| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::MaxEntropy; |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
4
|
|
|
|
|
|
|
## Author: |
|
5
|
|
|
|
|
|
|
## Hugo WL ter Doest terdoest@cs.utwente.nl |
|
6
|
|
|
|
|
|
|
## Description: |
|
7
|
|
|
|
|
|
|
## Object-oriented implementation of |
|
8
|
|
|
|
|
|
|
## Generalised Iterative Scaling algorithm, |
|
9
|
|
|
|
|
|
|
## Improved Iterative Scaling algorithm, and |
|
10
|
|
|
|
|
|
|
## Feature Induction algorithm |
|
11
|
|
|
|
|
|
|
## for inducing maximum entropy probability distributions |
|
12
|
|
|
|
|
|
|
## Keywords: |
|
13
|
|
|
|
|
|
|
## Maximum Entropy Modeling |
|
14
|
|
|
|
|
|
|
## Kullback-Leibler Divergence |
|
15
|
|
|
|
|
|
|
## Exponential models |
|
16
|
|
|
|
|
|
|
## |
|
17
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
18
|
|
|
|
|
|
|
## Copyright (C) 1998, 1999 Hugo WL ter Doest terdoest@cs.utwente.nl |
|
19
|
|
|
|
|
|
|
## |
|
20
|
|
|
|
|
|
|
## This library is free software; you can redistribute it and/or modify |
|
21
|
|
|
|
|
|
|
## it under the terms of the GNU General Public License as published by |
|
22
|
|
|
|
|
|
|
## the Free Software Foundation; either version 2 of the License, or |
|
23
|
|
|
|
|
|
|
## (at your option) any later version. |
|
24
|
|
|
|
|
|
|
## |
|
25
|
|
|
|
|
|
|
## This library is distributed in the hope that it will be useful, |
|
26
|
|
|
|
|
|
|
## but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
27
|
|
|
|
|
|
|
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
28
|
|
|
|
|
|
|
## GNU General Public License for more details. |
|
29
|
|
|
|
|
|
|
## |
|
30
|
|
|
|
|
|
|
## You should have received a copy of the GNU Library General Public |
|
31
|
|
|
|
|
|
|
## License along with this program; if not, write to the Free Software |
|
32
|
|
|
|
|
|
|
## Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
|
33
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
37
|
|
|
|
|
|
|
## Globals |
|
38
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
39
|
3
|
|
|
|
|
408
|
use vars qw($VERSION |
|
40
|
|
|
|
|
|
|
@ISA |
|
41
|
|
|
|
|
|
|
@EXPORT |
|
42
|
|
|
|
|
|
|
$VECTOR_PACKAGE |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
$debug |
|
45
|
|
|
|
|
|
|
$SAMPLE_size |
|
46
|
|
|
|
|
|
|
$NEWTON_max_it |
|
47
|
|
|
|
|
|
|
$KL_max_it |
|
48
|
|
|
|
|
|
|
$KL_min |
|
49
|
|
|
|
|
|
|
$NEWTON_min |
|
50
|
|
|
|
|
|
|
$cntrl_c_pressed |
|
51
|
|
|
|
|
|
|
$cntrl_backslash_pressed |
|
52
|
3
|
|
|
3
|
|
2027
|
); |
|
|
3
|
|
|
|
|
5
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
56
|
|
|
|
|
|
|
## Require libraries |
|
57
|
|
|
|
|
|
|
##---------------------------------------------------------------------------## |
|
58
|
3
|
|
|
3
|
|
15
|
use strict; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
74
|
|
|
59
|
3
|
|
|
3
|
|
9048
|
use diagnostics -verbose; |
|
|
3
|
|
|
|
|
683256
|
|
|
|
3
|
|
|
|
|
45
|
|
|
60
|
3
|
|
|
3
|
|
3384
|
use Statistics::SparseVector; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
202
|
|
|
61
|
|
|
|
|
|
|
$VECTOR_PACKAGE = "Statistics::SparseVector"; |
|
62
|
3
|
|
|
3
|
|
2189
|
use POSIX; |
|
|
3
|
|
|
|
|
19543
|
|
|
|
3
|
|
|
|
|
22
|
|
|
63
|
3
|
|
|
3
|
|
9449
|
use Carp; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
152
|
|
|
64
|
3
|
|
|
3
|
|
2830
|
use Data::Dumper; |
|
|
3
|
|
|
|
|
36106
|
|
|
|
3
|
|
|
|
|
20846
|
|
|
65
|
|
|
|
|
|
|
require Exporter; |
|
66
|
|
|
|
|
|
|
require AutoLoader; |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
@ISA = qw(Exporter AutoLoader); |
|
69
|
|
|
|
|
|
|
# Items to export into callers namespace by default. Note: do not export |
|
70
|
|
|
|
|
|
|
# names by default without a very good reason. Use EXPORT_OK instead. |
|
71
|
|
|
|
|
|
|
# Do not simply export all your public functions/methods/constants. |
|
72
|
|
|
|
|
|
|
@EXPORT = qw($KL_min |
|
73
|
|
|
|
|
|
|
$NEWTON_min |
|
74
|
|
|
|
|
|
|
$debug |
|
75
|
|
|
|
|
|
|
$nr_add |
|
76
|
|
|
|
|
|
|
$KL_max_it |
|
77
|
|
|
|
|
|
|
$NEWTON_max_it |
|
78
|
|
|
|
|
|
|
$SAMPLE_size |
|
79
|
|
|
|
|
|
|
); |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
$VERSION = '1.0'; |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
# default values for some configurable parameters |
|
85
|
|
|
|
|
|
|
$NEWTON_max_it = 20; |
|
86
|
|
|
|
|
|
|
$NEWTON_min = 0.001; |
|
87
|
|
|
|
|
|
|
$KL_max_it = 100; |
|
88
|
|
|
|
|
|
|
$KL_min = 0.001; |
|
89
|
|
|
|
|
|
|
$debug = 0; |
|
90
|
|
|
|
|
|
|
$SAMPLE_size = 250; # the size of MC samples |
|
91
|
|
|
|
|
|
|
# binary or integer feature functions |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
# for catching interrupts |
|
94
|
|
|
|
|
|
|
$cntrl_c_pressed = 0; |
|
95
|
|
|
|
|
|
|
$cntrl_backslash_pressed = 0; |
|
96
|
|
|
|
|
|
|
$SIG{INT} = \&catch_cntrl_c; |
