259 | |||||||
1260 | # If gene has no annotation, annotate it to the top node | ||||||
1261 | # (Gene_Ontology), and its immediate child (the aspect itself) | ||||||
1262 | # and the 'unannotated' node, which we cached earlier. | ||||||
1263 | |||||||
1264 | 534 | 2209 | $goidsRef = [@noAnnotationNodes]; | ||||
1265 | |||||||
1266 | # now cache the goids for the unnannotated genes. The | ||||||
1267 | # ones that were annotated, had their goids cached in the | ||||||
1268 | # __allGOIDsForDatabaseId. It is an optimization to take | ||||||
1269 | # care of that there, but this here. | ||||||
1270 | |||||||
1271 | 534 | 1697 | $self->{$kGOIDsForDatabaseIds}->{$databaseId} = $goidsRef; | ||||
1272 | |||||||
1273 | } | ||||||
1274 | |||||||
1275 | # increment count for all goids appearing in @goids; | ||||||
1276 | |||||||
1277 | 66053 | 96308 | foreach my $goid (@{$goidsRef}) { | ||||
66053 | 125303 | ||||||
1278 | |||||||
1279 | 1195884 | 1977907 | $goNodeCounts{$goid}++; | ||||
1280 | |||||||
1281 | } | ||||||
1282 | |||||||
1283 | # keep count of how many are directly annotated to the aspect node | ||||||
1284 | |||||||
1285 | 66053 | 100 | 282559 | if (exists ($self->{$kDirectAnnotationToAspect}{$databaseId})){ | |||
1286 | |||||||
1287 | 15361 | 32785 | $aspectNodeDirectAnnotations++; | ||||
1288 | |||||||
1289 | } | ||||||
1290 | |||||||
1291 | } | ||||||
1292 | |||||||
1293 | # now we'd like to replace the counts for the aspect annotations, | ||||||
1294 | # so that they only refer to the direct annotations, rather than | ||||||
1295 | # direct and indirect annotations | ||||||
1296 | |||||||
1297 | 2119 | 6056 | $goNodeCounts{$aspectNodeGoid} = $aspectNodeDirectAnnotations; | ||||
1298 | |||||||
1299 | 2119 | 11387 | return \%goNodeCounts; | ||||
1300 | |||||||
1301 | } | ||||||
1302 | |||||||
1303 | ############################################################################ | ||||||
1304 | sub __allGOIDsForDatabaseId{ | ||||||
1305 | ############################################################################ | ||||||
1306 | # This method returns a reference to an array of all GOIDs to which a | ||||||
1307 | # databaseId is annotated, whether explicitly, or implicitly, by | ||||||
1308 | # virtue of the GO node being an ancestor of an explicitly annotated | ||||||
1309 | # one. The returned array contains no duplicates. | ||||||
1310 | |||||||
1311 | # Because the Gene Ontology no longer has the unknown terms, then | ||||||
1312 | # direct annotation to the aspect node (e.g. molecular function), | ||||||
1313 | # means what annotation to the unknown terms previously meant. But, | ||||||
1314 | # as all nodes are descendents of the aspect node, then enrichment for | ||||||
1315 | # this node will never happen, unless we only look for enrichment of | ||||||
1316 | # direct annotations to this node. Thus, in this method, we also | ||||||
1317 | # record which databaseIds are directly annotated to the aspect node, which | ||||||
1318 | # will be used elsewhere. | ||||||
1319 | |||||||
1320 | 112674 | 112674 | 179733 | my ($self, $databaseId) = @_; | |||
1321 | |||||||
1322 | # cache aspect's ID, so we don't have to repeatedly retrieve it | ||||||
1323 | |||||||
1324 | 112674 | 268225 | my $aspectId = ($self->__ontologyProvider->rootNode->childNodes())[0]->goid; # | ||||
1325 | |||||||
1326 | # generate list of GOIDs if not cached | ||||||
1327 | |||||||
1328 | 112674 | 100 | 447643 | if (!exists($self->{$kGOIDsForDatabaseIds}->{$databaseId})) { | |||
1329 | |||||||
1330 | 19429 | 27106 | my %goids; # so we keep the list unique | ||||
1331 | |||||||
1332 | # go through the direct annotations | ||||||
1333 | |||||||
1334 | 19429 | 26102 | foreach my $goid (@{$self->__annotationProvider->goIdsByDatabaseId(databaseId => $databaseId, | ||||
19429 | 47272 | ||||||
1335 | aspect => $self->aspect)}){ | ||||||
1336 | |||||||
1337 | # just in case an annotation is to a goid not present in the ontology | ||||||
1338 | |||||||
1339 | 32710 | 50 | 70519 | if (!$self->__ontologyProvider->nodeFromId($goid)){ | |||
1340 | |||||||
1341 | 0 | 0 | 0 | if ($WARNINGS){ | |||
1342 | |||||||
1343 | 0 | 0 | print STDERR "\nWarning : $goid, used to annotate $databaseId with an aspect of ".$self->aspect.", does not appear in the provided ontology.\n"; | ||||
1344 | |||||||
1345 | } | ||||||
1346 | |||||||
1347 | # don't record annotations to this goid | ||||||
1348 | |||||||
1349 | 0 | 0 | next; | ||||
1350 | |||||||
1351 | } | ||||||
1352 | |||||||
1353 | # record the goid and its ancestors | ||||||
1354 | |||||||
1355 | 32710 | 66754 | $goids{$goid} = undef; | ||||
1356 | |||||||
1357 | 32710 | 65139 | foreach my $ancestor ($self->__ontologyProvider->nodeFromId($goid)->ancestors){ | ||||
1358 | |||||||
1359 | 455507 | 1079355 | $goids{$ancestor->goid} = undef; | ||||
1360 | |||||||
1361 | } | ||||||
1362 | |||||||
