| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::Robust::Scale; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
40068
|
use strict; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
38
|
|
|
4
|
1
|
|
|
1
|
|
7
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
134
|
|
|
5
|
1
|
|
|
1
|
|
7
|
use Carp; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
71
|
|
|
6
|
|
|
|
|
|
|
|
|
7
|
1
|
|
|
1
|
|
1323
|
use POSIX qw(floor); |
|
|
1
|
|
|
|
|
8661
|
|
|
|
1
|
|
|
|
|
9
|
|
|
8
|
1
|
|
|
1
|
|
3043
|
use Math::CDF qw(qnorm pbeta); |
|
|
1
|
|
|
|
|
5425
|
|
|
|
1
|
|
|
|
|
1529
|
|
|
9
|
1
|
|
|
1
|
|
2457
|
use Math::Round qw(round_even); |
|
|
1
|
|
|
|
|
5052
|
|
|
|
1
|
|
|
|
|
100
|
|
|
10
|
1
|
|
|
1
|
|
927
|
use Statistics::Robust::Location qw(median); |
|
|
1
|
|
|
|
|
5
|
|
|
|
1
|
|
|
|
|
211
|
|
|
11
|
|
|
|
|
|
|
|
|
12
|
1
|
|
|
1
|
|
8
|
use base qw(Statistics::Robust); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1831
|
|
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
our @EXPORT = (); |
|
15
|
|
|
|
|
|
|
our @EXPORT_OK = (qw( |
|
16
|
|
|
|
|
|
|
variance |
|
17
|
|
|
|
|
|
|
MAD |
|
18
|
|
|
|
|
|
|
MADN |
|
19
|
|
|
|
|
|
|
idealf |
|
20
|
|
|
|
|
|
|
winvar |
|
21
|
|
|
|
|
|
|
trimvar |
|
22
|
|
|
|
|
|
|
msmedse |
|
23
|
|
|
|
|
|
|
pbvar |
|
24
|
|
|
|
|
|
|
)); |
|
25
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( all => \@EXPORT_OK ); |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
# We need to implement variance since Statistics::Basic |
|
28
|
|
|
|
|
|
|
# currently is messing up the unbiased variance implementation. |
|
29
|
|
|
|
|
|
|
sub |
|
30
|
|
|
|
|
|
|
variance |
|
31
|
|
|
|
|
|
|
{ |
|
32
|
2
|
|
|
2
|
1
|
3
|
my($x) = @_; |
|
33
|
|
|
|
|
|
|
|
|
34
|
2
|
|
|
|
|
4
|
my $length = scalar @$x; |
|
35
|
2
|
|
|
|
|
10
|
my $sum = Statistics::Robust::_sum($x); |
|
36
|
2
|
|
|
|
|
5
|
my $mean = $sum/$length; |
|
37
|
|
|
|
|
|
|
|
|
38
|
2
|
|
|
|
|
6
|
my $var = 0; |
|
39
|
2
|
|
|
|
|
17
|
for(my $i=0;$i<@$x;$i++) |
|
40
|
|
|
|
|
|
|
{ |
|
41
|
34
|
|
|
|
|
97
|
$var += ($mean-$x->[$i])**2; |
|
42
|
|
|
|
|
|
|
} |
|
43
|
|
|
|
|
|
|
|
|
44
|
2
|
|
|
|
|
6
|
return $var/($length-1); |
|
45
|
|
|
|
|
|
|
} |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# The Median Absolute Deviation |
|
48
|
|
|
|
|
|
|
sub |
|
49
|
|
|
|
|
|
|
MAD |
|
50
|
|
|
|
|
|
|
{ |
|
51
|
2
|
|
|
2
|
1
|
16
|
my($x) = @_; |
|
52
|
|
|
|
|
|
|
|
|
53
|
2
|
|
|
|
|
3
|
my @ad = (); |
|
54
|
|
|
|
|
|
|
|
|
55
|
2
|
|
|
|
|
11
|
my($median) = Statistics::Robust::Location::median($x); |
|
56
|
|
|
|
|
|
|
|
|
57
|
2
|
|
|
|
|
5
|
foreach my $xi (@$x) |
|
58
|
|
|
|
|
|
|
{ |
|
59
|
34
|
|
|
|
|
48
|
my($adi) = abs($xi - $median); |
|
60
|
34
|
|
|
|
|
55
|
push(@ad,$adi); |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
|
|
63
|
2
|
|
|
|
|
93
|
my($mad) = Statistics::Robust::Location::median(\@ad) + 0.0; |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
|
|
66
|
2
|
|
|
|
|
7
|