|
97
|
|
|
|
|
|
|
$SIG{QUIT} = \&catch_cntrl_backslash; |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
# checks floats |
|
101
|
|
|
|
|
|
|
sub is_float { |
|
102
|
59812
|
|
|
59812
|
0
|
79971
|
my($f) = @_; |
|
103
|
|
|
|
|
|
|
|
|
104
|
59812
|
|
|
|
|
542843
|
return ($f =~ /^([+-]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+-]?\d+))?$/); |
|
105
|
|
|
|
|
|
|
} |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# interrrupt routine for control c |
|
109
|
|
|
|
|
|
|
sub catch_cntrl_c { |
|
110
|
0
|
|
|
0
|
0
|
0
|
my($signame) = shift; |
|
111
|
|
|
|
|
|
|
|
|
112
|
0
|
|
|
|
|
0
|
$cntrl_c_pressed = 1; |
|
113
|
0
|
|
|
|
|
0
|
die " pressed\n"; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
|
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
# interrrupt routine for control \ (originally core-dump request) |
|
118
|
|
|
|
|
|
|
sub catch_cntrl_backslash { |
|
119
|
0
|
|
|
0
|
0
|
0
|
my($signame) = shift; |
|
120
|
|
|
|
|
|
|
|
|
121
|
0
|
|
|
|
|
0
|
$cntrl_backslash_pressed = 1; |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
|
|
125
|
|
|
|
|
|
|
# creates a new event space |
|
126
|
|
|
|
|
|
|
# depending on the $arg parameter samples it or reads it from a file |
|
127
|
|
|
|
|
|
|
sub new { |
|
128
|
37
|
|
|
37
|
1
|
223
|
my($this, $vectype, $filename) = @_; |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
# for calling $self->new($someth): |
|
131
|
37
|
|
66
|
|
|
185
|
my $class = ref($this) || $this; |
|
132
|
37
|
|
|
|
|
92
|
my $self = {}; |
|
133
|
37
|
|
|
|
|
107
|
bless $self, $class; |
|
134
|
37
|
|
|
|
|
142
|
$self->{SCALER} = "gis"; # default |
|
135
|
37
|
|
|
|
|
134
|
$self->{SAMPLING} = "corpus"; # default |
|
136
|
37
|
|
|
|
|
107
|
$self->{NR_CLASSES} = 0; |
|
137
|
37
|
|
|
|
|
96
|
$self->{NR_EVENTS} = 0; |
|
138
|
37
|
|
|
|
|
94
|
$self->{NR_FEATURES} = 0; |
|
139
|
37
|
|
|
|
|
101
|
$self->{VECTYPE} = $vectype; |
|
140
|
37
|
100
|
|
|
|
96
|
if ($filename) { # hey a filename |
|
141
|
4
|
|
|
|
|
18
|
$self->read($filename); |
|
142
|
|
|
|
|
|
|
} |
|
143
|
37
|
|
|
|
|
232
|
$self->{FEATURE_IGNORE} = $VECTOR_PACKAGE->new($self->{NR_FEATURES}); |
|
144
|
37
|
|
|
|
|
96
|
return($self); |
|
145
|
|
|
|
|
|
|
} |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
|
|
148
|
|
|
|
|
|
|
# decides how to sample, "enum", "mc", or "corpus" |
|
149
|
|
|
|
|
|
|
sub sample { |
|
150
|
332
|
|
|
332
|
0
|
669
|
my($self) = @_; |
|
151
|
|
|
|
|
|
|
|
|
152
|
332
|
|
|
|
|
382
|
my($sample); |
|
153
|
|
|
|
|
|
|
|
|
154
|
332
|
100
|
|
|
|
1450
|
if ($self->{SAMPLING} eq "mc") { |
|
|
|
100
|
|
|
|
|
|
|
155
|
16
|
|
|
|
|
72
|
$sample = $self->new(); |
|
156
|
16
|
|
|
|
|
39
|
$sample->{VECTYPE} = "binary"; |
|
157
|
16
|
|
|
|
|
46
|
$sample->{SCALER} = $self->{SCALER}; |
|
158
|
16
|
|
|
|
|
45
|
$sample->{NR_FEATURES} = $self->{NR_FEATURES}; |
|
159
|
|
|
|
|
|
|
# refer to the parameters of $self |
|
160
|
16
|
|
|
|
|
66
|
$sample->{PARAMETERS} = $self->{PARAMETERS}; |
|
161
|
16
|
|
|
|
|
49
|
$sample->{NEED_CORRECTION_FEATURE} = 1; |
|
162
|
16
|
|
|
|
|
48
|
$sample->{CORRECTION_PARAMETER} = $self->{CORRECTION_PARAMETER}; |
|
163
|
16
|
|
|
|
|
49
|
$sample->{E_REF} = $self->{E_REF}; |
|
164
|
16
|
|
|
|
|
28
|
$sample->{THIS_IS_A_SAMPLE} = 1; |
|
165
|
16
|
|
|
|
|
63
|
$sample->mc($self); |
|
166
|
16
|
|
|
|
|
40
|
$sample->{CLASSES_CHANGED} = 1; |
|
167
|
16
|
|
|
|
|
73
|
$sample->prepare_model(); |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
elsif ($self->{SAMPLING} eq "enum") { |
|
170
|
17
|
|
|
|
|
76
|
$sample = $self->new(); |
|
171
|
17
|
|
|
|
|
51
|
$sample->{SCALER} = $self->{SCALER}; |
|
172
|
17
|
|
|
|
|
39
|
$sample->{SAMPLING} = "enum"; |
|
173
|
17
|
|
|
|
|
41
|
$sample->{NR_FEATURES} = $self->{NR_FEATURES}; |
|
174
|
17
|
|
|
|
|
66
|
$sample->{PARAMETERS} = $self->{PARAMETERS}; |
|
175
|
17
|
|
|
|
|
41
|
$sample->{NEED_CORRECTION_FEATURE} = 1; |
|
176
|
17
|
|
|
|
|
49
|
$sample->{CORRECTION_PARAMETER} = $self->{CORRECTION_PARAMETER}; |
|
177
|
17
|
|
|
|
|
41
|
$sample->{E_REF} = $self->{E_REF}; |
|
178
|
17
|
|
|
|
|
30
|
$sample->{THIS_IS_A_SAMPLE} = 1; |
|
179
|
17
|
|
|
|
|
42
|
$sample->{M} = $self->{NR_FEATURES}; |
|
180
|
|
|
|
|
|
|
} |
|
181
|
|
|
|
|
|
|
else { # "corpus" |
|
182
|
299
|
|
|
|
|
411
|
$sample = $self; |
|
183
|
|
|
|
|
|
|
} |
|
184
|
332
|
|
|
|
|
1025
|
$sample->prepare_sample(); |
|
185
|
332
|
|
|
|
|
795
|
return($sample); |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# makes sure that when prepare_model is called, everything is recomputed |
|
190
|
|
|
|
|
|
|
sub clear { |
|
191
|
14
|
|
|
14
|
0
|
153
|
my($self) = @_; |
|
192
|
|
|
|
|
|
|
|
|
193
|
14
|
|
|
|
|
37
|
undef $self->{PARAMETERS_INITIALISED}; |
|
194
|
14
|
|
|
|
|
34
|
$self->{PARAMETERS_CHANGED} = 1; |