1363 | # record in the self object if it's directly annotated to the aspectId | ||||||
1364 | |||||||
1365 | 32710 | 100 | 128101 | if ($goid eq $aspectId){ | |||
1366 | |||||||
1367 | 4516 | 17883 | $self->{$kDirectAnnotationToAspect}{$databaseId} = undef; | ||||
1368 | |||||||
1369 | } | ||||||
1370 | |||||||
1371 | } | ||||||
1372 | |||||||
1373 | # cache the value | ||||||
1374 | |||||||
1375 | 19429 | 241384 | $self->{$kGOIDsForDatabaseIds}->{$databaseId} = [keys %goids]; | ||||
1376 | |||||||
1377 | } | ||||||
1378 | |||||||
1379 | 112674 | 403529 | return ($self->{$kGOIDsForDatabaseIds}->{$databaseId}); | ||||
1380 | |||||||
1381 | } | ||||||
1382 | |||||||
1383 | ##################################################################### | ||||||
1384 | sub __calculatePValues{ | ||||||
1385 | ##################################################################### | ||||||
1386 | # This method actually determines the p-values of the various levels | ||||||
1387 | # of annotation for the particular GO nodes, and stores them within | ||||||
1388 | # the object. | ||||||
1389 | |||||||
1390 | 2115 | 2115 | 4650 | my $self = shift; | |||
1391 | |||||||
1392 | 2115 | 6412 | my $numDatabaseIds = scalar $self->genesDatabaseIds; | ||||
1393 | |||||||
1394 | 2115 | 3914 | my @pvalueArray; | ||||
1395 | |||||||
1396 | # cache so we don't have to repeatedly look it up | ||||||
1397 | |||||||
1398 | 2115 | 5976 | my $rootGoid = $self->__ontologyProvider->rootNode->goid; | ||||
1399 | |||||||
1400 | # each node we consider here must have at least one annotation in | ||||||
1401 | # our list of provided genes. | ||||||
1402 | |||||||
1403 | 2115 | 9505 | foreach my $goid ($self->__allGoIdsForList) { | ||||
1404 | |||||||
1405 | # skip the root node, as it has to have a probability of 1, | ||||||
1406 | # but don't skip its immediate child though, as we now test | ||||||
1407 | # for enriched direct annotations | ||||||
1408 | |||||||
1409 | 349325 | 100 | 710885 | next if ($goid eq $rootGoid); | |||
1410 | |||||||
1411 | # skip any that has only one (or zero - could happen for the | ||||||
1412 | # aspect goid, as we replaced its counts) annotation in the | ||||||
1413 | # background distribution, as by definition these cannot be | ||||||
1414 | # overrepresented | ||||||
1415 | |||||||
1416 | 347210 | 100 | 658653 | next if ($self->__numAnnotationsToGoId($goid) <= 1); | |||
1417 | |||||||
1418 | # if we get here, we should calculate a p-value for this node | ||||||
1419 | |||||||
1420 | 105137 | 214482 | push (@pvalueArray, $self->__processOneGOID($goid, $numDatabaseIds)); | ||||
1421 | |||||||
1422 | } | ||||||
1423 | |||||||
1424 | # now sort the pvalueArray by their pValues. If the values are the same, | ||||||
1425 | # then sort by goid (text based comparison). | ||||||
1426 | |||||||
1427 | 2115 | 50 | 62178 | @pvalueArray = sort {$a->{PVALUE} <=> $b->{PVALUE} || | |||
480335 | 1020951 | ||||||
1428 | $a->{NODE}->goid cmp $b->{NODE}->goid } @pvalueArray; | ||||||
1429 | |||||||
1430 | 2115 | 10606 | $self->{$kPvalues} = \@pvalueArray; | ||||
1431 | |||||||
1432 | } | ||||||
1433 | |||||||
1434 | ############################################################################ | ||||||
1435 | sub __processOneGOID{ | ||||||
1436 | ############################################################################ | ||||||
1437 | # This processes one GOID. It determines the number of annotations to | ||||||
1438 | # the current GOID, and the P-value of that number of annotations. | ||||||
1439 | # The pvalue is calculated as the probability of observing x or more | ||||||
1440 | # positives in a sample on n, given that there are M positives in a | ||||||
1441 | # population of N. This is calculated using the hypergeometric | ||||||
1442 | # distribution. | ||||||
1443 | # | ||||||
1444 | # It returns a hash reference encoding that information. | ||||||
1445 | |||||||
1446 | 105137 | 105137 | 136238 | my ($self, $goid, $n) = @_; | |||
1447 | |||||||
1448 | 105137 | 197130 | my $M = $self->__totalNumAnnotationsToGoId($goid); | ||||
1449 | 105137 | 213976 | my $x = $self->__numAnnotationsToGoId($goid); | ||||
1450 | 105137 | 212609 | my $N = $self->totalNumGenes(); | ||||
1451 | |||||||
1452 | # logic checking on data | ||||||
1453 | |||||||
1454 | 105137 | 50 | 251066 | if (($N - $M) < ($n - $x)){ | |||
1455 | |||||||
1456 | # this situation should never arise, because the number of | ||||||
1457 | # failures in the sampling cannot exceed the total number of | ||||||
1458 | # failures in the population. For example, if all but one | ||||||
1459 | # gene has a particular annotation, then you can't pick 3 | ||||||
1460 | # genes and get 2 without it | ||||||
1461 | |||||||
1462 | 0 | 0 | die 'For $N, $M, $n, $x being '."$N, $M, $n, $x, ".'($N - $M) < ($n - $x) which is impossible'."\n"; | ||||
1463 | |||||||
1464 | } | ||||||
