line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package MyBioinfo::Common; |
2
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
28
|
use 5.006; |
|
1
|
|
|
|
|
4
|
|
|
1
|
|
|
|
|
50
|
|
4
|
1
|
|
|
1
|
|
7
|
use strict; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
39
|
|
5
|
1
|
|
|
1
|
|
7
|
use warnings; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
43
|
|
6
|
1
|
|
|
1
|
|
6
|
use constant INFINITE => 'Inf'; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
96
|
|
7
|
1
|
|
|
1
|
|
7
|
use constant EPSILON => 1e-8; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
45
|
|
8
|
1
|
|
|
1
|
|
1149
|
use POSIX qw(floor ceil); |
|
1
|
|
|
|
|
9123
|
|
|
1
|
|
|
|
|
7
|
|
9
|
1
|
|
|
1
|
|
2468
|
use Math::CDF; |
|
1
|
|
|
|
|
2
|
|
|
1
|
|
|
|
|
66
|
|
10
|
|
|
|
|
|
|
require MyShortRead::SRBed; |
11
|
1
|
|
|
1
|
|
2282
|
use Data::Dumper; |
|
1
|
|
|
|
|
14856
|
|
|
1
|
|
|
|
|
5532
|
|
12
|
|
|
|
|
|
|
require Exporter; |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
15
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
# Items to export into callers namespace by default. Note: do not export |
17
|
|
|
|
|
|
|
# names by default without a very good reason. Use EXPORT_OK instead. |
18
|
|
|
|
|
|
|
# Do not simply export all your public functions/methods/constants. |
19
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# This allows declaration use MyBioinfo::Common ':all'; |
21
|
|
|
|
|
|
|
# If you do not need this, moving things directly into @EXPORT or @EXPORT_OK |
22
|
|
|
|
|
|
|
# will save memory. |
23
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( 'all' => [ qw( |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
) ] ); |
26
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
our @EXPORT_OK = qw(mean_r mad padjBH raw_sum2 raw_sum_mean raw_sum_var MchooseN BH_fdr raw_sum_dir raw_sum nb_pval_v2 nb_pval raw_mean_dir raw_mean nb_stat var fold_change chi_stat readnamelist readnamewithinfolist array2hash max min sum mean median log2 log10 read_norm2 rescale_cutoff read_cutoff isAboveCutoff rescale_norm_max rescale_norm_sum1 is_all_zero fprecision unique); |
28
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
our @EXPORT = qw(padjBH fold_change max min sum mean geomean var median log2 log10 read_norm2 is_all_zero fprecision INFINITE EPSILON); |
30
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
our $VERSION = '0.61'; |
32
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
######## Preloaded methods go here. ############## |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# Imitate the R unique function. |
37
|
|
|
|
|
|
|
sub unique{ |
38
|
0
|
|
|
0
|
0
|
|
my %ut; |
39
|
0
|
|
|
|
|
|
foreach(@_){ |
40
|
0
|
|
|
|
|
|
$ut{$_} = 1; |
41
|
|
|
|
|
|
|
} |
42
|
0
|
|
|
|
|
|
return keys %ut; |
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
# Given a vector of P-values, return the adjusted P-values |
46
|
|
|
|
|
|
|
# according to the BH procedure. |
47
|
|
|
|
|
|
|
sub padjBH { |
48
|
0
|
|
|
0
|
0
|
|
my $p = shift; # reference to P-value vector. |
49
|
0
|
|
|
|
|
|
my $n; # number of tests to multiply. |
50
|
0
|
0
|
|
|
|
|
if(@_ > 0) {$n = shift;} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
51
|
0
|
|
|
|
|
|
else {$n = @{$p};} |
52
|
0
|
|
|
|
|
|
my %p_BH; # hash to adjusted P-values. |
53
|
|
|
|
|
|
|
# Store indices and P-values into hash. |
54
|
0
|
|
|
|
|
|
for my $i(0..$#{$p}){ |
|
0
|
|
|
|
|
|
|
55
|
0
|
|
|
|
|
|
$p_BH{$i} = $p->[$i]; |
56
|
|
|
|
|
|
|
} |
57
|
|
|
|
|
|
|
# Find the sorted indices by raw P-values. This determines the ranks of the P-values. |
58
|
0
|
|
|
|
|
|
my @sorted_r = sort {$p_BH{$a} <=> $p_BH{$b}} keys %p_BH; |
|
0
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
# Apply BH formula to all P-values. |
60
|
|
|
|
|
|
|
# Create a reverse hash from the sorted indices to raw P-value rank at the same time. |
61
|
0
|
|
|
|
|
|
my %rev_r; |
62
|
0
|
|
|
|
|
|
for my $r(1..@sorted_r){ |
63
|
0
|
|
|
|
|
|
my $f = $p_BH{$sorted_r[$r-1]} * $n / $r; # BH formula. |
64
|
0
|
0
|
|
|
|
|
$p_BH{$sorted_r[$r-1]} = $f > 1? 1.0 : $f; # truncate values larger than 1.0 |
65
|
0
|
|
|
|
|
|
$rev_r{$sorted_r[$r-1]} = $r-1; # hash: original position -> raw P-value rank. |
66
|
|
|
|
|
|
|
} |
67
|
|
|
|
|
|
|
# Now, find the sorted indices by BH'ed P-values. |
68
|
0
|
|
|
|
|
|
my @sorted_rr = sort {$p_BH{$a} <=> $p_BH{$b}} keys %p_BH; |
|
0
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# Go through the 2nd list of sorted indices, solve the inconsistent P-values. |
70
|
0
|
|
|
|
|
|
my $sta_r = 0; # remember starting raw P-value rank to be adjusted. |
71
|
0
|
|
|
|
|
