line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Statistics::RankCorrelation; |
2
|
|
|
|
|
|
|
our $AUTHORITY = 'cpan:GENE'; |
3
|
|
|
|
|
|
|
# ABSTRACT: Compute the rank correlation between two vectors |
4
|
|
|
|
|
|
|
|
5
|
2
|
|
|
2
|
|
41976
|
use strict; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
51
|
|
6
|
2
|
|
|
2
|
|
10
|
use warnings; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
86
|
|
7
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
our $VERSION = '0.1205'; |
9
|
|
|
|
|
|
|
|
10
|
2
|
|
|
2
|
|
10
|
use Carp; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
3703
|
|
11
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
sub new { |
13
|
15
|
|
|
15
|
1
|
490
|
my $proto = shift; |
14
|
15
|
|
33
|
|
|
67
|
my $class = ref($proto) || $proto; |
15
|
15
|
|
|
|
|
26
|
my $self = {}; |
16
|
15
|
|
|
|
|
25
|
bless $self, $class; |
17
|
15
|
|
|
|
|
39
|
$self->_init(@_); |
18
|
15
|
|
|
|
|
47
|
return $self; |
19
|
|
|
|
|
|
|
} |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
sub _init { |
22
|
15
|
|
|
15
|
|
18
|
my $self = shift; |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# Handle vector and named parameters. |
25
|
15
|
|
|
|
|
69
|
while( my $arg = shift ) { |
26
|
29
|
100
|
|
|
|
68
|
if( ref $arg eq 'ARRAY' ) { |
|
|
50
|
|
|
|
|
|
27
|
28
|
100
|
|
|
|
57
|
if( !defined $self->x_data ) { $self->x_data( $arg ) } |
|
14
|
50
|
|
|
|
27
|
|
28
|
14
|
|
|
|
|
23
|
elsif( !defined $self->y_data ) { $self->y_data( $arg ) } |
29
|
|
|
|
|
|
|
} |
30
|
|
|
|
|
|
|
elsif( !ref $arg ) { |
31
|
1
|
|
|
|
|
2
|
my $v = shift; |
32
|
1
|
50
|
|
|
|
7
|
$self->{$arg} = defined $v ? $v : $arg; |
33
|
|
|
|
|
|
|
} |
34
|
|
|
|
|
|
|
} |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# Automatically compute the ranks if given data. |
37
|
15
|
50
|
66
|
|
|
31
|
if( $self->x_data && $self->y_data && |
|
|
|
66
|
|
|
|
|
|
|
|
33
|
|
|
|
|
38
|
14
|
|
|
|
|
28
|
@{ $self->x_data } && @{ $self->y_data } |
|
14
|
|
|
|
|
58
|
|
39
|
|
|
|
|
|
|
) { |
40
|
|
|
|
|
|
|
# "Co-normalize" the vectors if they are of unequal size. |
41
|
14
|
|
|
|
|
26
|
my( $x, $y ) = pad_vectors( $self->x_data, $self->y_data ); |
42
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
# "Co-sort" the bivariate data set by the first one. |
44
|
14
|
100
|
|
|
|
37
|
( $x, $y ) = co_sort( $x, $y ) if $self->{sorted}; |
45
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
# Set the massaged data. |
47
|
14
|
|
|
|
|
30
|
$self->x_data( $x ); |
48
|
14
|
|
|
|
|
25
|
$self->y_data( $y ); |
49
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
# Set the size of the data vector. |
51
|
14
|
|
|
|
|
14
|
$self->size( scalar @{ $self->x_data } ); |
|
14
|
|
|
|
|
28
|
|
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# Set the ranks and ties of the vectors. |
54
|
14
|
|
|
|
|
30
|
( $x, $y ) = rank( $self->x_data ); |
55
|
14
|
|
|
|
|
89
|
$self->x_rank( $x ); |
56
|
14
|
|
|
|
|
28
|
$self->x_ties( $y ); |
57
|
14
|
|
|
|
|
29
|
( $x, $y ) = rank( $self->y_data ); |
58
|
14
|
|
|
|
|
36
|
$self->y_rank( $x ); |
59
|
14
|
|
|
|
|
33
|
$self->y_ties( $y ); |
60
|
|
|
|
|
|
|
} |
61
|
|
|
|
|
|
|
} |
62