|
195
|
14
|
|
|
|
|
50
|
$self->{CLASSES_CHANGED} = 1; |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
sub DESTROY { |
|
201
|
343
|
|
|
343
|
|
712
|
my($self) = @_; |
|
202
|
|
|
|
|
|
|
|
|
203
|
343
|
50
|
|
|
|
1727
|
if ($cntrl_c_pressed) { |
|
204
|
0
|
|
|
|
|
0
|
$self->dump(); |
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
# reads an events file, dies in case of inconsistent lines |
|
210
|
|
|
|
|
|
|
# syntax first line: ..... |
|
211
|
|
|
|
|
|
|
# syntax other lines, binary functions: |
|
212
|
|
|
|
|
|
|
# syntax other lines, integer functions: |
|
213
|
|
|
|
|
|
|
# an intvector is a space separated list of integers |
|
214
|
|
|
|
|
|
|
sub read { |
|
215
|
4
|
|
|
4
|
0
|
8
|
my($self, $file) = @_; |
|
216
|
|
|
|
|
|
|
|
|
217
|
4
|
|
|
|
|
7
|
my($features, |
|
218
|
|
|
|
|
|
|
$feature_names, |
|
219
|
|
|
|
|
|
|
@cols); |
|
220
|
|
|
|
|
|
|
|
|
221
|
4
|
|
|
|
|
8
|
$feature_names = ""; |
|
222
|
4
|
50
|
|
|
|
129
|
open(EVENTS, $file) || |
|
223
|
|
|
|
|
|
|
$self->die("Could not open $file\n"); |
|
224
|
4
|
|
|
|
|
12
|
print "Opened $file\n"; |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
# read the names of the features, skip comment |
|
227
|
|
|
|
|
|
|
# note that feature name are in reverse order now |
|
228
|
4
|
|
|
|
|
8
|
do { |
|
229
|
4
|
|
|
|
|
88
|
$feature_names = ; |
|
230
|
|
|
|
|
|
|
} until ($feature_names !~ /\#.*/); |
|
231
|
4
|
|
|
|
|
11
|
chomp $feature_names; |
|
232
|
4
|
|
|
|
|
34
|
$self->{FEATURE_NAMES} = [split(/\t/, $feature_names)]; |
|
233
|
4
|
|
|
|
|
10
|
$self->{NR_FEATURES} = $#{$self->{FEATURE_NAMES}} + 1; |
|
|
4
|
|
|
|
|
13
|
|
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
# read the bitvectors |
|
236
|
4
|
|
|
|
|
19
|
while () { |
|
237
|
400
|
50
|
|
|
|
910
|
if (!/\#.*/) { # skip comments |
|
238
|
400
|
|
|
|
|
442
|
chomp; |
|
239
|
|
|
|
|
|
|
|
|
240
|
400
|
50
|
|
|
|
1223
|
if (/\s*(\d+)\s+(.+)/) { |
|
241
|
400
|
|
|
|
|
922
|
$self->{FREQ}[$self->{NR_CLASSES}] = $1; |
|
242
|
400
|
|
|
|
|
686
|
$features = $2; |
|
243
|
|
|
|
|
|
|
} |
|
244
|
400
|
50
|
|
|
|
820
|
if ($self->{FREQ} == 0) { |
|
245
|
0
|
|
|
|
|
0
|
$self->die("Class $self->{NR_CLASSES} has zero probability\n"); |
|
246
|
|
|
|
|
|
|
} |
|
247
|
400
|
|
|
|
|
659
|
$self->{NR_EVENTS} += $self->{FREQ}[$self->{NR_CLASSES}]; |
|
248
|
|
|
|
|
|
|
$self->{CLASSES}[$self->{NR_CLASSES}] = |
|
249
|
|
|
|
|
|
|
$VECTOR_PACKAGE->new_vec($self->{NR_FEATURES}, |
|
250
|
400
|
|
|
|
|
1211
|
$features, $self->{VECTYPE}); |
|
251
|
400
|
|
|
|
|
1561
|
$self->{NR_CLASSES}++; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
|
|
|
|
|
|
} |
|
254
|
4
|
|
|
|
|
31
|
close(EVENTS); |
|
255
|
|
|
|
|
|
|
|
|
256
|
4
|
|
|
|
|
28
|
print "Read $self->{NR_EVENTS} events, $self->{NR_CLASSES} classes, " . |
|
257
|
|
|
|
|
|
|
"and $self->{NR_FEATURES} features\n"; |
|
258
|
4
|
|
|
|
|
13
|
print "Closed $file\n"; |
|
259
|
|
|
|
|
|
|
|
|
260
|
4
|
|
|
|
|
7
|
$self->{FILENAME} = $file; |
|
261
|
4
|
|
|
|
|
11
|
$self->{CLASSES_CHANGED} = 1; |
|
262
|
4
|
|
|
|
|
11
|
$self->{PARAMETERS_CHANGED} = 1; |
|
263
|
|
|
|
|
|
|
} |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
# reads an initial distribution |
|
267
|
|
|
|
|
|
|
# syntax: one parameter per line |
|
268
|
|
|
|
|
|
|
sub read_parameters { |
|
269
|
0
|
|
|
0
|
0
|
0
|
my($self, $file) = @_; |
|
270
|
|
|
|
|
|
|
|
|
271
|
0
|
|
|
|
|
0
|
my($i); |
|
272
|
|
|
|
|
|
|
|
|
273
|
0
|
|
|
|
|
0
|
$i = 0; |
|
274
|
0
|
0
|
|
|
|
0
|
open(DISTR,$file) || |
|
275
|
|
|
|
|
|
|
$self->die("Could not open $file\n"); |
|
276
|
0
|
|
|
|
|
0
|
print "Opened $file\n"; |
|
277
|
|
|
|
|
|
|
|
|
278
|
0
|
|
|
|
|
0
|
while () { |
|
279
|
0
|
0
|
|
|
|
0
|
if (!/\#.*/) { |
|
280
|
0
|
|
|
|
|
0
|
chomp; |
|
281
|
0
|
|
|
|
|
0
|
$self->{PARAMETERS}[$i++] = $_; |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
0
|
|
|
|
|
0
|
close(DISTR); |
|
286
|
0
|
0
|
|
|
|
0
|
if ($i != $self->{NR_FEATURES}) { |
|
287
|
0
|
|
|
|
|
0
|
$self->die("Initial distribution file corrupt\n"); |
|
288
|
|
|
|
|
|
|
} |
|
289
|
0
|
|
|
|
|
0
|
print "Read $i parameters; closed $file\n"; |
|
290
|
0
|
|
|
|
|
0
|
$self->{PARAMETERS_CHANGED} = 1; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
# writes the the current parameters |
|
295
|
|
|
|
|
|
|
# syntax: |
|
296
|
|
|
|
|
|
|
sub write_parameters { |
|
297
|
1
|
|
|
1
|
1
|
8
|
my($self, $file) = @_; |
|
298
|
|
|
|
|
|
|
|
|
299
|
1
|
|
|
|
|
3
|
my($i); |
|
300
|
|
|
|
|
|
|
|
|
301
|
1
|
50
|
|
|
|
80
|
open(DISTR,">$file") || |
|
302
|
|
|
|
|
|
|
$self->die("Could not open $file\n"); |
|
303
|
1
|
|
|
|
|
5
|
print "Opened $file\n"; |
|
304
|
|
|
|
|
|
|
|
|
305
|
1
|
|
|
|
|
26
|
for ($i = 0; $i < $self->{NR_FEATURES}; $i++) { |
|
306
|
18
|
50
|
|
|
|