|
my $raw_r = 0; # current raw P-value rank. |
72
|
0
|
|
|
|
|
|
for my $i(0..$#sorted_rr){ |
73
|
|
|
|
|
|
|
# Sequ: Iterator -> original position -> raw P-value rank. |
74
|
0
|
0
|
|
|
|
|
if($rev_r{$sorted_rr[$i]} > $raw_r){ # Found a new min P-value. Or else, it is already adjusted. |
75
|
0
|
|
|
|
|
|
$raw_r = $rev_r{$sorted_rr[$i]}; # update current rank. |
76
|
0
|
|
|
|
|
|
for my $j($sta_r..$raw_r-1){ |
77
|
|
|
|
|
|
|
# use the raw P-value rank to find the original position to be fixed. |
78
|
0
|
|
|
|
|
|
$p_BH{$sorted_r[$j]} = $p_BH{$sorted_rr[$i]}; |
79
|
|
|
|
|
|
|
} |
80
|
0
|
|
|
|
|
|
$sta_r = $raw_r + 1; # advance from current rank. |
81
|
|
|
|
|
|
|
} |
82
|
|
|
|
|
|
|
} |
83
|
|
|
|
|
|
|
# Return the adjusted P-values. |
84
|
0
|
|
|
|
|
|
my @padj; |
85
|
0
|
|
|
|
|
|
for my $i(0..$#{$p}) {push @padj, $p_BH{$i};} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
86
|
0
|
|
|
|
|
|
return @padj; |
87
|
|
|
|
|
|
|
} |
88
|
|
|
|
|
|
|
|
89
|
|
|
|
|
|
|
sub raw_sum_mean{ |
90
|
0
|
|
|
0
|
0
|
|
my ($m1,$m2,$norm_ref)=@_; |
91
|
0
|
|
|
|
|
|
my $v = 0; |
92
|
0
|
|
|
|
|
|
for my $i(@{$norm_ref}) |
|
0
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
{ |
94
|
0
|
|
|
|
|
|
$v +=1/$i; |
95
|
|
|
|
|
|
|
} |
96
|
|
|
|
|
|
|
|
97
|
0
|
|
|
|
|
|
return $v*($m1+$m2)/2; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub raw_sum_var{ |
101
|
0
|
|
|
0
|
0
|
|
my ($base_var,$m1,$m2,$norm,$raw_mean,$eps)=@_; |
102
|
0
|
|
|
|
|
|
my $base_mean = ($m1+$m2)/2; |
103
|
0
|
|
|
|
|
|
my $z =0; |
104
|
0
|
|
|
|
|
|
my $s = 0; |
105
|
0
|
|
|
|
|
|
for my $i(@{$norm}) |
|
0
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
{ |
107
|
0
|
|
|
|
|
|
$z +=$i; |
108
|
0
|
|
|
|
|
|
$s += (1/$i)**2; |
109
|
|
|
|
|
|
|
} |
110
|
0
|
|
|
|
|
|
$z = $z/@{$norm}; |
|
0
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
|
112
|
0
|
|
|
|
|
|
my $var = $base_var - $z * $base_mean; |
113
|
0
|
0
|
|
|
|
|
if($var < $eps*$base_mean) |
114
|
|
|
|
|
|
|
{ |
115
|
0
|
|
|
|
|
|
$var = $eps*$base_mean; |
116
|
|
|
|
|
|
|
} |
117
|
|
|
|
|
|
|
|
118
|
0
|
|
|
|
|
|
return $var*$s + $raw_mean; |
119
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
} |
121
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
sub MchooseN |
124
|
|
|
|
|
|
|
{ |
125
|
0
|
|
|
0
|
0
|
|
my ($m,$n,$ref) = @_; |
126
|
0
|
|
|
|
|
|
my @items = @{$ref}; |
|
0
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
|
128
|
0
|
|
|
|
|
|
my $k = $m-$n; |
129
|
0
|
|
|
|
|
|
my @res = (); |
130
|
0
|
0
|
|
|
|
|
if($n==0) |
131
|
|
|
|
|
|
|
{ |
132
|
0
|
|
|
|
|
|
return @res; |
133
|
|
|
|
|
|
|
} |
134
|
0
|
0
|
|
|
|
|
if($n==1) |
135
|
|
|
|
|
|
|
{ |
136
|
0
|
|
|
|
|
|
foreach my $v(@items) |
137
|
|
|
|
|
|
|
{ |
138
|
0
|
|
|
|
|
|
my @val = (); |
139
|
0
|
|
|
|
|
|
push @val,$v; |
140
|
0
|
|
|
|
|
|
push @res,[@val]; |
141
|
|
|
|
|
|
|
} |
142
|
0
|
|
|
|
|
|
return @res; |
143
|
|
|
|
|
|
|
} |
144
|
|
|
|
|
|
|
else |
145
|
|
|
|
|
|
|
{ |
146
|
|
|
|
|
|
|
#to avoid the duplicated combination, treat the items as ordered |
147
|
0
|
|
|
|
|
|
for my $i(0..$k) |
148
|
|
|
|
|
|
|
{ |
149
|
0
|
|
|
|
|
|
my @left=(); |
150
|
0
|
|
|
|
|
|
for my $j($i+1..$#items) |
151
|
|
|
|
|
|
|
{ |
152
|
0
|
|
|
|
|
|
push @left,$items[$j]; |
153
|
|
|
|
|
|
|
} |
154
|
0
|
|
|
|
|
|
my @ret = MchooseN($m-1,$n-1,\@left); |
155
|
0
|
|
|
|
|
|
my $len = @ret; |
156
|
|
|
|
|
|
|
|
157
|
0
|
|
|
|
|
|
for(my $j=0;$j<$len;$j++) |
158
|
|
|
|
|
|
|
{ |
159
|
0
|
|
|
|
|
|
my @val = (); |
160
|
0
|
|
|
|
|
|
push @val, $items[$i]; |
161
|
0
|
|
|
|
|
|
push @val, @{$ret[$j]}; |
|
0
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
|
163
|
0
|
|
|
|
|
|
push @res,[@val]; |
164
|
|
|
|
|
|
|
} |
165
|
|
|
|
|
|
|
} |
166
|
0
|
|
|
|
|
|
return @res; |
167
|
|
|
|
|
|
|
} |
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
sub BH_fdr{ |
171
|
0
|
|
|
0
|
0
|
|
my ($p,$c,$threshold,$res) = @_; |
172
|
0
|
|
|
|
|
|
my $index = 1; |
173
|
0
|
|
|
|
|
|
my $max_id =0; |
174
|
0
|
|
|
|
|
|
my $min = 1.0; |
175
|
|
|
|
|
|
|
|
176
|
0
|
|
|
|
|
|
foreach my $key (sort {$p->{$a} <=> $p->{$b}} keys %{$p} ) |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
{ |
178
|
0
|
|
|
|
|
|
my $v = $p->{$key}; |
179
|
0
|
|
|
|
|
|
$v = $v * $c/$index; |
180
|
|
|
|
|
|
|
|
181
|
0
|
|
|
|
|
|
$res->{$key} = $v; |
182
|
|
|
|
|
|
|
|
183
|
0
|
0
|
|
|
|
|
if($v<=$threshold) |
184
|
|
|
|
|
|
|
{ |
185
|
0
|
|
|
|
|
|
$res->{$key} = $v; |
186
|
0
|
0
|
|
|
|
|
if($max_id < $index) |
187
|
|
|
|
|
|
|
{ |
188
|
0
|
|
|
|
|
|
$max_id = $index; |
189
|
|
|
|
|
|
|
} |
190
|
0
|
0
|
|
|
|
|
if($v<$min) |
191
|
|
|
|
|
|