1465 | |||||||
1466 | 105137 | 110493 | my $pvalue; | ||||
1467 | |||||||
1468 | 105137 | 50 | 169813 | if ($M == $N){ | |||
1469 | |||||||
1470 | # the p-value must be equal to 1, so we don't even need to | ||||||
1471 | # bother calling the p-value code | ||||||
1472 | |||||||
1473 | 0 | 0 | $pvalue = 1; | ||||
1474 | |||||||
1475 | }else{ | ||||||
1476 | |||||||
1477 | 105137 | 1650990 | $pvalue = $self->{$kDistributions}->pValueByHypergeometric($x, $n, $M, $N); | ||||
1478 | |||||||
1479 | } | ||||||
1480 | |||||||
1481 | 105137 | 66 | 235593 | my $node = $self->__ontologyProvider->nodeFromId($goid) || $kUnannotatedNode; | |||
1482 | |||||||
1483 | 105137 | 445885 | my $hashRef = { | ||||
1484 | |||||||
1485 | NODE => $node, | ||||||
1486 | PVALUE => $pvalue, | ||||||
1487 | NUM_ANNOTATIONS => $x, | ||||||
1488 | TOTAL_NUM_ANNOTATIONS => $M | ||||||
1489 | |||||||
1490 | }; | ||||||
1491 | |||||||
1492 | 105137 | 284548 | return $hashRef; | ||||
1493 | |||||||
1494 | } | ||||||
1495 | |||||||
1496 | ############################################################################ | ||||||
1497 | sub __numAnnotationsToGoId{ | ||||||
1498 | ############################################################################ | ||||||
1499 | # This private method returns the number of annotations to a | ||||||
1500 | # particular GOID for the list of genes supplied to the findTerms | ||||||
1501 | # method. | ||||||
1502 | |||||||
1503 | 452347 | 452347 | 551140 | my ($self, $goid) = @_; | |||
1504 | |||||||
1505 | 452347 | 1414980 | return $self->{$kGoCounts}->{$goid}; | ||||
1506 | |||||||
1507 | } | ||||||
1508 | |||||||
1509 | ############################################################################ | ||||||
1510 | sub __totalNumAnnotationsToGoId{ | ||||||
1511 | ############################################################################ | ||||||
1512 | # This returns the total number of genes that have been annotated to a | ||||||
1513 | # particular GOID based on all annotations. | ||||||
1514 | |||||||
1515 | 105137 | 105137 | 142317 | my ($self, $goid) = @_; | |||
1516 | |||||||
1517 | 105137 | 327685 | return $self->{$kTotalGoNodeCounts}->{$goid}; | ||||
1518 | } | ||||||
1519 | |||||||
1520 | ############################################################################ | ||||||
1521 | sub totalNumGenes{ | ||||||
1522 | ############################################################################ | ||||||
1523 | =pod | ||||||
1524 | |||||||
1525 | =head2 totalNumGenes | ||||||
1526 | |||||||
1527 | This returns the total number of genes that are in the background set | ||||||
1528 | of genes from which the genes of interest were drawn. Unannotated | ||||||
1529 | genes are included in this count. | ||||||
1530 | |||||||
1531 | =cut | ||||||
1532 | |||||||
1533 | 107295 | 107295 | 1 | 274117 | return $_[0]->{$kArgs}{totalNumGenes}; | ||
1534 | |||||||
1535 | } | ||||||
1536 | |||||||
1537 | ############################################################################ | ||||||
1538 | sub __allGoIdsForList{ | ||||||
1539 | ############################################################################ | ||||||
1540 | # This returns an array of GOIDs to which genes in the passed in gene | ||||||
1541 | # list were directly or indirectly annotated. | ||||||
1542 | |||||||
1543 | 2115 | 2115 | 3277 | return keys %{$_[0]->{$kGoCounts}}; | |||
2115 | 62452 | ||||||
1544 | |||||||
1545 | } | ||||||
1546 | |||||||
1547 | ############################################################################ | ||||||
1548 | sub __correctPvalues{ | ||||||
1549 | ############################################################################ | ||||||
1550 | # This method corrects the pvalues for multiple hypothesis testing, by | ||||||
1551 | # dispatching to the appropriate method based on what method was | ||||||
1552 | # requested for hypothesis correction. | ||||||
1553 | |||||||
1554 | 14 | 14 | 27 | my $self = shift; | |||
1555 | |||||||
1556 | 14 | 37 | my $correctionMethod = "__correctPvaluesBy".$self->__correctionMethod; | ||||
1557 | |||||||
1558 | 14 | 76 | $self->$correctionMethod; | ||||
1559 | |||||||
1560 | } | ||||||
1561 | |||||||
1562 | ##################################################################### | ||||||
1563 | sub __correctPvaluesBybonferroni{ | ||||||
1564 | ##################################################################### | ||||||
1565 | # This method corrects the p-values using a Bonferroni correction, | ||||||
1566 | # where the correction factor is the total number of nodes for which | ||||||
1567 | # we tested whether there was significant enrichment | ||||||
1568 | |||||||
1569 | 12 | 12 | 24 | my $self = shift; | |||
1570 | |||||||
1571 | # now correct the pvalues with the correction factor | ||||||
1572 | |||||||
1573 | 12 | 20 | my $correctionFactor = scalar(@{$self->{$kPvalues}}); | ||||