48
|
if ($self->{FEATURE_IGNORE}->bit_test($i)) { |
|
307
|
0
|
|
|
|
|
0
|
print DISTR "IGNORED\n"; |
|
308
|
|
|
|
|
|
|
} |
|
309
|
|
|
|
|
|
|
else { |
|
310
|
18
|
|
|
|
|
99
|
print DISTR "$self->{PARAMETERS}[$i]\n"; |
|
311
|
|
|
|
|
|
|
} |
|
312
|
|
|
|
|
|
|
} |
|
313
|
|
|
|
|
|
|
|
|
314
|
1
|
|
|
|
|
28
|
close(DISTR); |
|
315
|
1
|
|
|
|
|
6
|
print "Closed $file\n"; |
|
316
|
|
|
|
|
|
|
} |
|
317
|
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
# writes the the current features with their parameters |
|
320
|
|
|
|
|
|
|
# syntax first line: <$nr_features> |
|
321
|
|
|
|
|
|
|
# syntax last line: |
|
322
|
|
|
|
|
|
|
# syntax other lines: |
|
323
|
|
|
|
|
|
|
sub write_parameters_with_names { |
|
324
|
0
|
|
|
0
|
1
|
0
|
my($self, $file) = @_; |
|
325
|
|
|
|
|
|
|
|
|
326
|
0
|
|
|
|
|
0
|
my($x, |
|
327
|
|
|
|
|
|
|
$bitmask); |
|
328
|
|
|
|
|
|
|
|
|
329
|
0
|
0
|
|
|
|
0
|
open(DISTR,">$file") || |
|
330
|
|
|
|
|
|
|
$self->die("Could not open $file\n"); |
|
331
|
0
|
|
|
|
|
0
|
print "Opened $file\n"; |
|
332
|
|
|
|
|
|
|
|
|
333
|
|
|
|
|
|
|
# preamble |
|
334
|
0
|
|
|
|
|
0
|
print DISTR "$self->{NR_FEATURES}\n"; |
|
335
|
0
|
|
|
|
|
0
|
print DISTR "$self->{SCALER}\n"; |
|
336
|
0
|
0
|
|
|
|
0
|
if ($self->{SCALER} eq "gis") { |
|
337
|
0
|
|
|
|
|
0
|
print DISTR "$self->{M}\n"; |
|
338
|
0
|
|
|
|
|
0
|
print DISTR "$self->{CORRECTION_PARAMETER}\n"; |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
# print feature names with parameters |
|
342
|
|
|
|
|
|
|
# in the meanwhile build the bitmask |
|
343
|
0
|
|
|
|
|
0
|
$bitmask = ""; |
|
344
|
0
|
|
|
|
|
0
|
for ($x = 0; $x < $self->{NR_FEATURES}; $x++) { |
|
345
|
0
|
|
|
|
|
0
|
print DISTR "$self->{FEATURE_NAMES}[$x]\t$self->{PARAMETERS}[$x]\n"; |
|
346
|
0
|
0
|
|
|
|
0
|
if ($self->{FEATURE_IGNORE}->bit_test($x)) { |
|
347
|
0
|
|
|
|
|
0
|
$bitmask = "0" . $bitmask; |
|
348
|
|
|
|
|
|
|
} |
|
349
|
|
|
|
|
|
|
else { |
|
350
|
0
|
|
|
|
|
0
|
$bitmask = "1" . $bitmask; |
|
351
|
|
|
|
|
|
|
} |
|
352
|
|
|
|
|
|
|
} |
|
353
|
0
|
|
|
|
|
0
|
print DISTR "$bitmask\n"; |
|
354
|
|
|
|
|
|
|
|
|
355
|
0
|
|
|
|
|
0
|
close(DISTR); |
|
356
|
0
|
|
|
|
|
0
|
print "Closed $file\n"; |
|
357
|
|
|
|
|
|
|
} |
|
358
|
|
|
|
|
|
|
|
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
# generate random parameters |
|
361
|
|
|
|
|
|
|
sub random_parameters { |
|
362
|
2
|
|
|
2
|
0
|
3
|
my($self) = @_; |
|
363
|
|
|
|
|
|
|
|
|
364
|
2
|
|
|
|
|
9
|
my($f); |
|
365
|
|
|
|
|
|
|
|
|
366
|
2
|
|
|
|
|
107
|
srand(); |
|
367
|
2
|
|
|
|
|
11
|
for ($f = 0; $f < $self->{NR_FEATURES}; $f++) { |
|
368
|
20
|
|
|
|
|
54
|
$self->{PARAMETERS}[$f] = rand() + 1; |
|
369
|
|
|
|
|
|
|
} |
|
370
|
2
|
100
|
|
|
|
8
|
if ($self->{SCALER} eq "gis") { |
|
371
|
1
|
|
|
|
|
5
|
$self->{CORRECTION_PARAMETER} = rand(); |
|
372
|
|
|
|
|
|
|
} |
|
373
|
2
|
|
|
|
|
5
|
$self->{PARAMETERS_CHANGED} = 1; |
|
374
|
|
|
|
|
|
|
} |
|
375
|
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
# sets parameters to $val |
|
378
|
|
|
|
|
|
|
sub set_parameters_to { |
|
379
|
12
|
|
|
12
|
0
|
19
|
my($self, $val) = @_; |
|
380
|
|
|
|
|
|
|
|
|
381
|
12
|
|
|
|
|
18
|
my($f); |
|
382
|
|
|
|
|
|
|
|
|
383
|
12
|
|
|
|
|
66
|
for ($f = 0; $f < $self->{NR_FEATURES}; $f++) { |
|
384
|
132
|
|
|
|
|
332
|
$self->{PARAMETERS}[$f] = $val; |
|
385
|
|
|
|
|
|
|
} |
|
386
|
12
|
100
|
|
|
|
47
|
if ($self->{SCALER} eq "gis") { |
|
387
|
6
|
|
|
|
|
17
|
$self->{CORRECTION_PARAMETER} = $val; |
|
388
|
|
|
|
|
|
|
} |
|
389
|
12
|
|
|
|
|
36
|
$self->{PARAMETERS_CHANGED} = 1; |
|
390
|
|
|
|
|
|
|
} |
|
391
|
|
|
|
|
|
|
|
|
392
|
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
# initialise if !$self->{PARAMETERS_INITIALISED}; subsequent calls |
|
394
|
|
|
|
|
|
|
# of scale (by fi) should not re-initialise parameters |
|
395
|
|
|
|
|
|
|
sub init_parameters { |
|
396
|
22
|
|
|
22
|
0
|
40
|
my($self) = @_; |
|
397
|
|
|
|
|
|
|
|
|
398
|
22
|
100
|
|
|
|
80
|
if (!$self->{PARAMETERS_INITIALISED}) { |
|
399
|
14
|
100
|
|
|
|
50
|
if ($self->{SAMPLING} eq "mc") { |
|
400
|
|
|
|
|
|
|
# otherwise bits will be flipped with prob 1. |
|
401
|
2
|
|
|
|
|
19
|
$self->random_parameters(); |
|
402
|
|
|
|
|
|
|
} |
|
403
|
|
|
|
|
|
|
else { |
|
404
|
12
|
100
|
|
|
|
52
|
if ($self->{SCALER} eq "gis") { |
|
405
|
6
|
|
|
|
|
27
|
$self->set_parameters_to(0); |
|
406
|
|
|
|
|
|
|
} |
|
407
|
|
|
|
|
|
|
else { |
|
408
|
6
|
|
|
|
|
32
|
$self->set_parameters_to(0); |
|
409
|
|
|
|
|
|
|
} |
|
410
|
|
|
|
|
|
|
} |
|
411
|
14
|
|
|
|
|
30
|
$self->{PARAMETERS_INITIALISED} = 1; |
|
412
|
|
|
|
|
|
|
} |
|
413
|
|
|
|
|
|
|
} |
|
414
|
|
|
|
|
|
|
|
|
415
|
|
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
# make sure \tilde{p} << q_0 |
|
417
|
|
|
|
|
|
|