|
{ |
192
|
0
|
|
|
|
|
|
$min = $v; |
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
} |
195
|
0
|
|
|
|
|
|
$index ++; |
196
|
|
|
|
|
|
|
} |
197
|
|
|
|
|
|
|
|
198
|
0
|
|
|
|
|
|
foreach my $key (sort {$p->{$a} cmp $p->{$b}} keys %{$p} ) |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
{ |
200
|
0
|
0
|
|
|
|
|
if($max_id>0) |
201
|
|
|
|
|
|
|
{ |
202
|
0
|
|
|
|
|
|
$res->{$key} = $min; |
203
|
|
|
|
|
|
|
|
204
|
0
|
|
|
|
|
|
$max_id--; |
205
|
|
|
|
|
|
|
} |
206
|
|
|
|
|
|
|
} |
207
|
|
|
|
|
|
|
} |
208
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
#mean read counts |
210
|
|
|
|
|
|
|
sub raw_sum{ |
211
|
0
|
|
|
0
|
0
|
|
my($rarr_srbed,$chrom,$i) = @_; |
212
|
0
|
|
|
|
|
|
my @arr_read; |
213
|
|
|
|
|
|
|
# retrieve read count at window# 'i'. |
214
|
0
|
|
|
|
|
|
my $r_mu = 0; |
215
|
0
|
|
|
|
|
|
foreach my $b(@{$rarr_srbed}) {$r_mu += $b->get_bin_count($chrom,$i);} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
|
217
|
0
|
|
|
|
|
|
return $r_mu; |
218
|
|
|
|
|
|
|
} |
219
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
sub raw_sum2{ |
221
|
0
|
|
|
0
|
0
|
|
my($rarr_srbed,$norm_ref) = @_; |
222
|
0
|
|
|
|
|
|
my @arr_read; |
223
|
|
|
|
|
|
|
# retrieve read count at window# 'i'. |
224
|
0
|
|
|
|
|
|
my $r_mu = 0; |
225
|
0
|
|
|
|
|
|
foreach my $i(0..@{$rarr_srbed}-1) {$r_mu += $rarr_srbed->[$i]/$norm_ref->[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
|
227
|
0
|
|
|
|
|
|
return $r_mu; |
228
|
|
|
|
|
|
|
} |
229
|
|
|
|
|
|
|
sub raw_sum_dir{ |
230
|
0
|
|
|
0
|
0
|
|
my($rarr_srbed,$chrom,$i) = @_; |
231
|
0
|
|
|
|
|
|
my @arr_read; |
232
|
|
|
|
|
|
|
# retrieve read count at window# 'i'. |
233
|
0
|
|
|
|
|
|
my $r_mu = 0; |
234
|
0
|
|
|
|
|
|
foreach my $b(@{$rarr_srbed}) |
|
0
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
{ |
236
|
0
|
|
|
|
|
|
my @count_both= $b->get_win_count_direction($chrom,$i); |
237
|
0
|
|
|
|
|
|
$r_mu +=$count_both[0]+$count_both[1]; |
238
|
|
|
|
|
|
|
} |
239
|
|
|
|
|
|
|
|
240
|
0
|
|
|
|
|
|
return $r_mu; |
241
|
|
|
|
|
|
|
} |
242
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
sub raw_mean{ |
244
|
0
|
|
|
0
|
0
|
|
my($rarr_srbed,$chrom,$i) = @_; |
245
|
0
|
|
|
|
|
|
my @arr_read; |
246
|
|
|
|
|
|
|
# retrieve read count at window# 'i'. |
247
|
0
|
|
|
|
|
|
my $r_mu = 0; |
248
|
0
|
|
|
|
|
|
foreach my $b(@{$rarr_srbed}) {$r_mu += $b->get_bin_count($chrom,$i);} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
|
250
|
0
|
|
|
|
|
|
return $r_mu/@{$rarr_srbed}; |
|
0
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
} |
252
|
|
|
|
|
|
|
sub raw_mean2{ |
253
|
0
|
|
|
0
|
0
|
|
my($m1,$m2,$norm_ref) = @_; |
254
|
|
|
|
|
|
|
|
255
|
0
|
|
|
|
|
|
my $v = 0; |
256
|
0
|
|
|
|
|
|
for my $i(@{$norm_ref}) |
|
0
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
{ |
258
|
0
|
|
|
|
|
|
$v +=1/$i; |
259
|
|
|
|
|
|
|
} |
260
|
0
|
|
|
|
|
|
$v = $v/@{$norm_ref}; |
|
0
|
|
|
|
|
|
|
261
|
0
|
|
|
|
|
|
return $v*($m1+$m2)/2; |
262
|
|
|
|
|
|
|
} |
263
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
sub raw_mean_dir{ |
265
|
0
|
|
|
0
|
0
|
|
my($rarr_srbed,$chrom,$i) = @_; |
266
|
0
|
|
|
|
|
|
my @arr_read; |
267
|
|
|
|
|
|
|
# retrieve read count at window# 'i'. |
268
|
0
|
|
|
|
|
|
my $r_mu = 0; |
269
|
0
|
|
|
|
|
|
foreach my $b(@{$rarr_srbed}) { |
|
0
|
|
|
|
|
|
|
270
|
0
|
|
|
|
|
|
my @count_both = $b->get_win_count_direction($chrom,$i); |
271
|
0
|
|
|
|
|
|
$r_mu += $count_both[0] + $count_both[1]; |
272
|
|
|
|
|
|
|
#$b->get_bin_count($chrom,$i); |
273
|
|
|
|
|
|
|
} |
274
|
|
|
|
|
|
|
|
275
|
0
|
|
|
|
|
|
return $r_mu/@{$rarr_srbed}; |
|
0
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
} |
277
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
# Calculate fold change given two values. |
279
|
|
|
|
|
|
|
sub fold_change{ |
280
|
0
|
|
|
0
|
0
|
|
my($t,$c) = @_; |
281
|
0
|
0
|
0
|
|
|
|
if($t < 0 or $c < 0){ |
282
|
0
|
|
|
|
|
|
warn "Negative value in fold change calculation!\n"; |
283
|
0
|
|
|
|
|
|
return 0; |
284
|
|
|
|
|
|
|
} |
285
|
0
|
0
|
|
|
|
|
if($t >= $c){ |
286
|
0
|
0
|
|
|
|
|
if($c == 0) {return $t+1;} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
else {return $t/$c;} |
288
|
|
|
|
|
|
|
} |
289
|
|
|
|
|
|
|
else{ |
290
|
0
|
0
|
|
|
|
|
if($t == 0) {return -($c+1);} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
else {return -$c/$t;} |
292
|
|
|
|
|
|
|
} |
293
|
|
|
|
|
|
|
} |
294
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
# Calculate Pearson's Chi-square test statistic. |
296
|
|
|
|
|
|
|
sub chi_stat{ |
297
|
0
|
|
|
0
|
0
|
|
my($o,$n,$p) = @_; |
298
|
0
|
|
|
|
|
|