12 | 36 | ||||||
1574 | |||||||
1575 | # no correction needs to be done if there is 0 or 1 hypotheses | ||||||
1576 | # that were tested | ||||||
1577 | |||||||
1578 | 12 | 100 | 42 | if ($correctionFactor > 1){ | |||
1579 | |||||||
1580 | # simply go through each hypothesis and calculate the corrected | ||||||
1581 | # p-value by multiplying the uncorrected p-value by the number of | ||||||
1582 | # nodes in the ontology | ||||||
1583 | |||||||
1584 | 10 | 43 | foreach my $hypothesis ($self->__pValues){ | ||||
1585 | |||||||
1586 | 1911 | 3797 | $hypothesis->{CORRECTED_PVALUE} = $hypothesis->{PVALUE} * $correctionFactor; | ||||
1587 | |||||||
1588 | # make sure we have a ceiling of 1 | ||||||
1589 | |||||||
1590 | 1911 | 100 | 4886 | $hypothesis->{CORRECTED_PVALUE} = 1 if ($hypothesis->{CORRECTED_PVALUE} > 1); | |||
1591 | |||||||
1592 | } | ||||||
1593 | |||||||
1594 | } | ||||||
1595 | |||||||
1596 | } | ||||||
1597 | |||||||
1598 | ############################################################################ | ||||||
1599 | sub __correctPvaluesBysimulation{ | ||||||
1600 | ############################################################################ | ||||||
1601 | # This method corrects the P-values based on a thousand random trials, | ||||||
1602 | # using the same number of genes for each trial as was used in the | ||||||
1603 | # client query. A p-value will be corrected based on the number of | ||||||
1604 | # simulations in which that p-value was seen, e.g. if an uncorrected | ||||||
1605 | # p-value of 0.05 or better was observed in 100 of 1000 trials, the | ||||||
1606 | # corrected value will be 0.1 (100/1000). | ||||||
1607 | |||||||
1608 | 2 | 2 | 7 | my $self = shift; | |||
1609 | |||||||
1610 | # when we run any simulation, any of the variables that get | ||||||
1611 | # modified during the findTerms method will be trampled on - thus | ||||||
1612 | # we have to save them away, and then restore them afterwards | ||||||
1613 | |||||||
1614 | 2 | 13 | my $variables = $self->__saveVariables(); | ||||
1615 | |||||||
1616 | # we will need access to the real hypotheses - we'll reverse them | ||||||
1617 | # for now, as it makes them easier when we use them later on | ||||||
1618 | |||||||
1619 | 2 | 5 | my @realHypotheses = reverse @{$self->{$kPvalues}}; | ||||
2 | 15 | ||||||
1620 | |||||||
1621 | # now let's get the population from which we will sample genes | ||||||
1622 | # randomly | ||||||
1623 | |||||||
1624 | 2 | 11 | my @names = $self->__samplingPopulation; | ||||
1625 | |||||||
1626 | 2 | 902 | my $populationSize = scalar @names; | ||||
1627 | |||||||
1628 | # now get the number of genes in the original test set | ||||||
1629 | # for which terms were found. | ||||||
1630 | |||||||
1631 | 2 | 17 | my $numGenes = scalar $self->genesDatabaseIds; | ||||
1632 | |||||||
1633 | # now we can finally run the simulations | ||||||
1634 | |||||||
1635 | 2 | 6 | my $numSimulations = 1000; | ||||
1636 | |||||||
1637 | 2 | 12 | for (my $i = 1; $i <= $numSimulations; $i++) { | ||||
1638 | |||||||
1639 | # run simulation | ||||||
1640 | |||||||
1641 | 2000 | 10621 | my @pvals = $self->__runOneSimulation(\@names, $numGenes, $populationSize); | ||||
1642 | |||||||
1643 | # go onto a new simulation if no hypothese resulted (which is | ||||||
1644 | # possible if the randomly selected genes did not have more | ||||||
1645 | # than one annotation to any particular GO node) | ||||||
1646 | |||||||
1647 | 2000 | 50 | 11696 | next if !@pvals; | |||
1648 | |||||||
1649 | # now we look at the best pvalue for the random genes, and | ||||||
1650 | # determine whether it is more significant that any of the | ||||||
1651 | # p-values generated for the real genes. We will keep a count | ||||||
1652 | # of how many times we see a p-value that is better than one | ||||||
1653 | # calculated with the real genes, on a per simulation basis | ||||||
1654 | |||||||
1655 | # if we go through the p-values for the real nodes in reverse | ||||||
1656 | # order (we reversed them above), then we can quit out of the | ||||||
1657 | # loop as soon as we have a p-value better than the best one | ||||||
1658 | # generated from the random genes | ||||||
1659 | |||||||
1660 | 2000 | 7004 | foreach my $realHypothesis (@realHypotheses){ | ||||
1661 | |||||||
1662 | # skip examining, if the real pvalue is better than the | ||||||
1663 | # best one for the random genes | ||||||
1664 | |||||||
1665 | 17269 | 100 | 74500 | last if ($pvals[0]->{PVALUE} > $realHypothesis->{PVALUE}); | |||
1666 | |||||||
1667 | # if we get here, we know that this simulation has generated | ||||||
1668 | # a P_VALUE that is better than the P_VALUE for the currently | ||||||
1669 | # considered hypothesis. We'll simply keep count for now | ||||||
1670 | |||||||
1671 | 15269 | 29833 | $realHypothesis->{NUM_OBSERVATIONS}++; | ||||
1672 | |||||||
1673 | } | ||||||
