line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Math::ContinuedFraction; |
2
|
|
|
|
|
|
|
|
3
|
5
|
|
|
5
|
|
471397
|
use 5.010001; |
|
5
|
|
|
|
|
54
|
|
4
|
|
|
|
|
|
|
|
5
|
5
|
|
|
5
|
|
31
|
use warnings; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
137
|
|
6
|
5
|
|
|
5
|
|
25
|
use strict; |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
107
|
|
7
|
5
|
|
|
5
|
|
24
|
use Carp; |
|
5
|
|
|
|
|
19
|
|
|
5
|
|
|
|
|
285
|
|
8
|
5
|
|
|
5
|
|
3547
|
use Math::BigInt; |
|
5
|
|
|
|
|
86351
|
|
|
5
|
|
|
|
|
49
|
|
9
|
5
|
|
|
5
|
|
82542
|
use Math::BigRat; |
|
5
|
|
|
|
|
132693
|
|
|
5
|
|
|
|
|
27
|
|
10
|
|
|
|
|
|
|
#use Smart::Comments; |
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use overload |
13
|
0
|
|
|
0
|
|
0
|
'+' => sub {return Continued::Fraction->add($_[0], $_[1]);}, |
14
|
0
|
|
|
0
|
|
0
|
'-' => sub {return Continued::Fraction->subt($_[0], $_[1]);}, |
15
|
0
|
|
|
0
|
|
0
|
'*' => sub {return Continued::Fraction->mult($_[0], $_[1]);}, |
16
|
0
|
|
|
0
|
|
0
|
'/' => sub {return Continued::Fraction->div($_[0], $_[1]);}, |
17
|
5
|
|
|
5
|
|
5718
|
; |
|
5
|
|
|
|
|
13
|
|
|
5
|
|
|
|
|
70
|
|
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
our $VERSION = '0.14'; |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=pod |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
=encoding UTF-8 |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
=head1 NAME |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
Math::ContinuedFraction - Create and Manipulate Continued Fractions. |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=head1 SYNOPSIS |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
Quick summary of what the module does. |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
Perhaps a little code snippet. |
34
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
use Math::ContinuedFraction; |
36
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
# |
38
|
|
|
|
|
|
|
# Create new continued fraction objects. |
39
|
|
|
|
|
|
|
# |
40
|
|
|
|
|
|
|
my $cf = Math::ContinuedFraction->new([1, 4, 9, 25]); |
41
|
|
|
|
|
|
|
my $cf_phi = Math::ContinuedFraction->new([1, [1]]); |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
my $cf_67div29 = Math::ContinuedFraction->from_ratio(67, 29); |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
=head1 DESCRIPTION |
47
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
Continued fractions are expressions of the form |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
b1 |
51
|
|
|
|
|
|
|
a1 + ------- |
52
|
|
|
|
|
|
|
b2 |
53
|
|
|
|
|
|
|
a2 + ------- |
54
|
|
|
|
|
|
|
b3 |
55
|
|
|
|
|
|
|
a3 + ------- |
56
|
|
|
|
|
|
|
... |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
For most instances, the 'b' terms are 1, and the continued fraction |
59
|
|
|
|
|
|
|
can be written as C<[a1, a2, a3, ...]>, etc. If the sequence of 'a' terms ends |
60
|
|
|
|
|
|
|
at a certain point, the continued fraction is known as a finite continued |
61
|
|
|
|
|
|
|
fraction, and can be exactly represented as a fraction. If the sequence of |
62
|
|
|
|
|
|
|
'a' terms has a repeating sequence, it is normally written as |
63
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
______ |
65
|
|
|
|
|
|
|
[a1, a2, a3, a4, a5] |