# constant feature functions are forbidden: that is why |
|
418
|
|
|
|
|
|
|
# we check whether for all features \sum_x f(x) > 0 |
|
419
|
|
|
|
|
|
|
# and \sum_x f(x) != $corpus_size |
|
420
|
|
|
|
|
|
|
sub check { |
|
421
|
420
|
|
|
420
|
0
|
619
|
my($self) = @_; |
|
422
|
|
|
|
|
|
|
|
|
423
|
420
|
|
|
|
|
461
|
my ($x); |
|
424
|
|
|
|
|
|
|
|
|
425
|
420
|
|
|
|
|
1291
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
426
|
41984
|
50
|
|
|
|
126301
|
if ($self->{CLASS_EXP_WEIGHTS}[$x] == 0) { |
|
427
|
0
|
|
|
|
|
0
|
print "Initial distribution not ok; class $x\n"; |
|
428
|
0
|
|
|
|
|
0
|
print $self->{CLASS_EXP_WEIGHTS}[$x], "\t", $self->{CLASSES}[$x]->to_Bin(' '),"\n"; |
|
429
|
|
|
|
|
|
|
} |
|
430
|
|
|
|
|
|
|
} |
|
431
|
|
|
|
|
|
|
} |
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
# writes events to a file |
|
435
|
|
|
|
|
|
|
# usefull in case new features have been added |
|
436
|
|
|
|
|
|
|
# syntax: same as input events file |
|
437
|
|
|
|
|
|
|
sub write { |
|
438
|
1
|
|
|
1
|
1
|
12
|
my($self, $file) = @_; |
|
439
|
|
|
|
|
|
|
|
|
440
|
1
|
|
|
|
|
2
|
my($x, $f); |
|
441
|
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
# prologue |
|
443
|
1
|
50
|
|
|
|
157
|
open(EVENTS,">$file") || |
|
444
|
|
|
|
|
|
|
$self->die("Could not open $file\n"); |
|
445
|
1
|
|
|
|
|
4
|
print "Opened $file\n"; |
|
446
|
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
# write a line with the feature names |
|
448
|
1
|
|
|
|
|
2
|
print EVENTS join("\t", @{$self->{FEATURE_NAMES}}), "\n"; |
|
|
1
|
|
|
|
|
251
|
|
|
449
|
|
|
|
|
|
|
# write the events themselves |
|
450
|
1
|
|
|
|
|
7
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
451
|
100
|
|
|
|
|
229
|
print EVENTS $self->{FREQ}[$x],"\t"; |
|
452
|
100
|
|
|
|
|
254
|
print EVENTS $self->{CLASSES}[$x]->to_Bin(' '), "\n"; |
|
453
|
|
|
|
|
|
|
} |
|
454
|
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
# close the file and tell you did that |
|
456
|
1
|
|
|
|
|
43
|
close EVENTS; |
|
457
|
1
|
|
|
|
|
10
|
print "Wrote $self->{NR_EVENTS} events, $self->{NR_CLASSES} classes, " . |
|
458
|
|
|
|
|
|
|
"and $self->{NR_FEATURES} features\n"; |
|
459
|
1
|
|
|
|
|
6
|
print "Closed $file\n"; |
|
460
|
|
|
|
|
|
|
} |
|
461
|
|
|
|
|
|
|
|
|
462
|
|
|
|
|
|
|
|
|
463
|
|
|
|
|
|
|
# reads a dump, and evaluates it into an object |
|
464
|
|
|
|
|
|
|
sub undump { |
|
465
|
0
|
|
|
0
|
1
|
0
|
my($class, $file) = @_; |
|
466
|
|
|
|
|
|
|
|
|
467
|
0
|
|
|
|
|
0
|
my($x, |
|
468
|
|
|
|
|
|
|
$VAR1); |
|
469
|
|
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
# open, slurp, and close file |
|
471
|
0
|
0
|
|
|
|
0
|
open(UNDUMP, "$file") || |
|
472
|
|
|
|
|
|
|
croak "Could not open $file\n"; |
|
473
|
0
|
|
|
|
|
0
|
print "Opened $file\n"; |
|
474
|
0
|
|
|
|
|
0
|
undef $/; |
|
475
|
0
|
|
|
|
|
0
|
$x = ; |
|
476
|
0
|
|
|
|
|
0
|
$/ = "\n"; |
|
477
|
0
|
|
|
|
|
0
|
close(UNDUMP); |
|
478
|
|
|
|
|
|
|
|
|
479
|
|
|
|
|
|
|
# and undump |
|
480
|
0
|
|
|
|
|
0
|
eval $x; |
|
481
|
0
|
|
|
|
|
0
|
print "Undumped $VAR1->{NR_EVENTS} events, $VAR1->{NR_CLASSES} classes, " . |
|
482
|
|
|
|
|
|
|
"and $VAR1->{NR_FEATURES} features\n"; |
|
483
|
0
|
|
|
|
|
0
|
print "Closed $file\n"; |
|
484
|
0
|
|
|
|
|
0
|
return($VAR1); |
|
485
|
|
|
|
|
|
|
} |
|
486
|
|
|
|
|
|
|
|
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
# makes dump of the event space using Data::Dumper |
|
489
|
|
|
|
|
|
|
sub dump { |
|
490
|
3
|
|
|
3
|
1
|
39
|
my($self, $file) = @_; |
|
491
|
|
|
|
|
|
|
|
|
492
|
3
|
|
|
|
|
5
|
my(@bitvecs, |
|
493
|
|
|
|
|
|
|
$dump, |
|
494
|
|
|
|
|
|
|
%features, |
|
495
|
|
|
|
|
|
|
$f); |
|
496
|
|
|
|
|
|
|
|
|
497
|
3
|
50
|
|
|
|
13
|
if (!$file) { |
|
498
|
0
|
|
|
|
|
0
|
$file = POSIX::tmpnam(); |
|
499
|
|
|
|
|
|
|
} |
|
500
|
3
|
50
|
|
|
|
665
|
open(DUMP, ">$file") || |
|
501
|
|
|
|
|
|
|
croak "Could not open $file\n"; |
|
502
|
3
|
|
|
|
|
22
|
print "Opened $file\n"; |
|
503
|
|
|
|
|
|
|
|
|
504
|
|
|
|
|
|
|
# build something that we can sort |
|
505
|
|
|
|
|
|
|
# ONLY FOR CORPUS! |
|
506
|
3
|
50
|
33
|
|
|
34
|
if (!$self->{THIS_IS_A_SAMPLE} && $self->{PARAMETERS}) { |
|
507
|
3
|
|
|
|
|
13
|
for ($f = 0; $f < $self->{NR_FEATURES}; $f++) { |
|
508
|
|
|
|
|
|
|
$features{$self->{FEATURE_NAMES}[$f]} = |
|
509
|
38
|
|
|
|
|
134
|
$self->{PARAMETERS}[$f]; |
|
510
|
|
|
|
|
|
|
} |
|
511
|
3
|
100
|
66
|
|
|
28
|
if ($self->{NEED_CORRECTION_FEATURE} && ($self->{SCALER} eq "gis")) { |
|
512
|
|
|
|
|
|
|
$features{"correction$self->{M}"} = |
|
513
|
2
|
|
|
|
|
8
|
$self->{CORRECTION_PARAMETER}; |
|
514
|
|
|
|
|
|
|
} |
|
515
|
|
|
|
|
|
|
# and print it into $self |
|
516
|
|
|
|
|
|
|
$self->{FEATURE_SORTED} = join(' > ', |
|
517
|
|
|
|
|
|
|
sort { |
|
518
|
3
|
100
|
|
|
|
29
|