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub size { |
64
|
196
|
|
|
196
|
1
|
244
|
my $self = shift; |
65
|
196
|
100
|
|
|
|
404
|
$self->{size} = shift if @_; |
66
|
196
|
|
|
|
|
415
|
return $self->{size}; |
67
|
|
|
|
|
|
|
} |
68
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
sub x_data { |
70
|
130
|
|
|
130
|
1
|
742
|
my $self = shift; |
71
|
130
|
100
|
|
|
|
274
|
$self->{x_data} = shift if @_; |
72
|
130
|
|
|
|
|
365
|
return $self->{x_data}; |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub y_data { |
76
|
101
|
|
|
101
|
1
|
129
|
my $self = shift; |
77
|
101
|
100
|
|
|
|
203
|
$self->{y_data} = shift if @_; |
78
|
101
|
|
|
|
|
292
|
return $self->{y_data}; |
79
|
|
|
|
|
|
|
} |
80
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
sub x_rank { |
82
|
18
|
|
|
18
|
1
|
32
|
my $self = shift; |
83
|
18
|
100
|
|
|
|
51
|
$self->{x_rank} = shift if @_; |
84
|
18
|
|
|
|
|
38
|
return $self->{x_rank}; |
85
|
|
|
|
|
|
|
} |
86
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
sub y_rank { |
88
|
19
|
|
|
19
|
1
|
29
|
my $self = shift; |
89
|
19
|
100
|
|
|
|
53
|
$self->{y_rank} = shift if @_; |
90
|
19
|
|
|
|
|
39
|
return $self->{y_rank}; |
91
|
|
|
|
|
|
|
} |
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
sub x_ties { |
94
|
46
|
|
|
46
|
1
|
118
|
my $self = shift; |
95
|
46
|
100
|
|
|
|
100
|
$self->{x_ties} = shift if @_; |
96
|
46
|
|
|
|
|
145
|
return $self->{x_ties}; |
97
|
|
|
|
|
|
|
} |
98
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
sub y_ties { |
100
|
44
|
|
|
44
|
1
|
65
|
my $self = shift; |
101
|
44
|
100
|
|
|
|
100
|
$self->{y_ties} = shift if @_; |
102
|
44
|
|
|
|
|
148
|
return $self->{y_ties}; |
103
|
|
|
|
|
|
|
} |
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
sub spearman { |
106
|
14
|
|
|
14
|
1
|
23
|
my $self = shift; |
107
|
|
|
|
|
|
|
# Algorithm contributed by Jon Schutz : |
108
|
14
|
|
|
|
|
22
|
my($x_sum, $y_sum) = (0, 0); |
109
|
14
|
|
|
|
|
17
|
$x_sum += $_ for @{$self->{x_rank}}; |
|
14
|
|
|
|
|
77
|
|
110
|
14
|
|
|
|
|
20
|
$y_sum += $_ for @{$self->{y_rank}}; |
|
14
|
|
|
|
|
60
|
|
111
|
14
|
|
|
|
|
34
|
my $n = $self->size; |
112
|
14
|
|
|
|
|
26
|
my $x_mean = $x_sum / $n; |
113
|
14
|
|
|
|
|
17
|
my $y_mean = $y_sum / $n; |
114
|
|
|
|
|
|
|
# Compute the sum of the difference of the squared ranks. |
115
|
14
|
|
|
|
|
22
|
my($x_sum2, $y_sum2, $xy_sum) = (0, 0, 0); |
116
|
14
|
|
|
|
|
34
|
for( 0 .. $self->size - 1 ) { |
117
|
119
|
|
|
|
|
955
|
$x_sum2 += ($self->{x_rank}[$_] - $x_mean) ** 2; |
118
|
119
|
|
|
|
|
196
|
$y_sum2 += ($self->{y_rank}[$_] - $y_mean) ** 2; |
119
|
119
|
|
|
|
|
234
|
$xy_sum += ($self->{x_rank}[$_] - $x_mean) * ($self->{y_rank}[$_] - $y_mean); |
120
|
|
|
|
|
|
|
} |
121
|
14
|
100
|
66
|
|
|
75
|
return 1 if $x_sum2 == 0 || $y_sum2 == 0; |
122
|
13
|
|
|
|
|
152
|
return $xy_sum / sqrt($x_sum2 * $y_sum2); |
123
|
|
|
|
|
|
|
} |
124
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
sub rank { |
127
|
28
|
|
|
28
|
1
|
34
|
my $u = shift; |
128
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# Make a list of tied ranks for each datum. |
130
|
28
|
|
|
|
|
30
|
my %ties; |
131
|
28
|
|
|
|
|
71
|