66
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
where the line over a4 and a5 indicates that they repeat forever. Since we |
68
|
|
|
|
|
|
|
can't use that method in perl code, we indicate the repeating portion by |
69
|
|
|
|
|
|
|
using an array within the array: |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
[a1, a2, a3, [a4, a5]] |
72
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
Note that in the examples in the L, C<$cf_phi> is created using |
74
|
|
|
|
|
|
|
that notation. |
75
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
=head2 Methods to Create Continued Fraction Objects |
77
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
=head3 new() |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
Create a new continued fraction object from an array or the |
81
|
|
|
|
|
|
|
ratio of two numbers. |
82
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
my $cf = Math::ContinuedFraction([1, [2, 1]]); |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
Arrays are in the form C<[finite_sequence, [repeating_sequence]]>. A |
86
|
|
|
|
|
|
|
continued fraction with no repeating part simply omits the embedded |
87
|
|
|
|
|
|
|
array reference: |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction([1, 2, 1, 3, 1, 5]); |
90
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new([1, 71, 13, 8]); |
91
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new([1, 2, 1, 2, [3, 2, 3, 2]]); |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
A continued fraction may be created from a ratio between two numbers. |
94
|
|
|
|
|
|
|
Be sure not to put the numbers in an array, as |
95
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
# |
97
|
|
|
|
|
|
|
# Find the CF form of 121/23. |
98
|
|
|
|
|
|
|
# |
99
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new(121, 23); |
100
|
|
|
|
|
|
|
|
101
|
|
|
|
|
|
|
is different from |
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# |
104
|
|
|
|
|
|
|
# Find the CF of |
105
|
|
|
|
|
|
|
# 121 + 1 |
106
|
|
|
|
|
|
|
# ----- |
107
|
|
|
|
|
|
|
# 23 |
108
|
|
|
|
|
|
|
# |
109
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new([121, 23]); |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
The ratio may consist of Math::BigInt objects. |
113
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
$big_n = Math::BigInt->new("0xccc43c90d2c0"); |
115
|
|
|
|
|
|
|
$big_q = Math::BigInt->new("0xb2069d579ddb"); |
116
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new($big_n, $big_q); |
117
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
A Math::BigRat object will also work: |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
$bratio = Math::BigRat->new("0xccc43c90d2c0", "0xb2069d579ddb"); |
121
|
|
|
|
|
|
|
$cf = Math::ContinuedFraction->new($bratio); |
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
=cut |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
sub new |
126
|
|
|
|
|
|
|
{ |
127
|
3
|
|
|
3
|
1
|
814
|
my $class = shift; |
128
|
3
|
|
|
|
|
7
|
my $self = {}; |
129
|
|
|
|
|
|
|
|
130
|
3
|
50
|
|
|
|
16
|
if (ref $class) |
131
|
|
|
|
|
|
|
{ |
132
|
0
|
0
|
|
|
|
0
|
if ($class->isa(__PACKAGE__)) |
133
|
|
|
|
|
|
|
{ |
134
|
0
|
|
|
|
|
0
|
$class->_copy($self); |
135
|
0
|
|
|
|
|
0
|
return bless($self, ref $class); |