return $mad; |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# The rescaled Median Absolute Deviation |
|
70
|
|
|
|
|
|
|
sub |
|
71
|
|
|
|
|
|
|
MADN |
|
72
|
|
|
|
|
|
|
{ |
|
73
|
1
|
|
|
1
|
1
|
837
|
my($x) = @_; |
|
74
|
|
|
|
|
|
|
|
|
75
|
1
|
|
|
|
|
3
|
my $mad = MAD($x); |
|
76
|
1
|
|
|
|
|
70
|
$mad /= qnorm(0.75); |
|
77
|
|
|
|
|
|
|
|
|
78
|
1
|
|
|
|
|
5
|
return $mad; |
|
79
|
|
|
|
|
|
|
} |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
sub |
|
82
|
|
|
|
|
|
|
idealf |
|
83
|
|
|
|
|
|
|
{ |
|
84
|
|
|
|
|
|
|
# |
|
85
|
|
|
|
|
|
|
# Compute the ideal fourths for data in x |
|
86
|
|
|
|
|
|
|
# and return the lower and upper quartiles |
|
87
|
|
|
|
|
|
|
# |
|
88
|
1
|
|
|
1
|
1
|
520
|
my($x) = @_; |
|
89
|
|
|
|
|
|
|
|
|
90
|
1
|
|
|
|
|
3
|
my $n = scalar @$x; |
|
91
|
|
|
|
|
|
|
|
|
92
|
1
|
|
|
|
|
19
|
my $j = floor($n/4 + 5/12) - 1; |
|
93
|
1
|
|
|
|
|
6
|
my @y = sort {$a <=> $b} @$x; |
|
|
51
|
|
|
|
|
64
|
|
|
94
|
1
|
|
|
|
|
5
|
my $g = ($n/4) - $j + (5/12) - 1; |
|
95
|
1
|
|
|
|
|
5
|
my $ql = (1-$g)*$y[$j] + $g*$y[$j+1]; |
|
96
|
1
|
|
|
|
|
3
|
my $k = $n - $j - 1; |
|
97
|
1
|
|
|
|
|
4
|
my $qu = (1-$g)*$y[$k] + $g*$y[$k-1]; |
|
98
|
|
|
|
|
|
|
|
|
99
|
1
|
|
|
|
|
4
|
return ($ql,$qu); |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
sub |
|
103
|
|
|
|
|
|
|
winvar |
|
104
|
|
|
|
|
|
|
{ |
|
105
|
2
|
|
|
2
|
1
|
1336
|
my($x,$tr) = @_; |
|
106
|
|
|
|
|
|
|
|
|
107
|
2
|
100
|
|
|
|
10
|
if ( not defined $tr ) |
|
108
|
|
|
|
|
|
|
{ |
|
109
|
1
|
|
|
|
|
3
|
$tr = 0.2; |
|
110
|
|
|
|
|
|
|
} |
|
111
|
2
|
|
|
|
|
10
|
my @y = sort {$a <=> $b} @$x; |
|
|
102
|
|
|
|
|
117
|
|
|
112
|
|
|
|
|
|
|
|
|
113
|
2
|
|
|
|
|
8
|
my $n = scalar @$x; |
|
114
|
2
|
|
|
|
|
11
|
my $ibot = floor($tr*$n);# + 1; |
|
115
|
2
|
|
|
|
|
5
|
my $itop = $n - $ibot;# + 1; |
|
116
|
2
|
|
|
|
|
4
|
my $xbot = $y[$ibot]; |
|
117
|
2
|
|
|
|
|
4
|
my $xtop = $y[$itop]; |
|
118
|
2
|
|
|
|
|
8
|
for(my $i=0;$i<$n;$i++) |
|
119
|
|
|
|
|
|
|
{ |
|
120
|
34
|
100
|
|
|
|
76
|
if ( $y[$i] <= $xbot ) |
|
121
|
|
|
|
|
|
|
{ |
|
122
|
8
|
|
|
|
|
14
|
$y[$i] = $xbot; |
|
123
|
|
|
|
|
|
|
} |
|
124
|
34
|
100
|
|
|
|
102
|
if ( $y[$i] >= $xtop ) |
|
125
|
|
|
|
|
|
|
{ |
|
126
|
8
|
|
|
|
|
24
|
$y[$i] = $xtop; |
|
127
|
|
|
|
|
|
|
} |
|
128
|
|
|
|
|
|
|
} |
|
129
|
2
|
|
|
|
|
10
|
my $winvar = variance(\@y); |
|
130
|
|
|
|
|
|
|
|
|
131
|
2
|
|
|
|
|
23
|
return $winvar; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
# The variance of the trimmed mean |
|
135
|
|
|
|
|
|
|
sub |
|
136
|
|
|
|
|
|
|
trimvar |
|
137
|
|
|
|
|
|
|
{ |
|
138
|
1
|
|
|
1
|
1
|
635
|
my($x,$tr) = @_; |
|
139
|
|
|
|
|
|
|
|
|
140
|
1
|
50
|
|
|
|
6
|
if ( not defined $tr ) |
|
141
|
|
|
|
|
|
|
{ |
|
142
|
1
|
|
|
|
|
3
|
$tr = 0.2; |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
|
|
145
|
1
|
|
|
|
|
14
|
my $n = scalar @$x; |
|
146
|
1
|
|
|
|
|
5
|
my $winvar = winvar($x,$tr); |
|
147
|
1
|
|
|
|
|
4
|
my $trimvar = $winvar/((1-2*$tr)**2*$n); |
|
148
|
|
|
|
|
|
|
|
|
149
|
1
|
|
|
|
|
3
|
return $trimvar; |
|
150
|
|