push @{ $ties{ $u->[$_] } }, $_ for 0 .. @$u - 1; |
|
238
|
|
|
|
|
609
|
|
132
|
|
|
|
|
|
|
|
133
|
28
|
|
|
|
|
42
|
my ($old, $cur) = (0, 0); |
134
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
# Set the averaged ranks. |
136
|
28
|
|
|
|
|
32
|
my @ranks; |
137
|
28
|
|
|
|
|
108
|
for my $x (sort { $a <=> $b } keys %ties) { |
|
398
|
|
|
|
|
539
|
|
138
|
|
|
|
|
|
|
# Get the number of ties. |
139
|
197
|
|
|
|
|
188
|
my $ties = @{ $ties{$x} }; |
|
197
|
|
|
|
|
284
|
|
140
|
197
|
|
|
|
|
244
|
$cur += $ties; |
141
|
|
|
|
|
|
|
|
142
|
197
|
100
|
|
|
|
294
|
if ($ties > 1) { |
143
|
|
|
|
|
|
|
# Average the tied data. |
144
|
15
|
|
|
|
|
28
|
my $average = $old + ($ties + 1) / 2; |
145
|
15
|
|
|
|
|
45
|
$ranks[$_] = $average for @{ $ties{$x} }; |
|
15
|
|
|
|
|
71
|
|
146
|
|
|
|
|
|
|
} |
147
|
|
|
|
|
|
|
else { |
148
|
|
|
|
|
|
|
# Add the single rank to the list of ranks. |
149
|
182
|
|
|
|
|
287
|
$ranks[ $ties{$x}[0] ] = $cur; |
150
|
|
|
|
|
|
|
} |
151
|
|
|
|
|
|
|
|
152
|
197
|
|
|
|
|
289
|
$old = $cur; |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
# Remove the non-tied ranks. |
156
|
28
|
|
|
|
|
77
|
delete @ties{ grep @{ $ties{$_} } <= 1, keys %ties }; |
|
197
|
|
|
|
|
368
|
|
157
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
# Return the ranks arrayref in a scalar context and include ties |
159
|
|
|
|
|
|
|
# if called in a list context. |
160
|
28
|
50
|
|
|
|
117
|
return wantarray ? (\@ranks, \%ties) : \@ranks; |
161
|
|
|
|
|
|
|
} |
162
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
sub co_sort { |
164
|
1
|
|
|
1
|
1
|
2
|
my( $u, $v ) = @_; |
165
|
1
|
50
|
|
|
|
5
|
return unless @$u == @$v; |
166
|
|
|
|
|
|
|
# Ye olde Schwartzian Transforme: |
167
|
|
|
|
|
|
|
$v = [ |
168
|
10
|
|
|
|
|
17
|
map { $_->[1] } |
169
|
23
|
50
|
|
|
|
50
|
sort { $a->[0] <=> $b->[0] || $a->[1] <=> $b->[1] } |
170
|
1
|
|
|
|
|
3
|
map { [ $u->[$_], $v->[$_] ] } |
|
10
|
|
|
|
|
29
|
|
171
|
|
|
|
|
|
|
0 .. @$u - 1 |
172
|
|
|
|
|
|
|
]; |
173
|
|
|
|
|
|
|
# Sort the independent vector last. |
174
|
1
|
|
|
|
|
6
|
$u = [ sort { $a <=> $b } @$u ]; |
|
23
|
|
|
|
|
29
|
|
175
|
1
|
|
|
|
|
2
|
return $u, $v; |
176
|
|
|
|
|
|
|
} |
177
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
sub csim { |
179
|
3
|
|
|
3
|
1
|
6
|
my $self = shift; |
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
# Get the pitch matrices for each vector. |
182
|
3
|
|
|
|
|
9
|
my $m1 = correlation_matrix($self->{x_data}); |
183
|
|
|
|
|
|
|
#warn map { "@$_\n" } @$m1; |
184
|
3
|
|
|
|
|
8
|
my $m2 = correlation_matrix($self->{y_data}); |
185
|
|
|
|
|
|
|
#warn map { "@$_\n" } @$m2; |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# Compute the rank correlation. |
188
|
3
|
|
|
|
|
4
|
my $k = 0; |
189
|
3
|
|
|
|
|
7
|
for my $i (0 .. @$m1 - 1) { |
190
|
16
|
|
|
|
|
23
|
for my $j (0 .. @$m1 - 1) { |
191
|
96
|
100
|
|
|
|
207
|
$k++ if $m1->[$i][$j] == $m2->[$i][$j]; |
192
|
|
|
|
|
|
|
} |
193
|
|
|
|
|
|
|
} |
194
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
# Return the rank correlation normalized by the number of rows in |
196
|
|
|
|
|
|
|
# the pitch matrices. |
197
|
3
|
|
|
|
|
21
|
return $k / (@$m1 * @$m1); |