136
|
|
|
|
|
|
|
} |
137
|
|
|
|
|
|
|
|
138
|
0
|
|
|
|
|
0
|
warn "Attempts to create a Continued Fraction object from a '", |
139
|
|
|
|
|
|
|
ref $class, "' object fail.\n"; |
140
|
0
|
|
|
|
|
0
|
return undef; |
141
|
|
|
|
|
|
|
} |
142
|
|
|
|
|
|
|
|
143
|
3
|
|
|
|
|
8
|
bless($self, $class); |
144
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# |
146
|
|
|
|
|
|
|
# We're not creating a copy of an existing CF, so start from |
147
|
|
|
|
|
|
|
# first principles. |
148
|
|
|
|
|
|
|
# |
149
|
3
|
|
|
|
|
79
|
$self->{simple_a} = [0]; |
150
|
3
|
|
|
|
|
8
|
$self->{repeat_a} = undef; |
151
|
3
|
|
|
|
|
8
|
$self->{simple_b} = undef; |
152
|
3
|
|
|
|
|
9
|
$self->{repeat_b} = undef; |
153
|
|
|
|
|
|
|
|
154
|
3
|
50
|
|
|
|
12
|
if (scalar @_) |
155
|
|
|
|
|
|
|
{ |
156
|
|
|
|
|
|
|
# |
157
|
|
|
|
|
|
|
# Get the a's and b's. |
158
|
|
|
|
|
|
|
# |
159
|
3
|
|
|
|
|
10
|
my($a_ref, $b_ref) = @_; |
160
|
|
|
|
|
|
|
|
161
|
3
|
50
|
0
|
|
|
32
|
if (ref $a_ref eq "ARRAY") |
|
|
0
|
0
|
|
|
|
|
|
|
0
|
0
|
|
|
|
|
|
|
0
|
0
|
|
|
|
|
|
|
0
|
|
|
|
|
|
162
|
|
|
|
|
|
|
{ |
163
|
3
|
|
|
|
|
12
|
my(@seq) = @$a_ref; |
164
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
# |
166
|
|
|
|
|
|
|
# See if there's a repeating component. If there is, |
167
|
|
|
|
|
|
|
# check for one of those "Why are you doing that" |
168
|
|
|
|
|
|
|
# empty array cases. |
169
|
|
|
|
|
|
|
# |
170
|
3
|
100
|
|
|
|
31
|
if (ref $seq[$#seq] eq "ARRAY") |
171
|
|
|
|
|
|
|
{ |
172
|
1
|
|
|
|
|
2
|
my @r = @{ pop @seq }; |
|
1
|
|
|
|
|
3
|
|
173
|
1
|
50
|
|
|
|
6
|
$self->{repeat_a} = [@r] if (scalar @r > 0); |
174
|
|
|
|
|
|
|
} |
175
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
# |
177
|
|
|
|
|
|
|
# Another empty array case check, this one slightly |
178
|
|
|
|
|
|
|
# legitimate. |
179
|
|
|
|
|
|
|
# |
180
|
3
|
50
|
|
|
|
19
|
$self->{simple_a} = (scalar @seq)? [@seq]: [0]; |
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
# |
183
|
|
|
|
|
|
|
# Now check for a second ARRAY component, which |
184
|
|
|
|
|
|
|
# will act as a numerator in the written-out |
185
|
|
|
|
|
|
|
# version of the continued fraction. |
186
|
|
|
|
|
|
|
# |
187
|
3
|
50
|
33
|
|
|
16
|
if (defined $b_ref and ref $b_ref eq "ARRAY") |
188
|
|
|
|
|
|
|
{ |
189
|
0
|
|
|
|
|
0
|
my(@seq) = @$b_ref; |
190
|
|
|
|
|
|
|
|
191
|
0
|
0
|
|
|
|
0
|
if (ref $seq[$#seq] eq "ARRAY") |
192
|
|
|
|
|
|
|
{ |
193
|
0
|
|
|
|
|
0
|
my @r = @{ pop @seq }; |
|
0
|
|
|
|
|
0
|
|
194
|
0
|
0
|
|
|
|
0
|
$self->{repeat_b} = [@r] if (scalar @r > 0); |
195
|
|
|
|
|
|
|
} |
196
|
0
|
0
|
|
|
|
0
|
$self->{simple_b} = (scalar @seq)? [@seq]: [0]; |
197
|
|
|
|
|
|
|
} |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
elsif (ref $a_ref eq "Math::BigRat") |
200
|
|
|
|
|
|
|
{ |
201
|
0
|
|
|
|
|
0
|
my($n, $d) = $a_ref->parts(); |
202
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
# |
204
|
|
|
|
|
|
|
# Do from_ratio stuff. |
205
|
|
|
|
|
|
|
# |
206
|
0
|
|
|
|
|
0
|
$self->from_ratio($n, $d); |
207
|
|
|
|
|
|
|
} |
208
|
|
|
|
|
|
|
elsif (ref $a_ref eq "Math::BigInt" and |
209
|
|
|
|
|
|
|
ref $b_ref eq "Math::BigInt") |
210
|
|
|
|
|
|
|
{ |
211
|
|
|
|
|
|
|
# |
212
|
|
|
|
|
|
|
# Do from_ratio stuff. |
213
|
|
|
|
|
|
|