1674 | |||||||
1675 | } | ||||||
1676 | |||||||
1677 | # now we've run all the simulations, we should be able to simply divide | ||||||
1678 | # the observed frequency by the number of simulations. | ||||||
1679 | |||||||
1680 | 2 | 4 | foreach my $realHypothesis (@realHypotheses){ | ||||
1681 | |||||||
1682 | 74 | 100 | 158 | if (exists $realHypothesis->{NUM_OBSERVATIONS}){ | |||
1683 | |||||||
1684 | 34 | 87 | $realHypothesis->{CORRECTED_PVALUE} = $realHypothesis->{NUM_OBSERVATIONS}/$numSimulations; | ||||
1685 | |||||||
1686 | }else{ | ||||||
1687 | |||||||
1688 | # a pvalue better than this wasn't observed in any | ||||||
1689 | # simulation - just record the minimum | ||||||
1690 | |||||||
1691 | 40 | 61 | $realHypothesis->{CORRECTED_PVALUE} = 1/$numSimulations; | ||||
1692 | |||||||
1693 | # and say that we never saw it | ||||||
1694 | |||||||
1695 | 40 | 71 | $realHypothesis->{NUM_OBSERVATIONS} = 0; | ||||
1696 | |||||||
1697 | } | ||||||
1698 | |||||||
1699 | } | ||||||
1700 | |||||||
1701 | 2 | 6 | @realHypotheses = reverse @realHypotheses; | ||||
1702 | |||||||
1703 | # now restore the variables | ||||||
1704 | |||||||
1705 | 2 | 11 | $self->__restoreVariables($variables); | ||||
1706 | |||||||
1707 | # finally replace the hypotheses with our local copy, which we've | ||||||
1708 | # made some modifications to | ||||||
1709 | |||||||
1710 | 2 | 2658 | $self->{$kPvalues} = \@realHypotheses; | ||||
1711 | |||||||
1712 | } | ||||||
1713 | |||||||
1714 | ############################################################################ | ||||||
1715 | sub __saveVariables{ | ||||||
1716 | ############################################################################ | ||||||
1717 | # This private method returns a hash containing various of the | ||||||
1718 | # instance variables that might get trampled on during a simulation | ||||||
1719 | |||||||
1720 | 4 | 4 | 13 | my ($self) = @_; | |||
1721 | |||||||
1722 | 4 | 8 | my %variables; | ||||
1723 | |||||||
1724 | 4 | 21 | my @keys = ($kCorrectionMethod, $kShouldCalculateFDR, $kDatabaseIds, | ||||
1725 | $kDatabaseId2OrigName, $kGoCounts, $kPvalues, $kDiscardedGenes); | ||||||
1726 | |||||||
1727 | 4 | 12 | foreach my $key (@keys){ | ||||
1728 | |||||||
1729 | 28 | 75 | $variables{$key} = $self->{$key}; | ||||
1730 | |||||||
1731 | } | ||||||
1732 | |||||||
1733 | 4 | 16 | return \%variables; | ||||
1734 | |||||||
1735 | } | ||||||
1736 | |||||||
1737 | ############################################################################ | ||||||
1738 | sub __restoreVariables{ | ||||||
1739 | ############################################################################ | ||||||
1740 | # This private method uses a passed in hash (by reference) to restore | ||||||
1741 | # variables within the instance | ||||||
1742 | |||||||
1743 | 4 | 4 | 9 | my ($self, $hashRef) = @_; | |||
1744 | |||||||
1745 | 4 | 11 | foreach my $key (%{$hashRef}){ | ||||
4 | 22 | ||||||
1746 | |||||||
1747 | 56 | 422 | $self->{$key} = $hashRef->{$key}; | ||||
1748 | |||||||
1749 | } | ||||||
1750 | |||||||
1751 | } | ||||||
1752 | |||||||
1753 | ############################################################################ | ||||||
1754 | sub __samplingPopulation{ | ||||||
1755 | ############################################################################ | ||||||
1756 | # This private method returns an array of id's that should be used as | ||||||
1757 | # the sampling population for the simulation | ||||||
1758 | |||||||
1759 | 4 | 4 | 11 | my $self = shift; | |||
1760 | |||||||
1761 | # we will need to pick genes randomly from the background | ||||||
1762 | # population. Note that population may be larger than the | ||||||
1763 | # databaseIds that are referenced in the annotations file - if so, | ||||||
1764 | # we have to be able to randomly select unannotated genes too | ||||||
1765 | |||||||
1766 | # alternatively, the user may have specified a population of genes | ||||||
1767 | # that define the background - in which case we should pick only | ||||||
1768 | # from that population | ||||||
1769 | |||||||
1770 | 4 | 8 | my @names; | ||||
1771 | |||||||
1772 | 4 | 100 | 15 | if ($self->__isUsingPopulation){ | |||
1773 | |||||||
1774 | 2 | 5 | @names = @{$self->__population}; | ||||
2 | 10 | ||||||
1775 | |||||||
1776 | }else{ | ||||||
1777 | |||||||
1778 | # we simply use all databaseIds from the annotationProvider | ||||||
1779 | |||||||
1780 | 2 | 9 | @names = $self->__annotationProvider->allDatabaseIds(); | ||||
1781 | |||||||
1782 | } | ||||||
1783 | |||||||
1784 | # note the population size | ||||||
1785 | |||||||
1786 | 4 | 866 | my $populationSize; | ||||
1787 | |||||||
1788 | 4 | 50 | 32 | if (! defined $self->totalNumGenes){ | |||
1789 | |||||||
1790 | 0 | 0 | $populationSize = scalar @names; | ||||
1791 | |||||||
1792 | }else{ | ||||||
1793 | |||||||