return ($o - $n*$p)**2 / ($n*$p*(1-$p)); |
299
|
|
|
|
|
|
|
} |
300
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
# Function to read a list of names. Assuming the 1st column. |
302
|
|
|
|
|
|
|
# Default: convert all names to upper case. |
303
|
|
|
|
|
|
|
# assume the name is in the 1st column and there is no whitespace in names. |
304
|
|
|
|
|
|
|
sub readnamelist{ |
305
|
0
|
|
|
0
|
0
|
|
my($file, $ra) = @_; |
306
|
0
|
|
|
|
|
|
my $flag = 1; |
307
|
0
|
0
|
|
|
|
|
$flag = $_[2] if @_ > 2; # read flag for upper case conversion. |
308
|
0
|
|
|
|
|
|
@{$ra} = (); # deplete the list array first. |
|
0
|
|
|
|
|
|
|
309
|
0
|
0
|
|
|
|
|
open HLIST, "<", $file or die "Open input file error: $!\n"; |
310
|
0
|
|
|
|
|
|
while(){ |
311
|
0
|
|
|
|
|
|
chomp; |
312
|
0
|
|
|
|
|
|
my($name) = split; |
313
|
0
|
0
|
|
|
|
|
$name = uc $name if $flag; |
314
|
0
|
|
|
|
|
|
push @{$ra}, $name; |
|
0
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
} |
316
|
0
|
|
|
|
|
|
close HLIST; |
317
|
|
|
|
|
|
|
} |
318
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
# Function to read a list of names with information in 1st and 2nd columns. |
320
|
|
|
|
|
|
|
# Default: convert all names to upper case. |
321
|
|
|
|
|
|
|
# assume there is no whitespace in names. |
322
|
|
|
|
|
|
|
sub readnamewithinfolist{ |
323
|
0
|
|
|
0
|
0
|
|
my($file, $rh) = @_; |
324
|
0
|
|
|
|
|
|
my $flag = 1; |
325
|
0
|
0
|
|
|
|
|
$flag = $_[2] if @_ > 2; # read flag for upper case conversion. |
326
|
0
|
|
|
|
|
|
%{$rh} = (); # deplete the list array first. |
|
0
|
|
|
|
|
|
|
327
|
0
|
0
|
|
|
|
|
open HLIST, "<", $file or die "Open input file error: $!\n"; |
328
|
0
|
|
|
|
|
|
while(){ |
329
|
0
|
|
|
|
|
|
chomp; |
330
|
0
|
|
|
|
|
|
my($name, $info) = split; |
331
|
0
|
0
|
|
|
|
|
$name = uc $name if $flag; |
332
|
0
|
|
|
|
|
|
$rh->{$name} = $info; |
333
|
|
|
|
|
|
|
} |
334
|
0
|
|
|
|
|
|
close HLIST; |
335
|
|
|
|
|
|
|
} |
336
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
# Function to convert an array of names to hash table. |
338
|
|
|
|
|
|
|
sub array2hash{ |
339
|
0
|
|
|
0
|
0
|
|
my($ra, $rh) = @_; |
340
|
0
|
|
|
|
|
|
%{$rh} = (); # deplete the hash table first. |
|
0
|
|
|
|
|
|
|
341
|
0
|
|
|
|
|
|
foreach(@{$ra}){ |
|
0
|
|
|
|
|
|
|
342
|
0
|
|
|
|
|
|
$rh->{$_} = 1; |
343
|
|
|
|
|
|
|
} |
344
|
|
|
|
|
|
|
} |
345
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
# Function to find the max element for an array. |
347
|
|
|
|
|
|
|
sub max{ |
348
|
0
|
0
|
|
0
|
0
|
|
die "max function called for an empty array!\n" if @_ < 1; |
349
|
0
|
|
|
|
|
|
my $m = $_[0]; |
350
|
0
|
0
|
|
|
|
|
for(my $i = 1; $i < @_; $i++) {$m = $_[$i] if $_[$i] > $m;} |
|
0
|
|
|
|
|
|
|
351
|
0
|
|
|
|
|
|
return $m; |
352
|
|
|
|
|
|
|
} |
353
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# Function to find the min element for an array. |
355
|
|
|
|
|
|
|
sub min{ |
356
|
0
|
0
|
|
0
|
0
|
|
die "min function called for an empty array!\n" if @_ < 1; |
357
|
0
|
|
|
|
|
|
my $m = $_[0]; |
358
|
0
|
0
|
|
|
|
|
for(my $i = 1; $i < @_; $i++) {$m = $_[$i] if $_[$i] < $m;} |
|
0
|
|
|
|
|
|
|
359
|
0
|
|
|
|
|
|
return $m; |
360
|
|
|
|
|
|
|
} |
361
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
# Function to find the sum for an array. |
363
|
|
|
|
|
|
|
sub sum{ |
364
|
0
|
0
|
|
0
|
0
|
|
die "sum function called for an empty array!\n" if @_ < 1; |
365
|
0
|
|
|
|
|
|
my $s = 0; |
366
|
0
|
|
|
|
|
|
foreach my $n(@_) {$s += $n;} |
|
0
|
|
|
|
|
|
|
367
|
0
|
|
|
|
|
|
return $s; |
368
|
|
|
|
|
|
|
} |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
# Function to find the mean for an array. |
371
|
|
|
|
|
|
|
sub mean{ |
372
|
0
|
0
|
|
0
|
0
|
|
die "mean function called for an empty array!\n" if @_ < 1; |
373
|
0
|
|
|
|
|
|
my $m = 0; |
374
|
0
|
|
|
|
|
|
my $c = 0; |
375
|
0
|
|
|
|
|
|
foreach my $n(@_) {$m += $n; $c++;} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
376
|
0
|
|
|
|
|
|
return $m / $c; |
377
|
|
|
|
|
|
|
} |
378
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# Function to perform trimmed mean. The array is passed as a reference. |
380
|
|
|
|
|
|
|
sub mean_r{ |
381
|
0
|
|
|
0
|
0
|
|
my $r_v = shift; |
382
|
0
|
0
|
|
|
|
|
if(@{$r_v} == 0){ |
|
0
|
|
|
|
|
|
|
383
|
0
|
|
|
|
|
|
warn "Empty array encountered! Return zero.\n"; |
384
|
0
|
|
|
|
|
|
return 0; |
385
|
|
|
|
|
|
|
} |
386
|
0
|
|
|
|
|
|
my($left_trim, $right_trim); |
387
|
0
|
0
|
|
|
|
|
if(@_ > 0){ # left trim parameter. |
388
|
0
|
|
|
|
|
|
$left_trim = shift; |
389
|
0
|
0
|
0
|
|
|
|
unless($left_trim >= 0 and $left_trim < 0.5){ |
390
|
0
|
|
|
|
|
|