# |
214
|
0
|
|
|
|
|
0
|
$self->from_ratio($a_ref, $b_ref); |
215
|
|
|
|
|
|
|
} |
216
|
|
|
|
|
|
|
elsif (ref $a_ref eq "Math::NumSeq") |
217
|
|
|
|
|
|
|
{ |
218
|
|
|
|
|
|
|
} |
219
|
|
|
|
|
|
|
elsif (ref $a_ref eq '' and ref $b_ref eq '' and |
220
|
|
|
|
|
|
|
defined($a_ref) and defined($b_ref)) |
221
|
|
|
|
|
|
|
{ |
222
|
|
|
|
|
|
|
# |
223
|
|
|
|
|
|
|
# Do from_ratio stuff. |
224
|
|
|
|
|
|
|
# |
225
|
0
|
|
|
|
|
0
|
$self->from_ratio($a_ref, $b_ref); |
226
|
|
|
|
|
|
|
} |
227
|
|
|
|
|
|
|
else |
228
|
|
|
|
|
|
|
{ |
229
|
|
|
|
|
|
|
# |
230
|
|
|
|
|
|
|
# Complain bitterly if we weren't passed an ARRAY, |
231
|
|
|
|
|
|
|
# BigRat or BigInt references, or just a pair of |
232
|
|
|
|
|
|
|
# numbers. |
233
|
|
|
|
|
|
|
# |
234
|
0
|
|
|
|
|
0
|
carp "Error." . __PACKAGE__ . |
235
|
|
|
|
|
|
|
"->new() takes either an array reference, " . |
236
|
|
|
|
|
|
|
"or a Math::BigRat object, " . |
237
|
|
|
|
|
|
|
"or a pair of Math::BigInt objects, " . |
238
|
|
|
|
|
|
|
"or another " . __PACKAGE__ . " object"; |
239
|
0
|
|
|
|
|
0
|
return undef; |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
3
|
|
|
|
|
10
|
return $self; |
244
|
|
|
|
|
|
|
} |
245
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
=head3 from_ratio() |
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
Generate a continued fraction from a pair of relatively prime numbers. |
249
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
my $cf67_29 = Math::ContinuedFraction->from_ratio(67, 29); |
252
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
Create a continued fraction from a simple ratio. |
254
|
|
|
|
|
|
|
These CFs will always be the simple types. |
255
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
=cut |
257
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
sub from_ratio |
259
|
|
|
|
|
|
|
{ |
260
|
1
|
|
|
1
|
1
|
113
|
my $class = shift; |
261
|
1
|
|
|
|
|
4
|
my($n, $d) = @_; |
262
|
1
|
|
|
|
|
3
|
my $self = {}; |
263
|
1
|
|
|
|
|
2
|
my @cf; |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
LOOP: |
266
|
1
|
|
|
|
|
2
|
for (;;) |
267
|
|
|
|
|
|
|
{ |
268
|
3
|
|
|
|
|
10
|
my $q = int($n/$d); |
269
|
3
|
|
|
|
|
7
|
my $r = $n % $d; |
270
|
|
|
|
|
|
|
|
271
|
3
|
|
|
|
|
5
|
push @cf, $q; |
272
|
3
|
50
|
|
|
|
7
|
last LOOP if ($r == 0); |
273
|
3
|
100
|
|
|
|
8
|
if ($r == 1) |
274
|
|
|
|
|
|
|
{ |
275
|
1
|
|
|
|
|
17
|
push @cf, $d; |
276
|
1
|
|
|
|
|
5
|
last LOOP; |
277
|
|
|
|
|
|
|
} |
278
|
2
|
|
|
|
|
11
|
$n = $d; |
279
|
2
|
|
|
|
|
5
|
$d = $r; |
280
|
|
|
|
|
|
|
} |
281
|
|
|
|
|
|
|
|
282
|
1
|
|
|
|
|
5
|
$self->{simple_a} = [@cf]; |
283
|
1
|
|
|
|
|
3
|
$self->{repeat_a} = undef; |
284
|
1
|
|
|
|
|
4
|
return bless($self, $class); |
285
|
|
|
|
|
|
|
} |
286
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
# |
288
|
|
|
|
|
|
|
# $qs = Math::ContinuedFraction->from_root($x); |
289
|
|
|
|
|
|
|
# |
290
|
|
|
|
|
|
|
sub from_root |
291
|
|
|
|
|
|
|
{ |
292
|
2
|
|
|
2
|
0
|
644
|
my $class = shift; |
293
|
2
|
|
|
|
|
7
|
my($dis) = @_; |
294
|
2
|
|
|
|
|
4
|
my $self = {}; |
295
|
|
|
|
|
|
|
|
296
|
2
|
|
|
|
|
6
|
my($p, $q) = (0, 1); |
297
|
2
|
|
|
|
|
4
|
my($a0, $a, $last); |
298
|
2
|
|
|
|
|
10
|
$last = 2 * ($a0 = $a = int(sqrt($dis))); |
299
|
|
|
|
|
|