|
|
|
|
|
} |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
# Given an array, estimate the standard error of the sample median from pg. 65 |
|
153
|
|
|
|
|
|
|
# of Wilcox, "Introduction to Robust Estimation and Hypothesis Testing", 2005 |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
sub |
|
156
|
|
|
|
|
|
|
msmedse |
|
157
|
|
|
|
|
|
|
{ |
|
158
|
0
|
|
|
0
|
1
|
0
|
my($x) = @_; |
|
159
|
|
|
|
|
|
|
|
|
160
|
0
|
|
|
|
|
0
|
my @sorted = sort {$a <=> $b} @$x; |
|
|
0
|
|
|
|
|
0
|
|
|
161
|
0
|
|
|
|
|
0
|
unshift @sorted, 0.0; |
|
162
|
0
|
|
|
|
|
0
|
my $n = @sorted -1; |
|
163
|
0
|
|
|
|
|
0
|
my $av = round_even(($n+1)/2.0 - 2.575829*sqrt($n/4.0)); |
|
164
|
0
|
0
|
|
|
|
0
|
if ( $av == 0 ) |
|
165
|
|
|
|
|
|
|
{ |
|
166
|
0
|
|
|
|
|
0
|
$av = 1.0; |
|
167
|
|
|
|
|
|
|
} |
|
168
|
0
|
|
|
|
|
0
|
my $top = ($n - $av + 1); |
|
169
|
0
|
|
|
|
|
0
|
my $sqse = (($sorted[$top] - $sorted[$av])/(2*2.575829))**2; |
|
170
|
0
|
|
|
|
|
0
|
$sqse = sqrt($sqse); |
|
171
|
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
0
|
return $sqse; |
|
173
|
|
|
|
|
|
|
} |
|
174
|
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
# The percentage bend midvariance |
|
176
|
|
|
|
|
|
|
sub |
|
177
|
|
|
|
|
|
|
pbvar |
|
178
|
|
|
|
|
|
|
{ |
|
179
|
1
|
|
|
1
|
1
|
444
|
my($x,$beta) = @_; |
|
180
|
|
|
|
|
|
|
|
|
181
|
1
|
50
|
|
|
|
5
|
if ( not defined $beta ) |
|
182
|
|
|
|
|
|
|
{ |
|
183
|
1
|
|
|
|
|
3
|
$beta = 0.2; |
|
184
|
|
|
|
|
|
|
} |
|
185
|
1
|
|
|
|
|
2
|
my $pbvar = 0; |
|
186
|
1
|
|
|
|
|
2
|
my $n = scalar @$x; |
|
187
|
1
|
|
|
|
|
6
|
my $median = Statistics::Robust::Location::median($x) + 0.0; |
|
188
|
|
|
|
|
|
|
|
|
189
|
1
|
|
|
|
|
3
|
my @w = (); |
|
190
|
1
|
|
|
|
|
5
|
for(my $i=0;$i<@$x;$i++) |
|
191
|
|
|
|
|
|
|
{ |
|
192
|
17
|
|
|
|
|
60
|
$w[$i] = ($x->[$i] - $median); |
|
193
|
|
|
|
|
|
|
} |
|
194
|
|
|
|
|
|
|
|
|
195
|
1
|
|
|
|
|
4
|
my @sorted = sort {abs($a) <=> abs($b)} @w; |
|
|
51
|
|
|
|
|
59
|
|
|
196
|
1
|
|
|
|
|
8
|
my $m = floor((1-$beta)*$n + 0.5); |
|
197
|
1
|
|
|
|
|
3
|
my $omega = $sorted[$m]; |
|
198
|
|
|
|
|
|
|
|
|
199
|
1
|
50
|
|
|
|
5
|
if ( $omega > 0 ) |
|
200
|
|
|
|
|
|
|
{ |
|
201
|
1
|
|
|
|
|
3
|
my @z=0; |
|
202
|
1
|
|
|
|
|
3
|
my $np = 0; |
|
203
|
|
|
|
|
|
|
|
|
204
|
1
|
|
|
|
|
4
|
for(my $i=0;$i<@w;$i++) |
|
205
|
|
|
|
|
|
|
{ |
|
206
|
17
|
|
|
|
|
25
|
my $y = $w[$i]/$omega; |
|
207
|
17
|
100
|
|
|
|
40
|
if ( $y >= 1.0 ) |
|
|
|
50
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
{ |
|
209
|
4
|
|
|
|
|
6
|
$y = 1.0; |
|
210
|
|
|
|
|
|
|
} |
|
211
|
|
|
|
|
|
|
elsif ( $y <= -1 ) |
|
212
|
|
|
|
|
|
|
{ |
|
213
|
0
|
|
|
|
|
0
|
$y = -1.0; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
else |
|
216
|
|
|
|
|
|
|
{ |
|
217
|
13
|
|
|
|
|
18
|
$np++; |
|
218
|
|
|
|
|
|
|
} |
|
219
|
17
|
|
|
|
|
55
|
$z[$i] = $y**2; |
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
|
|
222
|
1
|
|
|
|
|
7
|
$pbvar = $n*$omega**2*Statistics::Robust::_sum(\@z)/($np**2); |
|
223
|
|
|
|
|
|
|
} |
|