warn "Trimming parameter must be in: [0, 0.5). Reset to zero!\n"; |
391
|
0
|
|
|
|
|
|
$left_trim = 0; |
392
|
|
|
|
|
|
|
} |
393
|
|
|
|
|
|
|
}else{ |
394
|
0
|
|
|
|
|
|
$left_trim = 0; |
395
|
|
|
|
|
|
|
} |
396
|
0
|
0
|
|
|
|
|
if(@_ > 0){ # right trim parameter. |
397
|
0
|
|
|
|
|
|
$right_trim = shift; |
398
|
0
|
0
|
0
|
|
|
|
unless($right_trim >= 0 and $right_trim < 0.5){ |
399
|
0
|
|
|
|
|
|
warn "Trimming parameter must be in: [0, 0.5). Reset to zero!\n"; |
400
|
0
|
|
|
|
|
|
$right_trim = 0; |
401
|
|
|
|
|
|
|
} |
402
|
|
|
|
|
|
|
}else{ |
403
|
0
|
|
|
|
|
|
$right_trim = 0; |
404
|
|
|
|
|
|
|
} |
405
|
0
|
|
|
|
|
|
my @sorted_v = sort {$a <=> $b} @{$r_v}; |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
406
|
0
|
|
|
|
|
|
my $left_mark = floor($left_trim * @sorted_v); # start position. |
407
|
0
|
|
|
|
|
|
my $right_mark = @sorted_v - floor($right_trim * @sorted_v); # end +1 position. |
408
|
0
|
|
|
|
|
|
my $m = 0; |
409
|
0
|
|
|
|
|
|
for(my $i = $left_mark; $i < $right_mark; $i++){ |
410
|
0
|
|
|
|
|
|
$m += $sorted_v[$i]; |
411
|
|
|
|
|
|
|
} |
412
|
0
|
|
|
|
|
|
$m /= $right_mark - $left_mark; |
413
|
0
|
|
|
|
|
|
return $m; |
414
|
|
|
|
|
|
|
} |
415
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
# Function to calculate the geometric mean for an array. |
417
|
|
|
|
|
|
|
sub geomean{ |
418
|
0
|
0
|
|
0
|
0
|
|
die "geomean function called for an empty array!\n" if @_ < 1; |
419
|
0
|
|
|
|
|
|
my $m = 0; |
420
|
0
|
|
|
|
|
|
my $c = 0; |
421
|
0
|
|
|
|
|
|
foreach my $n(@_) { |
422
|
0
|
0
|
|
|
|
|
if($n == 0) {return 0;} |
|
0
|
|
|
|
|
|
|
423
|
0
|
|
|
|
|
|
$m += log($n); |
424
|
0
|
|
|
|
|
|
$c++; |
425
|
|
|
|
|
|
|
} |
426
|
0
|
|
|
|
|
|
return exp($m/$c); |
427
|
|
|
|
|
|
|
} |
428
|
|
|
|
|
|
|
|
429
|
|
|
|
|
|
|
# Function to find the variance for an array. |
430
|
|
|
|
|
|
|
sub var{ |
431
|
0
|
0
|
|
0
|
0
|
|
die "variance function called for an empty array!\n" if @_ < 1; |
432
|
0
|
|
|
|
|
|
my $m = 0; |
433
|
0
|
|
|
|
|
|
my $c = 0; |
434
|
0
|
|
|
|
|
|
my $mean = mean(@_); |
435
|
0
|
|
|
|
|
|
foreach my $n(@_) {$m += ($n-$mean)**2; $c++;} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
436
|
0
|
|
|
|
|
|
return $m / ($c-1); |
437
|
|
|
|
|
|
|
} |
438
|
|
|
|
|
|
|
|
439
|
|
|
|
|
|
|
# Function to find the median of a numeric array. |
440
|
|
|
|
|
|
|
sub median{ |
441
|
0
|
0
|
|
0
|
0
|
|
die "median function called for an empty array!\n" if @_ < 1; |
442
|
0
|
|
|
|
|
|
my @sorted = sort {$a <=> $b} @_; |
|
0
|
|
|
|
|
|
|
443
|
0
|
0
|
|
|
|
|
if(@sorted % 2 == 1) {return $sorted[int(@sorted/2)];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
else {return ($sorted[int(@sorted/2)]+$sorted[int(@sorted/2)-1])/2;} |
445
|
|
|
|
|
|
|
} |
446
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
# Function calculate mad: Median absolute deviation. |
448
|
|
|
|
|
|
|
sub mad{ |
449
|
0
|
|
|
0
|
0
|
|
my $r_v = shift; |
450
|
0
|
0
|
|
|
|
|
if(@{$r_v} == 0){ # reference to array. |
|
0
|
|
|
|
|
|
|
451
|
0
|
|
|
|
|
|
return 0; |
452
|
|
|
|
|
|
|
} |
453
|
0
|
|
|
|
|
|
my($center, $constant); |
454
|
0
|
0
|
|
|
|
|
if(@_ > 0){ # center. |
455
|
0
|
|
|
|
|
|
$center = shift; |
456
|
|
|
|
|
|
|
}else{ |
457
|
0
|
|
|
|
|
|
$center = median(@{$r_v}); |
|
0
|
|
|
|
|
|
|
458
|
|
|
|
|
|
|
} |
459
|
0
|
0
|
|
|
|
|
if(@_ > 0){ # scale constant. |
460
|
0
|
|
|
|
|
|
$constant = shift; |
461
|
0
|
0
|
|
|
|
|
unless($constant > 0){ |
462
|
0
|
|
|
|
|
|
warn "Scale constant must be a positive number. Use default!\n"; |
463
|
0
|
|
|
|
|
|
$constant = 1.4826; |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
}else{ |
466
|
0
|
|
|
|
|
|
$constant = 1.4826; |
467
|
|
|
|
|
|
|
} |
468
|
0
|
|
|
|
|
|
my @dev; |
469
|
0
|
|
|
|
|
|
foreach my $n(@{$r_v}){ |
|
0
|
|
|
|
|
|
|
470
|
0
|
|
|
|
|
|
push @dev, abs($n - $center); |
471
|
|
|
|
|
|
|
} |
472
|
0
|
|
|
|
|
|
return $constant * median(@dev); |
473
|
|
|
|
|
|
|
} |
474
|
|
|
|
|
|
|
|
475
|
|
|
|
|
|
|
# logorithm base 2. |
476
|
|
|
|
|
|
|
sub log2{ |
477
|
0
|
|
|
0
|
0
|
|
my $n = shift; |
478
|
0
|
0
|
|
|
|
|
if($n == 0) {return -1*INFINITE;} |
|
0
|
|
|
|
|
|
|
479
|
0
|
|
|
|
|
|
return log($n) / log(2); |
480
|
|
|
|
|
|
|
} |
481
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
# logorithm base 10. |
483
|
|
|
|
|
|
|
sub log10{ |
484
|
0
|
|
|
0
|
0
|
|
my $n = shift; |
485
|
0
|
0
|
|
|
|
|
if($n == 0) {return -1*INFINITE;} |
|
0
|
|
|
|
|
|
|
486
|
0
|
|
|
|
|
|
return log($n) / log(10); |
487
|
|
|
|
|
|
|
} |
488
|
|
|
|
|
|
|
|
489
|
|
|
|
|
|
|
# A subroutine to read normalization constants for treatment and control. |
490
|
|
|
|
|
|
|