|
|
300
|
2
|
|
|
|
|
3
|
my @repeat; |
301
|
|
|
|
|
|
|
|
302
|
2
|
|
|
|
|
4
|
for (;;) |
303
|
|
|
|
|
|
|
{ |
304
|
9
|
|
|
|
|
15
|
$p = $a * $q - $p; |
305
|
9
|
|
|
|
|
16
|
$q = ($dis - $p**2)/$q; |
306
|
9
|
|
|
|
|
28
|
$a = int(($a0 + $p)/$q); |
307
|
9
|
|
|
|
|
14
|
push @repeat, $a; |
308
|
9
|
100
|
|
|
|
26
|
last if ($last == $a); |
309
|
|
|
|
|
|
|
} |
310
|
|
|
|
|
|
|
|
311
|
2
|
|
|
|
|
6
|
$self->{simple_a} = [$a0]; |
312
|
2
|
|
|
|
|
6
|
$self->{repeat_a} = [@repeat]; |
313
|
2
|
|
|
|
|
13
|
return bless($self, $class); |
314
|
|
|
|
|
|
|
} |
315
|
|
|
|
|
|
|
|
316
|
|
|
|
|
|
|
# |
317
|
|
|
|
|
|
|
# $qs = Math::ContinuedFraction->from_quadratic($a, $b, $c); |
318
|
|
|
|
|
|
|
# |
319
|
|
|
|
|
|
|
sub from_quadratic |
320
|
|
|
|
|
|
|
{ |
321
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
322
|
0
|
|
|
|
|
0
|
my(@coefficients) = @_; |
323
|
|
|
|
|
|
|
|
324
|
0
|
|
|
|
|
0
|
while (@coefficients) |
325
|
|
|
|
|
|
|
{ |
326
|
|
|
|
|
|
|
} |
327
|
|
|
|
|
|
|
} |
328
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
# |
330
|
|
|
|
|
|
|
# "... every periodic simple continued fraction CF represents a |
331
|
|
|
|
|
|
|
# quadratic irrational (c + f*sqrt(d))/b, where b,c,f,d are integers |
332
|
|
|
|
|
|
|
# and d is squarefree." |
333
|
|
|
|
|
|
|
# OEIS, A246904 |
334
|
|
|
|
|
|
|
# |
335
|
|
|
|
|
|
|
sub to_qirrational |
336
|
|
|
|
0
|
0
|
|
{ |
337
|
|
|
|
|
|
|
} |
338
|
|
|
|
|
|
|
|
339
|
|
|
|
|
|
|
# |
340
|
|
|
|
|
|
|
# if ($cf->is_finite()) { ... |
341
|
|
|
|
|
|
|
# |
342
|
|
|
|
|
|
|
# |
343
|
|
|
|
|
|
|
# |
344
|
|
|
|
|
|
|
sub is_finite |
345
|
|
|
|
|
|
|
{ |
346
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
347
|
0
|
0
|
|
|
|
0
|
return ($self->{repeat_a})? 1: 0; |
348
|
|
|
|
|
|
|
} |
349
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
# |
351
|
|
|
|
|
|
|
# my($slength, $rlength) = $cf->sequence_length(); |
352
|
|
|
|
|
|
|
# |
353
|
|
|
|
|
|
|
# |
354
|
|
|
|
|
|
|
sub sequence_length |
355
|
|
|
|
|
|
|
{ |
356
|
23
|
|
|
23
|
0
|
36
|
my $self = shift; |
357
|
23
|
|
|
|
|
32
|
my $sl = scalar @{ $self->{simple_a} }; |
|
23
|
|
|
|
|
49
|
|
358
|
23
|
100
|
|
|
|
57
|
my $rl = ($self->{repeat_a})? scalar @{ $self->{repeat_a} }: 0; |
|
11
|
|
|
|
|
18
|
|
359
|
|
|
|
|
|
|
|
360
|
23
|
|
|
|
|
51
|
return ($sl, $rl); |
361
|
|
|
|
|
|
|
} |
362
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
# |
364
|
|
|
|
|
|
|
# Some OEIS sequences. |
365
|
|
|
|
|
|
|
# |
366
|
|
|
|
|
|
|
# e: A0031417 |
367
|
|
|
|
|
|
|
# pi: A001203 |
368
|
|
|
|
|
|
|
# |
369
|
|
|
|
|
|
|
my $oeis_e = [ |
370
|
|
|
|
|
|
|
2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, 1, 10, 1, |
371
|
|
|
|
|
|
|
1, 12, 1, 1, 14, 1, 1, 16, 1, 1, 18, 1, 1, 20, 1, 1, |
372
|
|
|
|
|
|
|
22, 1, 1, 24, 1, 1, 26, 1, 1, 28, 1, 1, 30, 1, 1, 32, |
373
|
|
|
|
|
|
|
1, 1, 34, 1, 1, 36, 1, 1, 38, 1, 1, 40, 1, 1, 42, 1, |
374
|
|
|
|
|
|
|
1, 44, 1, 1, 46, 1, 1, 48, 1, 1, 50, 1, 1, 52, 1, 1, |
375
|
|
|
|
|
|
|
54, 1, 1, 56, 1, 1, 58, 1, 1, 60, 1, 1, 62, 1, 1, 64, |
376
|
|
|
|
|
|
|
1, 1, 66]; |
377
|
|
|
|
|
|
|
|
378
|
|
|
|
|
|
|
my $oeis_pi = [ |
379
|
|
|
|
|
|
|
3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, |
380
|
|
|
|
|
|
|
2, 2, 2, 2, 1, 84, 2, 1, 1, 15, 3, 13, 1, 4, 2, 6, |