if ($features{$b} == $features{$a}) { |
|
|
89
|
|
|
|
|
201
|
|
|
519
|
1
|
|
|
|
|
3
|
return($b cmp $a)} |
|
520
|
|
|
|
|
|
|
else { |
|
521
|
88
|
|
|
|
|
138
|
return ($features{$b} <=> $features{$a}) |
|
522
|
|
|
|
|
|
|
} |
|
523
|
|
|
|
|
|
|
} |
|
524
|
|
|
|
|
|
|
keys(%features)); |
|
525
|
|
|
|
|
|
|
} |
|
526
|
|
|
|
|
|
|
|
|
527
|
3
|
|
|
|
|
46
|
$dump = Data::Dumper->new([$self]); |
|
528
|
3
|
|
|
|
|
159
|
print DUMP $dump->Dump(); |
|
529
|
3
|
|
|
|
|
20840
|
print "Dumped $self->{NR_EVENTS} events, $self->{NR_CLASSES} classes, " . |
|
530
|
|
|
|
|
|
|
"and $self->{NR_FEATURES} features\n"; |
|
531
|
|
|
|
|
|
|
|
|
532
|
3
|
|
|
|
|
129
|
close(DUMP); |
|
533
|
3
|
|
|
|
|
1666
|
print "Closed $file\n"; |
|
534
|
|
|
|
|
|
|
} |
|
535
|
|
|
|
|
|
|
|
|
536
|
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
# $msg is logged, the time is logged, a dump is created, and the |
|
538
|
|
|
|
|
|
|
# program dies with $msg |
|
539
|
|
|
|
|
|
|
sub die { |
|
540
|
0
|
|
|
0
|
0
|
0
|
my($self, $msg) = @_; |
|
541
|
|
|
|
|
|
|
|
|
542
|
0
|
|
|
|
|
0
|
$self->log_msg($msg); |
|
543
|
0
|
|
|
|
|
0
|
$self->log_msg(time()); |
|
544
|
0
|
|
|
|
|
0
|
$self->dump(); |
|
545
|
0
|
|
|
|
|
0
|
croak $msg; |
|
546
|
|
|
|
|
|
|
} |
|
547
|
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
# prints a msg to STDOUT, and appends it to $self->{LOG} |
|
550
|
|
|
|
|
|
|
# so an emergency dump will contain some history information |
|
551
|
|
|
|
|
|
|
sub log_msg { |
|
552
|
532
|
|
|
532
|
0
|
1142
|
my($self, $x) = @_; |
|
553
|
|
|
|
|
|
|
|
|
554
|
532
|
|
|
|
|
3611
|
$self->{LOG} .= $x; |
|
555
|
532
|
|
|
|
|
37785
|
print $x; |
|
556
|
|
|
|
|
|
|
} |
|
557
|
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
|
|
559
|
|
|
|
|
|
|
# computes f_# for alle events; results in @sample_nr_feats_on |
|
560
|
|
|
|
|
|
|
# computes %$sample_m_feats_on; a HOL from m |
|
561
|
|
|
|
|
|
|
sub active_features { |
|
562
|
428
|
|
|
428
|
0
|
573
|
my($self) = @_; |
|
563
|
|
|
|
|
|
|
|
|
564
|
428
|
|
|
|
|
580
|
my($i, |
|
565
|
|
|
|
|
|
|
$j, |
|
566
|
|
|
|
|
|
|
$sum); |
|
567
|
|
|
|
|
|
|
|
|
568
|
428
|
100
|
|
|
|
1124
|
if ($self->{CLASSES_CHANGED}) { |
|
569
|
|
|
|
|
|
|
# check for constant features |
|
570
|
78
|
|
|
|
|
255
|
for ($i = 0; $i < $self->{NR_FEATURES}; $i++) { |
|
571
|
984
|
|
|
|
|
1020
|
$sum = 0; |
|
572
|
984
|
|
|
|
|
2333
|
for ($j = 0; $j < $self->{NR_CLASSES}; $j++) { |
|
573
|
98240
|
|
|
|
|
248178
|
$sum += $self->{CLASSES}[$j]->bit_test($i); |
|
574
|
|
|
|
|
|
|
} |
|
575
|
984
|
50
|
33
|
|
|
5406
|
if (!$sum || ($sum == $self->{NR_CLASSES})) { |
|
576
|
0
|
|
|
|
|
0
|
print "Feature ", $i + 1, " is constant ($sum), and will be ignored\n"; |
|
577
|
0
|
|
|
|
|
0
|
$self->{FEATURE_IGNORE}->Bit_On($i); |
|
578
|
|
|
|
|
|
|
} |
|
579
|
|
|
|
|
|
|
} |
|
580
|
|
|
|
|
|
|
# M is needed for both gis and iis |
|
581
|
|
|
|
|
|
|
# NEED_CORRECTION_FEATURE is for gis only |
|
582
|
78
|
|
|
|
|
186
|
$self->{M} = 0; |
|
583
|
78
|
|
|
|
|
132
|
$self->{NEED_CORRECTION_FEATURE} = 0; |
|
584
|
78
|
|
|
|
|
252
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
585
|
7784
|
100
|
|
|
|
19292
|
if ($self->{CLASSES}[$i]->Norm() > $self->{M}) { |
|
586
|
|
|
|
|
|
|
# higher nr_features_active found |
|
587
|
256
|
|
|
|
|
697
|
$self->{M} = $self->{CLASSES}[$i]->Norm(); |
|
588
|
256
|
|
|
|
|
675
|
$self->{NEED_CORRECTION_FEATURE} = 1; |
|
589
|
|
|
|
|
|
|
} |
|
590
|
|
|
|
|
|
|
} |
|
591
|
78
|
50
|
|
|
|
182
|
if ($debug) { |
|
592
|
0
|
|
|
|
|
0
|
print "M = $self->{M}\n"; |
|
593
|
|
|
|
|
|
|
} |
|
594
|
|
|
|
|
|
|
# set up a hash from m to classes HOL; and the correction_feature |
|
595
|
|
|
|
|
|
|
# CORRECTION_FEATURE FOR gis |
|
596
|
78
|
|
|
|
|
152
|
undef $self->{M_FEATURES_ACTIVE}; |
|
597
|
78
|
|
|
|
|
232
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
598
|
7784
|
100
|
|
|
|
19011
|
if ($self->{SCALER} eq "gis") { |
|
599
|
|
|
|
|
|
|
$self->{CORRECTION_FEATURE}[$i] = |
|
600
|
3595
|
|
|
|
|
9091
|
$self->{M} - $self->{CLASSES}[$i]->Norm(); |
|
601
|
|
|
|
|
|
|
} |
|
602
|
|
|
|
|
|
|
} |
|
603
|
78
|
50
|
|
|
|
224
|
if ($debug) { |
|
604
|
0
|
|
|
|
|
0
|
print "M = $self->{M}\n"; |
|
605
|
|
|
|
|
|
|
} |
|
606
|
|
|
|
|
|
|
# observed feature expectations |
|
607
|
78
|
100
|
|
|
|
196
|
if (!$self->{THIS_IS_A_SAMPLE}) { |
|
608
|
62
|
|
|
|
|
218
|
$self->E_reference(); |
|
609
|
|
|
|
|
|
|
} |
|
610
|
78
|
|
|
|
|
228
|
undef $self->{CLASSES_CHANGED}; |
|
611
|
|
|
|
|
|
|
} |
|
612
|
|
|
|
|
|
|
} |
|
613
|
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
# compute the class probabilities according to the parameters |
|
616
|
|
|
|
|
|
|
sub prepare_model { |
|
617
|
428
|
|
|
428
|
0
|
604
|
my($self) = @_; |
|
618
|
|
|
|
|
|
|
|
|
619
|
428
|
|
|
|
|
546