1794 | 4 | 39 | $populationSize = $self->totalNumGenes; | ||||
1795 | |||||||
1796 | } | ||||||
1797 | |||||||
1798 | # now, if the population from which we should sample is bigger | ||||||
1799 | # that the number of databaseIds which we have to sample from, we | ||||||
1800 | # want to expand the the list of databaseIds with some fake ones, | ||||||
1801 | # that correspond to unnannotated genes. | ||||||
1802 | |||||||
1803 | 4 | 12 | my $numDatabaseIds = scalar @names; | ||||
1804 | |||||||
1805 | 4 | 23 | for (my $n = $numDatabaseIds; $n < $populationSize; $n++){ | ||||
1806 | |||||||
1807 | 0 | 0 | push (@names, $kFakeIdPrefix.$n); | ||||
1808 | |||||||
1809 | } | ||||||
1810 | |||||||
1811 | 4 | 8512 | return @names; | ||||
1812 | |||||||
1813 | } | ||||||
1814 | |||||||
1815 | ############################################################################ | ||||||
1816 | sub __runOneSimulation{ | ||||||
1817 | ############################################################################ | ||||||
1818 | # This method runs a single simulation of GO::TermFinder, and returns the | ||||||
1819 | # generated hypotheses. It requires a reference to a list of genes that | ||||||
1820 | # should be used to sample from, the number of genes that should be chosen, | ||||||
1821 | # and the size of the background distribution | ||||||
1822 | |||||||
1823 | 2100 | 2100 | 4769 | my ($self, $namesRef, $numGenes, $populationSize) = @_; | |||
1824 | |||||||
1825 | # first get a random list of genes | ||||||
1826 | |||||||
1827 | 2100 | 9097 | my $listRef = $self->__listOfRandomGenes($namesRef, $numGenes, $populationSize); | ||||
1828 | |||||||
1829 | # now we have a list of genes, we can findTerms for them | ||||||
1830 | |||||||
1831 | # however, we have to make sure that for these guys, we attempt | ||||||
1832 | # no p-value correction, otherwise we will infinitely recurse, | ||||||
1833 | # and make sure that we don't ask to calculate the FDR | ||||||
1834 | |||||||
1835 | 2100 | 19926 | my @pvals = $self->findTerms(genes => $listRef, | ||||
1836 | correction => 'none', | ||||||
1837 | calculateFDR => 0); | ||||||
1838 | |||||||
1839 | # now return the hypotheses | ||||||
1840 | |||||||
1841 | 2100 | 37096 | return (@pvals); | ||||
1842 | |||||||
1843 | } | ||||||
1844 | |||||||
1845 | ############################################################################ | ||||||
1846 | sub __listOfRandomGenes{ | ||||||
1847 | ############################################################################ | ||||||
1848 | # This private method returns a reference to an array of randomly | ||||||
1849 | # chosen genes from a population that was passed in by reference | ||||||
1850 | |||||||
1851 | 2100 | 2100 | 5038 | my ($self, $namesRef, $numGenes, $populationSize) = @_; | |||
1852 | |||||||
1853 | # create an array with as many indices as there are genes in the | ||||||
1854 | # background set of genes from which those of interest were drawn | ||||||
1855 | |||||||
1856 | 2100 | 3209 | my @indices; | ||||
1857 | |||||||
1858 | 2100 | 7641 | for (my $i = 0; $i < $populationSize; $i++){ | ||||
1859 | |||||||
1860 | 13587000 | 26695816 | $indices[$i] = $i; | ||||
1861 | |||||||
1862 | } | ||||||
1863 | |||||||
1864 | # now sample those indices, removing sampled elements as we go. | ||||||
1865 | # Use the randomly chosen index to get a random gene, and select | ||||||
1866 | # as many random genes as were in the test set | ||||||
1867 | |||||||
1868 | 2100 | 4349 | my @list; | ||||
1869 | |||||||
1870 | 2100 | 10583 | for (my $i = 0; $i < $numGenes; $i++) { | ||||
1871 | |||||||
1872 | 39900 | 76583 | my $index = int(rand(scalar(@indices))); # random number between 0 and last array index. | ||||
1873 | |||||||
1874 | 39900 | 155340 | my $selectedIndex = splice(@indices, $index, 1); # Remove the randomly selected element from the array. | ||||
1875 | |||||||
1876 | 39900 | 167507 | push(@list, $namesRef->[$selectedIndex]); | ||||
1877 | |||||||
1878 | } | ||||||
1879 | |||||||
1880 | 2100 | 352553 | return \@list; | ||||
1881 | |||||||
1882 | } | ||||||
1883 | |||||||
1884 | ############################################################################ | ||||||
1885 | sub __calculateFDR{ | ||||||
1886 | ############################################################################ | ||||||
1887 | # This method calculates the false discovery rate for each hypothesis, | ||||||
1888 | # such that you know if you draw your cut-off at a particular node, | ||||||
1889 | # what the false discovery rate is. It does 50 simulations with | ||||||
1890 | # random genes, and calculates on average the percentage of nodes that | ||||||
1891 | # exceed a given value in the simulation, compared to the number that | ||||||
1892 | # exceed that p-value in the real data. | ||||||
1893 | |||||||
1894 | 2 | 2 | 5 | my $self = shift; | |||
1895 | |||||||