381
|
|
|
|
|
|
|
6, 99, 1, 2, 2, 6, 3, 5, 1, 1, 6, 8, 1, 7, 1, 2, |
382
|
|
|
|
|
|
|
3, 7, 1, 2, 1, 1, 12, 1, 1, 1, 3, 1, 1, 8, 1, 1, |
383
|
|
|
|
|
|
|
2, 1, 6, 1, 1, 5, 2, 2, 3, 1, 2, 4, 4, 16, 1, 161, |
384
|
|
|
|
|
|
|
45, 1, 22, 1, 2, 2, 1, 4, 1, 2, 24, 1, 2, 1, 3, 1, |
385
|
|
|
|
|
|
|
2, 1]; |
386
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
=head3 brconvergent() |
388
|
|
|
|
|
|
|
|
389
|
|
|
|
|
|
|
Behaves identically to convergent(), but returns a single Math::BigRat |
390
|
|
|
|
|
|
|
object instead of two Math::BigInt objects. |
391
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
# |
393
|
|
|
|
|
|
|
# Find the ratios that approximate pi. |
394
|
|
|
|
|
|
|
# |
395
|
|
|
|
|
|
|
# The array stops at seven elements for simplicity's sake, |
396
|
|
|
|
|
|
|
# the sequence actually does not end. See sequence A001203 |
397
|
|
|
|
|
|
|
# at the Online Encyclopedia of Integer Sequences (http://www.oeis.org/) |
398
|
|
|
|
|
|
|
# |
399
|
|
|
|
|
|
|
my $cfpi = Math::ContinuedFraction([3, 7, 15, 1, 292, 1, 1]); |
400
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
for my $j (1..4) |
402
|
|
|
|
|
|
|
{ |
403
|
|
|
|
|
|
|
my $r = cfpi->brconvergent($j); |
404
|
|
|
|
|
|
|
print $r->bstr() . "\n"; |
405
|
|
|
|
|
|
|
} |
406
|
|
|
|
|
|
|
|
407
|
|
|
|
|
|
|
=cut |
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
sub brconvergent |
410
|
|
|
|
|
|
|
{ |
411
|
6
|
|
|
6
|
1
|
9717
|
my $self = shift; |
412
|
6
|
|
|
|
|
14
|
my($terms) = @_; |
413
|
|
|
|
|
|
|
|
414
|
6
|
|
|
|
|
16
|
my($n, $d) = $self->convergent($terms); |
415
|
6
|
|
|
|
|
31
|
return Math::BigRat->new($n, $d); |
416
|
|
|
|
|
|
|
} |
417
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
=head2 Methods to Return Information |
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
=head3 convergent() |
421
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
Returns the fraction formed by calculating the rational approximation |
423
|
|
|
|
|
|
|
of the continued fraction at a stopping point, and returning the |
424
|
|
|
|
|
|
|
numerator and denominator. |
425
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
Convergent term counts begin at 1. Continued fractions with a repeating |
427
|
|
|
|
|
|
|
component can effectively have a term count as high as you like. Finite |
428
|
|
|
|
|
|
|
continued fractions will stop at the end of the sequence without warning. |
429
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
# |
431
|
|
|
|
|
|
|
# Find the ratios that approximate pi. |
432
|
|
|
|
|
|
|
# |
433
|
|
|
|
|
|
|
# The array stops at seven elements for simplicity's sake, |
434
|
|
|
|
|
|
|
# the sequence actually does not end. |
435
|
|
|
|
|
|
|
# |
436
|
|
|
|
|
|
|
my $cfpi = Math::ContinuedFraction([3, 7, 15, 1, 292, 1, 1]); |
437
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
for my $j (1..4) |
439
|
|
|
|
|
|
|
{ |
440
|
|
|
|
|
|
|
my($n, $d) = cfpi->convergent($j); |
441
|
|
|
|
|
|
|
print $n->bstr() . "/". $d->bstr() . "\n"; |
442
|
|
|
|
|
|
|
} |
443
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
The values returned are objects of type Math::BigInt. |
445
|
|
|
|
|
|
|
|
446
|
|
|
|
|
|
|
($numerator, $denominator) = $cf->convergent($nth); |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