|
my ($x, |
|
620
|
|
|
|
|
|
|
$f); |
|
621
|
|
|
|
|
|
|
|
|
622
|
428
|
|
|
|
|
1366
|
$self->active_features(); |
|
623
|
428
|
100
|
|
|
|
1074
|
if ($self->{PARAMETERS_CHANGED}) { |
|
624
|
420
|
|
|
|
|
653
|
$self->{Z} = 0; |
|
625
|
420
|
|
|
|
|
1214
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
626
|
41984
|
|
|
|
|
56577
|
$self->{CLASS_LOG_WEIGHTS}[$x] = 0; |
|
627
|
41984
|
|
|
|
|
120520
|
for $f ($self->{CLASSES}[$x]->indices()) { |
|
628
|
|
|
|
|
|
|
$self->{CLASS_LOG_WEIGHTS}[$x] += $self->{PARAMETERS}[$f] * |
|
629
|
91446
|
|
|
|
|
290594
|
$self->{CLASSES}[$x]->weight($f); |
|
630
|
91446
|
50
|
|
|
|
222340
|
if ($f >= $self->{NR_FEATURES}) { |
|
631
|
0
|
|
|
|
|
0
|
print "alarm: wrong index: $f\n"; |
|
632
|
|
|
|
|
|
|
} |
|
633
|
|
|
|
|
|
|
} |
|
634
|
41984
|
100
|
66
|
|
|
200255
|
if ($self->{NEED_CORRECTION_FEATURE} && ($self->{SCALER} eq "gis")) { |
|
635
|
|
|
|
|
|
|
$self->{CLASS_LOG_WEIGHTS}[$x] += $self->{CORRECTION_FEATURE}[$x] * |
|
636
|
27695
|
|
|
|
|
53323
|
$self->{CORRECTION_PARAMETER}; |
|
637
|
|
|
|
|
|
|
} |
|
638
|
41984
|
|
|
|
|
76949
|
$self->{CLASS_EXP_WEIGHTS}[$x] = exp($self->{CLASS_LOG_WEIGHTS}[$x]); |
|
639
|
41984
|
|
|
|
|
115649
|
$self->{Z} += $self->{CLASS_EXP_WEIGHTS}[$x]; |
|
640
|
|
|
|
|
|
|
} |
|
641
|
|
|
|
|
|
|
print "prepare_model: \$Z is not a number: $self->{Z}\n" |
|
642
|
420
|
50
|
|
|
|
1237
|
unless is_float($self->{Z}); |
|
643
|
|
|
|
|
|
|
|
|
644
|
420
|
100
|
|
|
|
1175
|
if (!$self->{THIS_IS_A_SAMPLE}) { |
|
645
|
404
|
|
|
|
|
1045
|
$self->entropies(); |
|
646
|
|
|
|
|
|
|
} |
|
647
|
420
|
|
|
|
|
1286
|
$self->check(); |
|
648
|
420
|
|
|
|
|
1199
|
undef $self->{PARAMETERS_CHANGED}; |
|
649
|
|
|
|
|
|
|
} |
|
650
|
|
|
|
|
|
|
} |
|
651
|
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
sub prepare_sample { |
|
654
|
332
|
|
|
332
|
0
|
399
|
my($self) = @_; |
|
655
|
|
|
|
|
|
|
|
|
656
|
|
|
|
|
|
|
# expectations |
|
657
|
332
|
100
|
|
|
|
706
|
if ($self->{SCALER} eq "gis") { |
|
658
|
236
|
|
|
|
|
756
|
$self->E_loglinear(); |
|
659
|
|
|
|
|
|
|
} |
|
660
|
|
|
|
|
|
|
else { |
|
661
|
|
|
|
|
|
|
# A_{mj} |
|
662
|
96
|
|
|
|
|
256
|
$self->A(); |
|
663
|
|
|
|
|
|
|
} |
|
664
|
|
|
|
|
|
|
} |
|
665
|
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
|
|
667
|
|
|
|
|
|
|
# feature expectations for the MaxEnt distribution |
|
668
|
|
|
|
|
|
|
sub E_loglinear { |
|
669
|
236
|
|
|
236
|
0
|
327
|
my($self) = @_; |
|
670
|
|
|
|
|
|
|
|
|
671
|
236
|
|
|
|
|
302
|
my($x, |
|
672
|
|
|
|
|
|
|
$f, |
|
673
|
|
|
|
|
|
|
$vec, |
|
674
|
|
|
|
|
|
|
$weight, |
|
675
|
|
|
|
|
|
|
$Z); |
|
676
|
|
|
|
|
|
|
|
|
677
|
236
|
|
|
|
|
578
|
undef $self->{E_LOGLIN}; |
|
678
|
236
|
100
|
|
|
|
959
|
if ($self->{SAMPLING} eq "enum") { |
|
679
|
9
|
|
|
|
|
37
|
$vec = $VECTOR_PACKAGE->new($self->{NR_FEATURES}); |
|
680
|
9
|
|
|
|
|
22
|
$self->{Z} = 0; |
|
681
|
9
|
|
|
|
|
39
|
for ($x = 0; $x < 2 ** $self->{NR_FEATURES}; $x++) { |
|
682
|
18432
|
|
|
|
|
32991
|
$weight = $self->weight($vec); |
|
683
|
18432
|
|
|
|
|
48064
|
for $f ($vec->indices()) { |
|
684
|
103424
|
|
|
|
|
280939
|
$self->{E_LOGLIN}[$f] += $weight * $vec->weight($f); |
|
685
|
|
|
|
|
|
|
} |
|
686
|
|
|
|
|
|
|
$self->{E_LOGLIN}[$self->{NR_FEATURES}] += $weight * |
|
687
|
18432
|
|
|
|
|
65901
|
($self->{M} - $vec->Norm()); |
|
688
|
18432
|
|
|
|
|
25238
|
$self->{Z} += $weight; |
|
689
|
18432
|
|
|
|
|
45217
|
$vec->increment(); |
|
690
|
|
|
|
|
|
|
} |
|
691
|
9
|
|
|
|
|
40
|
for $f (0..$self->{NR_FEATURES}) { |
|
692
|
106
|
|
|
|
|
227
|
$self->{E_LOGLIN}[$f] /= $self->{Z}; |
|
693
|
|
|
|
|
|
|
} |
|
694
|
|
|
|
|
|
|
} |
|
695
|
|
|
|
|
|
|
else { # either corpus or mc sample |
|
696
|
227
|
|
|
|
|
854
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
697
|
22695
|
|
|
|
|
59286
|
for $f ($self->{CLASSES}[$x]->indices()) { |
|
698
|
|
|
|
|
|
|
$self->{E_LOGLIN}[$f] += $self->{CLASS_EXP_WEIGHTS}[$x] * |
|
699
|
48374
|
|
|
|
|
146590
|
$self->{CLASSES}[$x]->weight($f); |
|
700
|
|
|
|
|
|
|
} |
|
701
|
22695
|
50
|
|
|
|
58843
|
if ($self->{NEED_CORRECTION_FEATURE}) { |
|
702
|
|
|
|
|
|
|
$self->{E_LOGLIN}[$self->{NR_FEATURES}] += |
|
703
|
|
|
|
|
|
|
$self->{CLASS_EXP_WEIGHTS}[$x] * |
|
704
|
22695
|
|
|
|
|
71600
|
($self->{M} - $self->{CLASSES}[$x]->Norm()); |
|
705
|
|
|
|
|
|
|
} |
|
706
|
|
|
|
|
|
|
} |
|
707
|
227
|
|
|
|
|
561
|
for $f (0..$self->{NR_FEATURES}) { |
|
708
|
2671
|
|
|
|
|
4020
|
$self->{E_LOGLIN}[$f] /= $self->{Z}; |
|
709
|
|
|
|
|
|
|
} |
|
710
|
|
|
|
|
|
|
} |
|
711
|
|
|
|
|
|
|
} |
|
712
|
|
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
# observed feature expectations |
|
715
|
|
|
|
|
|
|
sub E_reference { |
|
716
|
62
|
|
|
62
|
0
|
101
|
my($self) = @_; |
|
717
|
|
|
|
|
|
|
|
|
718
|
62
|
|
|
|
|