1896 | # when we run any simulation, any of the variables that get | ||||||
1897 | # modified during the findTerms method will be trampled on - thus | ||||||
1898 | # we have to save them away, and then restore them afterwards | ||||||
1899 | |||||||
1900 | 2 | 12 | my $variables = $self->__saveVariables(); | ||||
1901 | |||||||
1902 | # we will need access to the real hypotheses | ||||||
1903 | |||||||
1904 | 2 | 5 | my @realHypotheses = @{$self->{$kPvalues}}; | ||||
2 | 14 | ||||||
1905 | |||||||
1906 | # now let's get the population from which we will sample genes | ||||||
1907 | # randomly | ||||||
1908 | |||||||
1909 | 2 | 13 | my @names = $self->__samplingPopulation; | ||||
1910 | |||||||
1911 | 2 | 886 | my $populationSize = scalar @names; | ||||
1912 | |||||||
1913 | # now get the number of genes in the original test set | ||||||
1914 | # for which terms were found. | ||||||
1915 | |||||||
1916 | 2 | 12 | my $numGenes = scalar $self->genesDatabaseIds; | ||||
1917 | |||||||
1918 | # now we can finally run the simulations | ||||||
1919 | |||||||
1920 | 2 | 7 | my $numSimulations = 50; | ||||
1921 | |||||||
1922 | 2 | 12 | for (my $i = 1; $i <= $numSimulations; $i++) { | ||||
1923 | |||||||
1924 | # now run a simulation | ||||||
1925 | |||||||
1926 | 100 | 582 | my @pvals = $self->__runOneSimulation(\@names, $numGenes, $populationSize); | ||||
1927 | |||||||
1928 | # go onto a new simulation if no hypotheses resulted (which is | ||||||
1929 | # theoretically possible if the randomly selected genes did | ||||||
1930 | # not have more than one annotation to any particular GO node) | ||||||
1931 | |||||||
1932 | 100 | 50 | 570 | next if !@pvals; | |||
1933 | |||||||
1934 | # now we look at the best pvalue for the random genes, and | ||||||
1935 | # determine whether it is more significant that any of the | ||||||
1936 | # p-values generated for the real genes. We will keep a count | ||||||
1937 | # of how many times we see a p-value that is better than one | ||||||
1938 | # calculated with the real genes, on a per simulation basis | ||||||
1939 | |||||||
1940 | # if we go through the p-values for the real nodes in reverse | ||||||
1941 | # order (we reversed them above), then we can quit out of the | ||||||
1942 | # loop as soon as we have a p-value better than the best one | ||||||
1943 | # generated from the random genes | ||||||
1944 | |||||||
1945 | 100 | 360 | foreach my $realHypothesis (@realHypotheses){ | ||||
1946 | |||||||
1947 | # count the number of nodes that this simulation has | ||||||
1948 | # generated a P_VALUE that is better than the P_VALUE for | ||||||
1949 | # the currently considered hypothesis. | ||||||
1950 | |||||||
1951 | 3700 | 4471 | foreach my $pval (@pvals){ | ||||
1952 | |||||||
1953 | # finish considering this real hypothesis as soon as | ||||||
1954 | # we see a pvalue that is worse from the simulated | ||||||
1955 | # data | ||||||
1956 | |||||||
1957 | 18024 | 100 | 40749 | last if ($pval->{PVALUE} > $realHypothesis->{PVALUE}); | |||
1958 | |||||||
1959 | # if we get here, our simulated pvalue must exceed the | ||||||
1960 | # pvalue associated with the real hypothesis | ||||||
1961 | |||||||
1962 | 14324 | 19219 | $realHypothesis->{FDR_OBSERVATIONS}++; | ||||
1963 | |||||||
1964 | } | ||||||
1965 | |||||||
1966 | } | ||||||
1967 | |||||||
1968 | } | ||||||
1969 | |||||||
1970 | # now we've run all the simulations, and counted for each real | ||||||
1971 | # hypothesis how many hypotheses from the simulations were better, | ||||||
1972 | # we calculate on average how many were better per simulation, | ||||||
1973 | # then divide by the number of hypotheses as good or better in our | ||||||
1974 | # real data. We threshold this at a maximum of 1, as we can't | ||||||
1975 | # have a FDR of greater than 100% | ||||||
1976 | |||||||
1977 | 2 | 11 | foreach (my $i = 0; $i < @realHypotheses; $i++){ | ||||
1978 | |||||||
1979 | 74 | 100 | 153 | if (exists $realHypotheses[$i]->{FDR_OBSERVATIONS}){ | |||
1980 | |||||||
1981 | # the rate is the average number in the simulations that | ||||||
1982 | # are better than this pvalue, divided by the number that | ||||||
1983 | # are better in the real data | ||||||
1984 | |||||||
1985 | 32 | 47 | $realHypotheses[$i]->{FDR_OBSERVATIONS} /= $numSimulations; | ||||
1986 | |||||||
1987 | 32 | 88 | $realHypotheses[$i]->{FDR_RATE} = $realHypotheses[$i]->{FDR_OBSERVATIONS} / ($i + 1); | ||||
1988 | |||||||
1989 | 32 | 100 | 75 | if ($realHypotheses[$i]->{FDR_RATE} > 1){ | |||
1990 | |||||||
1991 | 6 | 10 | $realHypotheses[$i]->{FDR_RATE} = 1; | ||||
1992 | |||||||
1993 | } | ||||||
1994 | |||||||
1995 | }else{ | ||||||
1996 | |||||||
1997 | # a pvalue better than this wasn't observed in any | ||||||
1998 | # simulation - so the FDR should be 0 | ||||||
1999 | |||||||
2000 | 42 | 62 | $realHypotheses[$i]->{FDR_RATE} = 0; | ||||
2001 | |||||||