Get the fraction for the continued fraction at the nth term. |
449
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
=cut |
451
|
|
|
|
|
|
|
|
452
|
|
|
|
|
|
|
sub convergent |
453
|
|
|
|
|
|
|
{ |
454
|
23
|
|
|
23
|
1
|
8106
|
my $self = shift; |
455
|
23
|
|
|
|
|
45
|
my($terms) = @_; |
456
|
23
|
|
|
|
|
52
|
my($repetitions, $remainder) = (0, 0); |
457
|
23
|
|
|
|
|
48
|
my($sl, $rl) = $self->sequence_length(); |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
# |
460
|
|
|
|
|
|
|
### $terms |
461
|
|
|
|
|
|
|
### $sl |
462
|
|
|
|
|
|
|
### $rl |
463
|
|
|
|
|
|
|
# |
464
|
23
|
|
|
|
|
84
|
my $n = Math::BigInt->new(0); |
465
|
23
|
|
|
|
|
2592
|
my $d = Math::BigInt->new(1); |
466
|
|
|
|
|
|
|
|
467
|
23
|
50
|
|
|
|
860
|
$terms = $sl + $rl unless ($terms); |
468
|
23
|
50
|
66
|
|
|
87
|
$terms = $sl if ($terms > $sl and $rl == 0); |
469
|
|
|
|
|
|
|
|
470
|
23
|
100
|
|
|
|
55
|
if ($terms > $sl) |
471
|
|
|
|
|
|
|
{ |
472
|
10
|
|
|
|
|
26
|
$repetitions = int(($terms - $sl) / $rl); |
473
|
10
|
|
|
|
|
18
|
$remainder = ($terms - $sl) % $rl; |
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
# |
476
|
|
|
|
|
|
|
### $repetitions |
477
|
|
|
|
|
|
|
### $remainder |
478
|
|
|
|
|
|
|
# |
479
|
10
|
50
|
|
|
|
21
|
if ($remainder > 0) |
480
|
|
|
|
|
|
|
{ |
481
|
0
|
|
|
|
|
0
|
my @remaining = (@{ $self->{repeat_a} }[0..$remainder]); |
|
0
|
|
|
|
|
0
|
|
482
|
0
|
|
|
|
|
0
|
($n, $d) = $self->evaluate(\@remaining, $n, $d); |
483
|
|
|
|
|
|
|
} |
484
|
|
|
|
|
|
|
|
485
|
10
|
|
|
|
|
22
|
for (1..$repetitions) |
486
|
|
|
|
|
|
|
{ |
487
|
55
|
|
|
|
|
131
|
($n, $d) = $self->evaluate($self->{repeat_a}, $n, $d); |
488
|
|
|
|
|
|
|
} |
489
|
|
|
|
|
|
|
|
490
|
10
|
|
|
|
|
22
|
return reverse $self->evaluate($self->{simple_a}, $n, $d); |
491
|
|
|
|
|
|
|
} |
492
|
|
|
|
|
|
|
|
493
|
13
|
|
|
|
|
38
|
my @partial = @{ $self->{simple_a} }[0..$terms]; |
|
13
|
|
|
|
|
46
|
|
494
|
13
|
|
|
|
|
36
|
return reverse $self->evaluate(\@partial, $n, $d); |
495
|
|
|
|
|
|
|
} |
496
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
sub evaluate |
498
|
|
|
|
|
|
|
{ |
499
|
78
|
|
|
78
|
0
|
118
|
my $self = shift; |
500
|
78
|
|
|
|
|
138
|
my($sequence, $n, $d) = @_; |
501
|
|
|
|
|
|
|
|
502
|
|
|
|
|
|
|
# |
503
|
|
|
|
|
|
|
### $sequence |
504
|
|
|
|
|
|
|
### $n |
505
|
|
|
|
|
|
|
### $d |
506
|
|
|
|
|
|
|
# |
507
|
|
|
|
|
|
|
# Add on the next group of continued fraction terms. |
508
|
|
|
|
|
|
|
# |
509
|
|
|
|
|
|
|
# a0 + 1 |
510
|
|
|
|
|
|
|
# ------ |
511
|
|
|
|
|
|
|
# a1 + 1 |
512
|
|
|
|
|
|
|
# ------ |
513
|
|
|
|
|
|
|
# a2 + n |
514
|
|
|
|
|
|
|
# --- |
515
|
|
|
|
|
|
|
# d |
516
|
|
|
|
|
|
|
# |
517
|
78
|
|
|
|
|
157
|
foreach my $a_k (reverse @$sequence) |
518
|
|
|
|
|
|
|
{ |
519
|
121
|
|
|
|
|
302
|
$n += $d * $a_k; |
520
|
121
|
|
|
|
|
26984
|
($n, $d) = ($d, $n); # Reciprocal |
521
|
|
|
|
|
|
|
} |
522
|
|
|
|
|
|
|
|
523
|
78
|
|
|
|
|
271
|
return ($n, $d); |
524
|
|
|
|
|
|
|
} |
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
=head3 to_array() |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
Returns an array reference that can be used to create a continued |
529
|
|
|
|
|
|
|
fraction (see L). |
530
|
|
|
|
|
|
|
|
531
|
|
|
|
|
|
|