198
|
|
|
|
|
|
|
} |
199
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
sub pad_vectors { |
201
|
14
|
|
|
14
|
1
|
22
|
my ($u, $v) = @_; |
202
|
|
|
|
|
|
|
|
203
|
14
|
50
|
|
|
|
38
|
if (@$u > @$v) { |
|
|
50
|
|
|
|
|
|
204
|
0
|
|
|
|
|
0
|
$v = [ @$v, (0) x (@$u - @$v) ]; |
205
|
|
|
|
|
|
|
} |
206
|
|
|
|
|
|
|
elsif (@$u < @$v) { |
207
|
0
|
|
|
|
|
0
|
$u = [ @$u, (0) x (@$v - @$u) ]; |
208
|
|
|
|
|
|
|
} |
209
|
|
|
|
|
|
|
|
210
|
14
|
|
|
|
|
26
|
return $u, $v; |
211
|
|
|
|
|
|
|
} |
212
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
sub correlation_matrix { |
214
|
6
|
|
|
6
|
1
|
9
|
my $u = shift; |
215
|
6
|
|
|
|
|
5
|
my $c; |
216
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# Is a row value (i) lower than a column value (j)? |
218
|
6
|
|
|
|
|
13
|
for my $i (0 .. @$u - 1) { |
219
|
32
|
|
|
|
|
54
|
for my $j (0 .. @$u - 1) { |
220
|
192
|
100
|
|
|
|
414
|
$c->[$i][$j] = $u->[$i] < $u->[$j] ? 1 : 0; |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
} |
223
|
|
|
|
|
|
|
|
224
|
6
|
|
|
|
|
13
|
return $c; |
225
|
|
|
|
|
|
|
} |
226
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
sub kendall { |
228
|
13
|
|
|
13
|
1
|
27
|
my $self = shift; |
229
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
# Calculate number of concordant and discordant pairs. |
231
|
13
|
|
|
|
|
16
|
my( $concordant, $discordant ) = ( 0, 0 ); |
232
|
13
|
|
|
|
|
27
|
for my $i ( 0 .. $self->size - 1 ) { |
233
|
115
|
|
|
|
|
237
|
for my $j ( $i + 1 .. $self->size - 1 ) { |
234
|
574
|
|
|
|
|
1270
|
my $x_sign = sign( $self->{x_data}[$j] - $self->{x_data}[$i] ); |
235
|
574
|
|
|
|
|
1395
|
my $y_sign = sign( $self->{y_data}[$j] - $self->{y_data}[$i] ); |
236
|
574
|
100
|
100
|
|
|
2371
|
if (not($x_sign and $y_sign)) {} |
|
|
100
|
|
|
|
|
|
237
|
288
|
|
|
|
|
452
|
elsif ($x_sign == $y_sign) { $concordant++ } |
238
|
178
|
|
|
|
|
285
|
else { $discordant++ } |
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
} |
241
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
# Set the indirect relationship. |
243
|
13
|
|
|
|
|
27
|
my $d = $self->size * ($self->size - 1) / 2; |
244
|
13
|
100
|
100
|
|
|
44
|
if( keys %{ $self->x_ties } || keys %{ $self->y_ties } ) { |
|
13
|
|
|
|
|
26
|
|
|
11
|
|
|
|
|
23
|
|
245
|
5
|
|
|
|
|
8
|
my $x = 0; |
246
|
5
|
|
|
|
|
6
|
$x += @$_ * (@$_ - 1) for values %{ $self->x_ties }; |
|
5
|
|
|
|
|
8
|
|
247
|
5
|
|
|
|
|
11
|
$x = $d - $x / 2; |
248
|
5
|
|
|
|
|
6
|
my $y = 0; |
249
|
5
|
|
|
|
|
6
|
$y += @$_ * (@$_ - 1) for values %{ $self->y_ties }; |
|
5
|
|
|
|
|
11
|
|
250
|
5
|
|
|
|
|
10
|
$y = $d - $y / 2; |
251
|
5
|
|
|
|
|
6
|
$d = sqrt($x * $y); |
252
|
|
|
|
|
|
|
} |
253
|
|
|
|
|
|
|
|
254
|
13
|
|
|
|
|
136
|
return ($concordant - $discordant) / $d; |
255
|
|
|
|
|
|
|
} |
256
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
sub sign { |
258
|
1148
|
|
|
1148
|
1
|
1300
|
my $x = shift; |
259
|
1148
|
100
|
|
|
|
2259
|
return 0 if $x == 0; |
260
|
1024
|
100
|
|
|
|
1938
|
return $x > 0 ? 1 : -1; |
261
|
|
|
|
|
|
|
} |
262
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
1; |
264
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
__END__ |