224
|
|
|
|
|
|
|
|
|
225
|
1
|
|
|
|
|
7
|
return $pbvar; |
|
226
|
|
|
|
|
|
|
} |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
1; |
|
229
|
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
=head1 NAME |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
Statistics::Robust::Scale - Robust Measures of Scale |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
my @x = (1,4,5,3,7,2,4); |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
my($mad) = MAD(\@x); |
|
239
|
|
|
|
|
|
|
my($madn) = MADN(\@x); |
|
240
|
|
|
|
|
|
|
my($ql,qu) = idealf(\@x); |
|
241
|
|
|
|
|
|
|
my($winvar) = winvar(\@x); |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
=head2 MAD |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
my($mad) = MAD(\@x); |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
Return the non-normalized Median Absolute Deviation. |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
=head2 MADN |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
my($madn) = MADN(\@x); |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
Return the Median Absolute Deviation normalized by the 0.75 quartile of the normal distribution. |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
=head2 idealf |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
my($ql,$qu) = idealf(\@x); |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
Return the Ideal Fourths estimate of the lower and upper quartiles (in that order). |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
=head2 winvar |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
my($winvar) = winvar(\@x,$tr); |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
Return the Winsorized variance. If the amount of trimming ($tr) is not specified, it defaults to 0.2. |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head2 trimvar |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
my($trimvar) = trimvar(\@x,$tr); |
|
272
|
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
Return the variance for the trimmed mean with $tr trimming. If the amount of trimming is not specified, |
|
274
|
|
|
|
|
|
|
it defaults to 0.2. |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
=head2 variance |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
my($var) = variance(\@x); |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
The unbiased sample variance. |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head2 msmedse |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
my($mse) = msmedse(\@x); |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
An estimate of the standard error of the median. |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
=head2 pbvar |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
my($pb) = pbvar(\@x, $beta); |
|
291
|
|
|
|
|
|
|
|
|
292
|
|
|
|
|
|
|
The percentage-bend midvariance |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
=head1 AUTHOR |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
Walter Szeliga C<< >> |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
=cut |