my $cf = Math::ContinuedFraction->from_ratio(0xfff1, 0x7fed); |
532
|
|
|
|
|
|
|
my $aref = $cf->to_array() |
533
|
|
|
|
|
|
|
my $cf2 = Math::ContinuedFraction->new($aref); |
534
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
=cut |
536
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
sub to_array |
538
|
|
|
|
|
|
|
{ |
539
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
540
|
0
|
|
|
|
|
0
|
my $v = $self->{simple_a}; |
541
|
0
|
0
|
|
|
|
0
|
push @{ $v }, $self->{repeat_a} if ($self->{repeat_a}); |
|
0
|
|
|
|
|
0
|
|
542
|
|
|
|
|
|
|
|
543
|
0
|
|
|
|
|
0
|
return $v; |
544
|
|
|
|
|
|
|
} |
545
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
=head3 to_ascii() |
547
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
Returns the string form of the array reference. |
549
|
|
|
|
|
|
|
|
550
|
|
|
|
|
|
|
my $cf = Math::ContinuedFraction->from_ratio(0xfff1, 0x7fed); |
551
|
|
|
|
|
|
|
print $cf->to_ascii(), "\n"; |
552
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
Returns C<[2, 1432, 1, 6, 1, 2]>. |
554
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
=cut |
556
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
sub to_ascii |
558
|
|
|
|
|
|
|
{ |
559
|
4
|
|
|
4
|
1
|
22
|
my $self = shift; |
560
|
4
|
|
|
|
|
8
|
my $cf = '[' . join(", ", @{ $self->{simple_a} }); |
|
4
|
|
|
|
|
68
|
|
561
|
4
|
100
|
|
|
|
15
|
$cf .= ', [' . join(", ", @{ $self->{repeat_a} }) . ']' if ($self->{repeat_a}); |
|
2
|
|
|
|
|
10
|
|
562
|
4
|
|
|
|
|
14
|
return $cf .']'; |
563
|
|
|
|
|
|
|
} |
564
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
# |
566
|
|
|
|
|
|
|
# |
567
|
|
|
|
|
|
|
# |
568
|
|
|
|
|
|
|
sub add |
569
|
|
|
|
|
|
|
{ |
570
|
0
|
|
|
0
|
0
|
|
my $self = shift; |
571
|
|
|
|
|
|
|
} |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
sub subt |
574
|
|
|
|
|
|
|
{ |
575
|
0
|
|
|
0
|
0
|
|
my $self = shift; |
576
|
|
|
|
|
|
|
} |
577
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
sub mult |
579
|
|
|
|
|
|
|
{ |
580
|
0
|
|
|
0
|
0
|
|
my $self = shift; |
581
|
|
|
|
|
|
|
} |
582
|
|
|
|
|
|
|
|
583
|
|
|
|
|
|
|
sub div |
584
|
|
|
|
|
|
|
{ |
585
|
0
|
|
|
0
|
0
|
|
my $self = shift; |
586
|
|
|
|
|
|
|
} |
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
# |
590
|
|
|
|
|
|
|
# $class->_copy($self); |
591
|
|
|
|
|
|
|
# |
592
|
|
|
|
|
|
|
# Duplicate the continued fraction object. |
593
|
|
|
|
|
|
|
# |
594
|
|
|
|
|
|
|
sub _copy |
595
|
|
|
|
|
|
|
{ |
596
|
0
|
|
|
0
|
|
|
my($other, $self) = @_; |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
# |
599
|
|
|
|
|
|
|
# Direct copy of all keys, except for our arrays, which |
600
|
|
|
|
|
|
|
# we'll do with a deeper copy. |
601
|
|
|
|
|
|
|
# |
602
|
0
|
|
|
|
|
|
foreach my $k (grep($_ !~ /simple|repeat/, keys %{$other})) |
|
0
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
{ |
604
|
0
|
|
|
|
|
|
$self->{$k} = $other->{$k}; |
605
|
|
|
|
|
|
|
} |
606
|
|
|
|
|
|
|
|
607
|
0
|
|
|
|
|
|
$self->{simple_a} = [ @$other->{simple_a} ]; |
608
|
0
|
0
|
|
|
|
|
$self->{repeat_a} = ($other->{repeat_a})? [ @$other->{repeat_a} ]: undef; |
609
|
|
|
|
|
|
|
|
610
|
0
|
|
|
|
|
|
return $self; |
611
|
|
|
|
|
|
|
} |
612
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
1; |
614
|
|
|
|
|
|
|
__END__ |