# Syntax: treatment norm1 norm2...[normN] |
491
|
|
|
|
|
|
|
# control norm1 norm2...[normN] |
492
|
|
|
|
|
|
|
# whitespace should be used as field separator. |
493
|
|
|
|
|
|
|
# only identifier 'treatment' and 'control' are recognized and they are case-sensitive. |
494
|
|
|
|
|
|
|
# only the first two lines of the text file are considered and the rest are ignored. |
495
|
|
|
|
|
|
|
sub read_norm2{ |
496
|
0
|
|
|
0
|
0
|
|
my($nf,$rt,$rc) = @_; |
497
|
0
|
0
|
|
|
|
|
open HNORM, "<", $nf or die "Error in reading $nf:$!\n"; |
498
|
0
|
|
|
|
|
|
my @buf = ; # read in all lines into buffer. |
499
|
0
|
|
|
|
|
|
chomp @buf; |
500
|
0
|
|
|
|
|
|
my $tag_t = 0; |
501
|
0
|
|
|
|
|
|
my $tag_c = 0; |
502
|
|
|
|
|
|
|
# only deal with the first two lines. |
503
|
0
|
|
|
|
|
|
my @line1 = split ' ', $buf[0]; |
504
|
0
|
0
|
0
|
|
|
|
if(@line1 > 0 and $line1[0] eq 'treatment'){ |
|
|
0
|
0
|
|
|
|
|
505
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line1; $i++) {push @{$rt}, $line1[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
506
|
0
|
|
|
|
|
|
$tag_t = 1; |
507
|
|
|
|
|
|
|
} |
508
|
|
|
|
|
|
|
elsif(@line1 > 0 and $line1[0] eq 'control'){ |
509
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line1; $i++) {push @{$rc}, $line1[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
510
|
0
|
|
|
|
|
|
$tag_c = 1; |
511
|
|
|
|
|
|
|
} |
512
|
0
|
|
|
|
|
|
my @line2 = split ' ', $buf[1]; |
513
|
0
|
0
|
0
|
|
|
|
if(@line2 > 0 and $line2[0] eq 'treatment'){ |
|
|
0
|
0
|
|
|
|
|
514
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line2; $i++) {push @{$rt}, $line2[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
515
|
0
|
|
|
|
|
|
$tag_t = 1; |
516
|
|
|
|
|
|
|
} |
517
|
|
|
|
|
|
|
elsif(@line2 > 0 and $line2[0] eq 'control'){ |
518
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line2; $i++) {push @{$rc}, $line2[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
519
|
0
|
|
|
|
|
|
$tag_c = 1; |
520
|
|
|
|
|
|
|
} |
521
|
0
|
|
0
|
|
|
|
return ($tag_t and $tag_c); # indicate whether both conditions are met. |
522
|
|
|
|
|
|
|
} |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
# A subroutine to read cutoff thresholds for all samples. |
526
|
|
|
|
|
|
|
# Syntax: treatment cutoff1 cutoff2...[cutoffN] |
527
|
|
|
|
|
|
|
# control cutoff1 cutoff2...[cutoffN] |
528
|
|
|
|
|
|
|
# whitespace should be used as field separator. |
529
|
|
|
|
|
|
|
# only identifier 'treatment' and 'control' are recognized and they are case-sensitive. |
530
|
|
|
|
|
|
|
# only the first two lines of the text file are considered and the rest are ignored. |
531
|
|
|
|
|
|
|
sub read_cutoff{ |
532
|
0
|
|
|
0
|
0
|
|
my($nf,$tr_cut,$co_cut) = @_; |
533
|
0
|
0
|
|
|
|
|
open HNORM, "<", $nf or die "Error in reading $nf:$!\n"; |
534
|
0
|
|
|
|
|
|
my @buf = ; # read in all lines into buffer. |
535
|
0
|
|
|
|
|
|
chomp @buf; |
536
|
0
|
|
|
|
|
|
my $tag_t = 0; |
537
|
0
|
|
|
|
|
|
my $tag_c = 0; |
538
|
|
|
|
|
|
|
# only deal with the first two lines. |
539
|
0
|
|
|
|
|
|
my @line1 = split ' ', $buf[0]; |
540
|
0
|
0
|
0
|
|
|
|
if(@line1 > 0 and $line1[0] eq 'treatment'){ |
|
|
0
|
0
|
|
|
|
|
541
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line1; $i++) {push @{$tr_cut}, $line1[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
542
|
0
|
|
|
|
|
|
$tag_t = 1; |
543
|
|
|
|
|
|
|
} |
544
|
|
|
|
|
|
|
elsif(@line1 > 0 and $line1[0] eq 'control'){ |
545
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line1; $i++) {push @{$co_cut}, $line1[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
546
|
0
|
|
|
|
|
|
$tag_c = 1; |
547
|
|
|
|
|
|
|
} |
548
|
0
|
|
|
|
|
|
my @line2 = split ' ', $buf[1]; |
549
|
0
|
0
|
0
|
|
|
|
if(@line2 > 0 and $line2[0] eq 'treatment'){ |
|
|
0
|
0
|
|
|
|
|
550
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line2; $i++) {push @{$tr_cut}, $line2[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
551
|
0
|
|
|
|
|
|
$tag_t = 1; |
552
|
|
|
|
|
|
|
} |
553
|
|
|
|
|
|
|
elsif(@line2 > 0 and $line2[0] eq 'control'){ |
554
|
0
|
|
|
|
|
|
for(my $i = 1; $i < @line2; $i++) {push @{$co_cut}, $line2[$i];} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
555
|
0
|
|
|
|
|
|
$tag_c = 1; |
556
|
|
|
|
|
|
|
} |
557
|
0
|
|
0
|
|
|
|
return ($tag_t and $tag_c); # indicate whether both conditions are met. |
558
|
|
|
|
|
|
|
} |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
#check if the read counts of current bin is above the cutoff |
561
|
|
|
|
|
|
|
sub isAboveCutoff |
562
|
|
|
|
|
|
|
{ |
563
|
0
|
|
|
0
|
0
|
|
my ($rftr_read,$rfco_read,$rftr_cut,$rfco_cut)=@_; |
564
|
0
|
|
|
|
|
|
my $len = @{$rftr_read}; |
|
0