2002 | # and say that we never saw it | ||||||
2003 | |||||||
2004 | 42 | 86 | $realHypotheses[$i]->{FDR_OBSERVATIONS} = 0; | ||||
2005 | |||||||
2006 | } | ||||||
2007 | |||||||
2008 | # now based on the FDR, and the number of hypotheses that would | ||||||
2009 | # be chosen at this point, we can calculate the expected number of | ||||||
2010 | # false positives, as the FDR x the number of hypotheses | ||||||
2011 | |||||||
2012 | 74 | 208 | $realHypotheses[$i]->{EXPECTED_FALSE_POSITIVES} = $realHypotheses[$i]->{FDR_RATE} * ($i+1); | ||||
2013 | |||||||
2014 | } | ||||||
2015 | |||||||
2016 | # now restore the variables | ||||||
2017 | |||||||
2018 | 2 | 13 | $self->__restoreVariables($variables); | ||||
2019 | |||||||
2020 | # finally we want to replace our real hypotheses with our local | ||||||
2021 | # copy, as we've made some changes | ||||||
2022 | |||||||
2023 | 2 | 2528 | $self->{$kPvalues} = \@realHypotheses; | ||||
2024 | |||||||
2025 | } | ||||||
2026 | |||||||
2027 | ############################################################################ | ||||||
2028 | sub __addAnnotationsToPValues{ | ||||||
2029 | ############################################################################ | ||||||
2030 | # This method looks through the annotated nodes, and adds in information | ||||||
2031 | # about which genes are annotated to them, so that the client can retrieve | ||||||
2032 | # that information. | ||||||
2033 | |||||||
2034 | 2115 | 2115 | 5089 | my $self = shift; | |||
2035 | |||||||
2036 | # to do this, we can take advantage of the fact that all the | ||||||
2037 | # nodes should have all their databaseIds cached, and we can | ||||||
2038 | # retrieve them through the __allGOIDsForDatabaseId() method | ||||||
2039 | |||||||
2040 | # first go through the annotated nodes, and simply hash the goid to the | ||||||
2041 | # entry in the pValues array | ||||||
2042 | |||||||
2043 | 2115 | 3301 | my %nodeToIndex; | ||||
2044 | |||||||
2045 | 2115 | 5593 | for (my $i = 0; $i < @{$self->{$kPvalues}}; $i++){ | ||||
107252 | 288379 | ||||||
2046 | |||||||
2047 | 105137 | 324413 | $nodeToIndex{$self->{$kPvalues}->[$i]->{NODE}->goid} = $i; | ||||
2048 | |||||||
2049 | } | ||||||
2050 | |||||||
2051 | # now go through each databaseId, and add the information in | ||||||
2052 | |||||||
2053 | 2115 | 8182 | foreach my $databaseId ($self->genesDatabaseIds) { | ||||
2054 | |||||||
2055 | # look at all goids for this database id | ||||||
2056 | |||||||
2057 | 46624 | 56075 | foreach my $goid (@{$self->__allGOIDsForDatabaseId($databaseId)}){ | ||||
46624 | 96271 | ||||||
2058 | |||||||
2059 | 844729 | 100 | 1736931 | next if (! exists $nodeToIndex{$goid}); # this node wasn't a hypothesis | |||
2060 | |||||||
2061 | # if this goid was a hypothesis, we can annotate the | ||||||
2062 | # corresponding hypothesis with the gene | ||||||
2063 | |||||||
2064 | 554230 | 971226 | $self->{$kPvalues}->[$nodeToIndex{$goid}]->{ANNOTATED_GENES}->{$databaseId} = $self->__origNameForDatabaseId($databaseId); | ||||
2065 | |||||||
2066 | } | ||||||
2067 | |||||||
2068 | } | ||||||
2069 | |||||||
2070 | } | ||||||
2071 | |||||||
2072 | ############################################################################ | ||||||
2073 | sub __annotationProvider{ | ||||||
2074 | ############################################################################ | ||||||
2075 | # This private method returns the annotationProvider that was used | ||||||
2076 | # during construction. | ||||||
2077 | |||||||
2078 | 125691 | 125691 | 493338 | return $_[0]->{$kArgs}{annotationProvider}; | |||
2079 | |||||||
2080 | } | ||||||
2081 | |||||||
2082 | ############################################################################ | ||||||
2083 | sub __ontologyProvider{ | ||||||
2084 | ############################################################################ | ||||||
2085 | # This private methid returns the ontologyProvider that was used | ||||||
2086 | # during construction. | ||||||
2087 | |||||||
2088 | 289586 | 289586 | 1211252 | return $_[0]->{$kArgs}{ontologyProvider}; | |||
2089 | |||||||
2090 | } | ||||||
2091 | |||||||
2092 | ############################################################################ | ||||||
2093 | sub aspect{ | ||||||
2094 | ############################################################################ | ||||||
2095 | =pod | ||||||
2096 | |||||||
2097 | =head2 aspect | ||||||
2098 | |||||||
2099 | Returns the aspect with the the GO::TermFinder object was constructed. | ||||||
2100 | |||||||
2101 | Usage: | ||||||
2102 | |||||||
2103 | my $aspect = $termFinder->aspect; | ||||||
2104 | |||||||
2105 | =cut | ||||||
2106 | |||||||
2107 | 19429 | 19429 | 1 | 91971 | return $_[0]->{$kArgs}{aspect}; | ||
2108 | |||||||
2109 | } | ||||||
2110 | |||||||
2111 | 1; # to make perl happy | ||||||
2112 | |||||||
2113 | |||||||
2114 | __END__ |