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
|
566
|
0
|
|
|
|
|
|
my $valid = 0; |
567
|
|
|
|
|
|
|
|
568
|
0
|
|
|
|
|
|
for my $i(0..@{$rftr_read}-1) |
|
0
|
|
|
|
|
|
|
569
|
|
|
|
|
|
|
{ |
570
|
0
|
0
|
|
|
|
|
if($rftr_read->[$i] >= $rftr_cut->[$i]) |
571
|
|
|
|
|
|
|
{ |
572
|
0
|
|
|
|
|
|
$valid = 1; |
573
|
|
|
|
|
|
|
|
574
|
|
|
|
|
|
|
} |
575
|
|
|
|
|
|
|
} |
576
|
0
|
0
|
|
|
|
|
if($valid) |
577
|
|
|
|
|
|
|
{ |
578
|
0
|
|
|
|
|
|
return $valid; |
579
|
|
|
|
|
|
|
} |
580
|
0
|
|
|
|
|
|
for my $i(0..@{$rfco_read}-1) |
|
0
|
|
|
|
|
|
|
581
|
|
|
|
|
|
|
{ |
582
|
0
|
0
|
|
|
|
|
if($rfco_read->[$i] >= $rfco_cut->[$i]) |
583
|
|
|
|
|
|
|
{ |
584
|
0
|
|
|
|
|
|
return 1; |
585
|
|
|
|
|
|
|
} |
586
|
|
|
|
|
|
|
} |
587
|
|
|
|
|
|
|
|
588
|
0
|
|
|
|
|
|
return 0; |
589
|
|
|
|
|
|
|
} |
590
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
# A subroutine to rescale normalization constants to the maximal one. |
592
|
|
|
|
|
|
|
# max_n should be the maximum of both treatment and control. |
593
|
|
|
|
|
|
|
# However, we may rescale treatment and control separately. |
594
|
|
|
|
|
|
|
sub rescale_norm_max{ |
595
|
0
|
|
|
0
|
0
|
|
my($rn,$max_n) = @_; |
596
|
0
|
|
|
|
|
|
my $i = 0; |
597
|
0
|
|
|
|
|
|
foreach my $n(@{$rn}){ |
|
0
|
|
|
|
|
|
|
598
|
0
|
0
|
|
|
|
|
if($n <= 0){ |
|
0
|
|
|
|
|
|
|
599
|
0
|
|
|
|
|
|
warn "Normalization constant must be larger than zero! Force it to be zero.\n"; |
600
|
0
|
|
|
|
|
|
$rn->[$i++] = 0; |
601
|
|
|
|
|
|
|
} |
602
|
|
|
|
|
|
|
else {$rn->[$i++] = $max_n / $n;} |
603
|
|
|
|
|
|
|
} |
604
|
|
|
|
|
|
|
} |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
# A subroutine to rescale cutoff constants. |
607
|
|
|
|
|
|
|
sub rescale_cutoff{ |
608
|
0
|
|
|
0
|
0
|
|
my($r_cut,$r_norm) = @_; |
609
|
|
|
|
|
|
|
|
610
|
0
|
|
|
|
|
|
for my $i(0..@{$r_cut}-1){ |
|
0
|
|
|
|
|
|
|
611
|
0
|
|
|
|
|
|
$r_cut->[$i] = $r_cut->[$i] * $r_norm->[$i]; |
612
|
|
|
|
|
|
|
} |
613
|
|
|
|
|
|
|
} |
614
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
# A subroutine to rescale normalization constants so that they sum up to one. |
616
|
|
|
|
|
|
|
# sum_n should be the summation of both treatment and control. |
617
|
|
|
|
|
|
|
# However, we may rescale treatment and control separately. |
618
|
|
|
|
|
|
|
sub rescale_norm_sum1{ |
619
|
0
|
|
|
0
|
0
|
|
my($rn,$sum_n) = @_; |
620
|
0
|
|
|
|
|
|
my $i = 0; |
621
|
0
|
|
|
|
|
|
foreach my $n(@{$rn}){ |
|
0
|
|
|
|
|
|
|
622
|
0
|
0
|
|
|
|
|
if($n <= 0){ |
|
0
|
|
|
|
|
|
|
623
|
0
|
|
|
|
|
|
warn "Normalization constant must be larger than zero! Force it to be zero.\n"; |
624
|
0
|
|
|
|
|
|
$rn->[$i++] = 0; |
625
|
|
|
|
|
|
|
} |
626
|
|
|
|
|
|
|
else {$rn->[$i++] = $n / $sum_n;} |
627
|
|
|
|
|
|
|
} |
628
|
|
|
|
|
|
|
} |
629
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
# A subroutine to determine whether an array contains all zero elements. |
631
|
|
|
|
|
|
|
sub is_all_zero{ |
632
|
0
|
|
|
0
|
0
|
|
my $ra = shift; |
633
|
0
|
0
|
|
|
|
|
foreach (@{$ra}) {return 0 if $_ != 0;} |
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
634
|
0
|
|
|
|
|
|
return 1; |
635
|
|
|
|
|
|
|
} |
636
|
|
|
|
|
|
|
|
637
|
|
|
|
|
|
|
# Format a scalar or an array of numbers to specified decimal number. |
638
|
|
|
|
|
|
|
sub fprecision{ |
639
|
0
|
0
|
|
0
|
0
|
|
return if @_ < 2; |
640
|
0
|
|
|
|
|
|
my $n = shift; |
641
|
0
|
0
|
|
|
|
|
if(@_ == 1) {return sprintf "%.$n" . "f", $_[0];} |
|
0
|
|
|
|
|
|
|
642
|
|
|
|
|
|
|
else{ |
643
|
0
|
|
|
|
|
|
my @a; |
644
|
0
|
|
|
|
|
|
foreach(@_) {push @a, sprintf "%.$n" . "f", $_;} |
|
0
|
|
|
|
|
|
|
645
|
0
|
|
|
|
|
|
return @a; |
646
|
|
|
|
|
|
|
} |
647
|
|
|
|
|
|
|
} |
648
|
|
|
|
|
|
|
#compute weight factor used in estimating variance |
649
|
|
|
|
|
|
|
sub compute_beta{ |
650
|
0
|
|
|
0
|
0
|
|
my ($I,$v,$s,$S) = @_; |
651
|
0
|
|
|
|
|
|
my $beta = (2*($I-1)/($v+2))*(1/$I+$s*$s/$S); |
652
|
0
|
0
|
|
|
|
|
if($beta>1) |
|
0
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
{return 1;} |
654
|
0
|
|
|
|
|
|
return $beta; |
655
|
|
|
|
|
|
|
} |
656
|
|
|
|
|
|
|
#adjust variance |
657
|
|
|
|
|
|
|
sub adj_var{ |
658
|
0
|
|
|
0
|
0
|
|
my ($b,$rep_s,$neib_s) = @_; |
659
|
|
|
|
|
|
|
|
660
|
0
|
|
|
|
|
|
return (1-$b)*$rep_s+$b*$neib_s; |
661
|
|
|
|
|
|
|
} |
662
|
|
|
|
|
|
|
#compute negative binomial statistic score (estimate variance using the variances of its neighbors) |
663
|
|
|
|
|
|
|
sub nb_stat{ |
664
|
0
|
|
|
0
|
0
|
|
my ($ref_q,$q_size,$start_pos,$num_rep,$epsilon,$step,$cur_pos) = @_; |
665
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
#my $cur_pos = $q_size/2; |
667
|
0
|
0
|
|
|
|
|
if($start_pos ==0 ) |
668
|
|
|
|
|
|
|
{ |
669
|
0
|
|
|
|
|
|
$start_pos = $q_size; |
670
|
0
|
|
|
|
|
|
$cur_pos = 0; |
671
|
|
|
|
|
|
|
} |
672
|
0
|
0
|
|
|
|
|
if($start_pos ==$cur_pos-1) |
673
|
|
|
|
|
|
|
{ |
674
|
0
|
|
|
|
|
|
$cur_pos =0; |
675
|
|
|
|
|
|
|
} |
676
|
0
|
|
|
|
|
|
for(my $l=$start_pos;$l>=$cur_pos;$l--) #process all upstream windows of the window pointed by $cur_pos |
677
|
|
|
|
|
|
|
{ |
678
|
|
|
|
|
|
|
|
679
|
0
|
|
|
|
|
|
my %cur_stat= %{$ref_q->[$l]}; |
|
0
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
# do statistics on normalized tr_read and co_read arrays if pass cutoff. |
681
|
|
|
|
|
|
|
|
682
|
0
|
|
|
|
|
|
my $num_neighbor = 0; |
683
|
|
|
|
|
|
|
#variance of neighbors |
684
|
0
|
|
|
|
|
|
for(my $k=$q_size;$k>=0;) |
685
|
|
|
|
|
|
|
{ |
686
|
0
|
|
|
|
|
|
my %stat = %{$ref_q->[$k]}; |
|
0
|
|
|
|
|
|
|
687
|
0
|
|
|
|
|
|
$cur_stat{tr_neighbor_var} += $stat{tr_replicate_var}; |
688
|
0
|
|
|
|
|
|
$cur_stat{co_neighbor_var} += $stat{co_replicate_var}; |
689
|
0
|
|
|
|
|
|
$k = $k - $step; |
690
|
0
|
|
|
|
|
|
$num_neighbor++; |
691
|
|
|
|
|
|
|
} |
692
|
|
|
|
|
|
|
|
693
|
0
|
|
|
|
|
|
$cur_stat{tr_neighbor_var} = $cur_stat{tr_neighbor_var}/$num_neighbor; |
694
|
0
|
|
|
|
|
|
$cur_stat{co_neighbor_var} = $cur_stat{co_neighbor_var}/$num_neighbor; |
695
|
|
|
|
|
|
|
|
696
|
0
|
|
|
|
|
|
for(my $k=$q_size;$k>=0;) #variance diff |
697
|
|
|
|
|
|
|
{ |
698
|
0
|
|
|
|
|
|
my %stat = %{$ref_q->[$k]}; |
|
0
|
|
|
|
|
|
|
699
|
0
|
|
|
|
|
|
$cur_stat{tr_var_diff} += ($stat{tr_replicate_var}-$cur_stat{tr_neighbor_var})**2; |
700
|
0
|
|
|
|
|
|
$cur_stat{co_var_diff} += ($stat{co_replicate_var}-$cur_stat{co_neighbor_var})**2; |
701
|
0
|
|
|
|
|
|
$k = $k - $step; |
702
|
|
|
|
|
|
|
} |
703
|
|
|
|
|
|
|
|
704
|
0
|
|
|
|
|
|
my $tr_beta = compute_beta($num_neighbor,$num_rep,$cur_stat{tr_neighbor_var},$cur_stat{tr_var_diff}); |
705
|
0
|
|
|
|
|
|
my $co_beta = compute_beta($num_neighbor,$num_rep,$cur_stat{co_neighbor_var},$cur_stat{co_var_diff}); |
706
|
|
|
|
|
|
|
# print "$tr_beta\t$co_beta\n"; |
707
|
|
|
|
|
|
|
|
708
|
0
|
|
|
|
|
|
my $tr_var = adj_var($tr_beta,$cur_stat{tr_replicate_var},$cur_stat{tr_neighbor_var}); |
709
|
0
|
|
|
|
|
|
my $co_var = adj_var($co_beta,$cur_stat{co_replicate_var},$cur_stat{co_neighbor_var}); |
710
|
|
|
|
|
|
|
|
711
|
0
|
|
|
|
|
|
my $tr_mean = mean(@{$cur_stat{tr_read}}); |
|
0
|
|
|
|
|
|
|
712
|
0
|
|
|
|
|
|
my $co_mean = mean(@{$cur_stat{co_read}}); |
|
0
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
|
714
|
0
|
0
|
|
|
|
|
if($tr_mean > $co_mean) {$cur_stat{dirn}='Up';} |
|
0
|
|
|
|
|
|
|
715
|
0
|
0
|
|
|
|
|
if($tr_mean < $co_mean) {$cur_stat{dirn}='Down';} |
|
0
|
|
|
|
|
|
|
716
|
0
|
0
|
|
|
|
|
if($tr_mean ==$co_mean) {$cur_stat{dirn}='--';} |
|
0
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
|
718
|
0
|
0
|
|
|
|
|
if($tr_var <$tr_mean) |
719
|
|
|
|
|
|
|
{ |
720
|
0
|
|
|
|
|
|
$tr_var = $tr_mean + $epsilon; |
721
|
|
|
|
|
|
|
} |
722
|
0
|
0
|
|
|
|
|
if($co_var < $co_mean) |
723
|
|
|
|
|
|
|
{ |
724
|
0
|
|
|
|
|
|
$co_var = $co_mean + $epsilon; |
725
|
|
|
|
|
|
|
} |
726
|
|
|
|
|
|
|
|
727
|
|
|
|
|
|
|
# print "$cur_stat{tr_mean}\t$tr_var\t$cur_stat{co_mean}\t$co_var\n"; |
728
|
0
|
|
|
|
|
|
$tr_var = $cur_stat{tr_replicate_var}; |
729
|
0
|
|
|
|
|
|
$co_var = $cur_stat{co_replicate_var}; |
730
|
0
|
|
|
|
|
|
my $pval = nb_pval($cur_stat{tr_mean},$cur_stat{co_mean},$tr_mean,$tr_var,$co_mean,$co_var,$epsilon); |
731
|
|
|
|
|
|
|
|
732
|
0
|
|
|
|
|
|
$cur_stat{score} = $pval; |
733
|
|
|
|
|
|
|
# print "$cur_stat{tr_mean}\t$cur_stat{tr_replicate_var}\t$tr_var\t$cur_stat{co_mean}\t$cur_stat{co_replicate_var}\t$co_var\n"; |
734
|
|
|
|
|
|
|
# print "pval = $pval\n"; |
735
|
|
|
|
|
|
|
|
736
|
0
|
|
|
|
|
|
$ref_q->[$l] = \%cur_stat; |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
} |
739
|
|
|
|
|
|
|
} |
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
sub nb_pval_v2{ |
742
|
0
|
|
|
0
|
0
|
|
my ($ka,$miu1,$var1,$eps) = @_; |
743
|
|
|
|
|
|
|
|
744
|
|
|
|
|
|
|
|
745
|
0
|
|
|
|
|
|
my @rp1 = (); |
746
|
0
|
|
|
|
|
|
nb_r_p($miu1,$var1,\@rp1,$eps); |
747
|
|
|
|
|
|
|
|
748
|
0
|
|
|
|
|
|
my $r1 = $rp1[0]; |
749
|
0
|
|
|
|
|
|
my $p1 = $rp1[1]; |
750
|
|
|
|
|
|
|
|
751
|
0
|
0
|
|
|
|
|
if($ka <= $miu1){ |
752
|
0
|
|
|
|
|
|
return &Math::CDF::pnbinom($ka,$r1,$p1); |
753
|
|
|
|
|
|
|
} |
754
|
|
|
|
|
|
|
else |
755
|
|
|
|
|
|
|
{ |
756
|
0
|
|
|
|
|
|
return 1 - &Math::CDF::pnbinom($ka,$r1,$p1); |
757
|
|
|
|
|
|
|
} |
758
|
|
|
|
|
|
|
} |
759
|
|
|
|
|
|
|
|
760
|
|
|
|
|
|
|
1; |
761
|
|
|
|
|
|
|
__END__ |