116
|
my($x, |
|
719
|
|
|
|
|
|
|
$f, |
|
720
|
|
|
|
|
|
|
@sum); |
|
721
|
|
|
|
|
|
|
|
|
722
|
62
|
|
|
|
|
246
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
723
|
6200
|
|
|
|
|
15334
|
for $f ($self->{CLASSES}[$x]->indices()) { |
|
724
|
11765
|
|
|
|
|
33716
|
$sum[$f] += $self->{FREQ}[$x] * $self->{CLASSES}[$x]->weight($f); |
|
725
|
|
|
|
|
|
|
} |
|
726
|
6200
|
100
|
|
|
|
21104
|
if ($self->{SCALER} eq "gis") { |
|
727
|
|
|
|
|
|
|
$sum[$self->{NR_FEATURES}] += $self->{CORRECTION_FEATURE}[$x] * |
|
728
|
3100
|
|
|
|
|
9133
|
$self->{FREQ}[$x]; |
|
729
|
|
|
|
|
|
|
} |
|
730
|
|
|
|
|
|
|
} |
|
731
|
62
|
|
|
|
|
174
|
for $f (0..$self->{NR_FEATURES}) { |
|
732
|
886
|
100
|
|
|
|
1565
|
if ($sum[$f]) { |
|
733
|
855
|
|
|
|
|
1550
|
$self->{E_REF}[$f] = $sum[$f] / $self->{NR_EVENTS}; |
|
734
|
|
|
|
|
|
|
} |
|
735
|
|
|
|
|
|
|
} |
|
736
|
|
|
|
|
|
|
} |
|
737
|
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
# compute several entropies |
|
740
|
|
|
|
|
|
|
sub entropies { |
|
741
|
404
|
|
|
404
|
0
|
565
|
my($self) = @_; |
|
742
|
|
|
|
|
|
|
|
|
743
|
404
|
|
|
|
|
549
|
my ($i, |
|
744
|
|
|
|
|
|
|
$w, |
|
745
|
|
|
|
|
|
|
$log_w, |
|
746
|
|
|
|
|
|
|
$w_ref, |
|
747
|
|
|
|
|
|
|
$log_w_ref); |
|
748
|
|
|
|
|
|
|
|
|
749
|
404
|
|
|
|
|
609
|
$self->{H_p} = 0; |
|
750
|
404
|
|
|
|
|
540
|
$self->{H_cross} = 0; |
|
751
|
404
|
|
|
|
|
509
|
$self->{H_p_ref} = 0; |
|
752
|
404
|
|
|
|
|
502
|
$self->{KL} = 0; |
|
753
|
404
|
|
|
|
|
1134
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
754
|
40400
|
|
|
|
|
53151
|
$w = $self->{CLASS_EXP_WEIGHTS}[$i]; |
|
755
|
|
|
|
|
|
|
# we don't know whether $p > 0 |
|
756
|
40400
|
|
|
|
|
52602
|
$log_w = $self->{CLASS_LOG_WEIGHTS}[$i]; |
|
757
|
40400
|
|
|
|
|
57017
|
$w_ref = $self->{FREQ}[$i]; |
|
758
|
|
|
|
|
|
|
# we know that $p_ref > 0 |
|
759
|
40400
|
|
|
|
|
52474
|
$log_w_ref = log($w_ref); |
|
760
|
|
|
|
|
|
|
# update the sums |
|
761
|
40400
|
|
|
|
|
54828
|
$self->{H_p} -= $w * $log_w; |
|
762
|
40400
|
|
|
|
|
50657
|
$self->{H_cross} -= $w_ref * $log_w; |
|
763
|
40400
|
|
|
|
|
53466
|
$self->{KL} += $w_ref * ($log_w_ref - $log_w); |
|
764
|
40400
|
|
|
|
|
53250
|
$self->{H_p_ref} -= $w_ref * $log_w_ref; |
|
765
|
40400
|
50
|
|
|
|
121445
|
if ($w == 0) { |
|
766
|
0
|
|
|
|
|
0
|
$self->log_msg("entropies: skipping event $i (p^n($i) = 0)\n"); |
|
767
|
|
|
|
|
|
|
} |
|
768
|
|
|
|
|
|
|
} |
|
769
|
|
|
|
|
|
|
# normalise |
|
770
|
404
|
|
|
|
|
1026
|
$self->{H_p} = $self->{H_p} / $self->{Z} + log($self->{Z}); |
|
771
|
404
|
|
|
|
|
882
|
$self->{H_cross} = $self->{H_cross} / $self->{NR_EVENTS} + log($self->{Z}); |
|
772
|
|
|
|
|
|
|
$self->{KL} = $self->{KL} / $self->{NR_EVENTS} - log($self->{NR_EVENTS}) + |
|
773
|
404
|
|
|
|
|
958
|
log($self->{Z}); |
|
774
|
404
|
|
|
|
|
800
|
$self->{H_p_ref} = $self->{H_p_ref} / $self->{NR_EVENTS} + log($self->{NR_EVENTS}); |
|
775
|
404
|
|
|
|
|
1361
|
$self->{L} = -$self->{H_cross}; |
|
776
|
|
|
|
|
|
|
} |
|
777
|
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
# unnormalised p(x,y) |
|
780
|
|
|
|
|
|
|
# $x is required, $y is optional |
|
781
|
|
|
|
|
|
|
# $x->Size()+$y->Size() == $self->{NR_FEATURES} |
|
782
|
|
|
|
|
|
|
sub weight { |
|
783
|
77824
|
|
|
77824
|
0
|
129052
|
my($self, $x, $y) = @_; |
|
784
|
|
|
|
|
|
|
|
|
785
|
77824
|
|
|
|
|
80687
|
my ($f, |
|
786
|
|
|
|
|
|
|
$sum, |
|
787
|
|
|
|
|
|
|
$norm); |
|
788
|
|
|
|
|
|
|
|
|
789
|
77824
|
|
|
|
|
89352
|
$sum = 0; |
|
790
|
77824
|
|
|
|
|
186595
|
for $f ($x->indices()) { |
|
791
|
498688
|
50
|
|
|
|
1346787
|
if (!$self->{FEATURE_IGNORE}->bit_test($f)) { |
|
792
|
498688
|
|
|
|
|
1454974
|
$sum += $self->{PARAMETERS}[$f] * $x->weight($f); |
|
793
|
498688
|
50
|
|
|
|
1268936
|
if ($debug) { |
|
794
|
0
|
|
|
|
|
0
|
print "Current weight: $sum, current feature: $f\n"; |
|
795
|
|
|
|
|
|
|
} |
|
796
|
|
|
|
|
|
|
} |
|
797
|
|
|
|
|
|
|
} |
|
798
|
77824
|
|
|
|
|
253987
|
$norm = $x->Norm(); |
|
799
|
|
|
|
|
|
|
# if $y is defined, |
|
800
|
|
|
|
|
|
|
# then $x->Size()+$y->Size() == $self->{NR_FEATURES} should hold: |
|
801
|
77824
|
50
|
33
|
|
|
185428
|
if (defined($y) && (($x->Size() + $y->Size()) == $self->{NR_FEATURES})) { |
|
802
|
0
|
|
|
|
|
0
|
for $f ($y->indices()) { |
|
803
|
0
|
0
|
|
|
|
0
|
if (!$self->{FEATURE_IGNORE}->bit_test($f + $x->Size())) { |
|
804
|
0
|
|
|
|
|
0
|
$sum += $self->{PARAMETERS}[$f + $x->Size()] * |
|
805
|
|
|
|
|
|
|
$y->weight($f); |
|
806
|
0
|
0
|
|
|
|
0
|
if ($debug) { |
|
807
|
0
|
|
|
|
|
0
|
print "Current weight: $sum, current feature: $f\n"; |
|
808
|
|
|
|
|
|
|
} |
|
809
|
|
|
|
|
|
|
} |
|
810
|
|
|
|
|
|
|
} |
|
811
|
0
|
|
|
|
|
0
|
$norm += $y->Norm(); |
|
812
|
|
|
|
|
|
|
} |
|
813
|
77824
|
100
|
66
|
|
|
357723
|
if ($self->{NEED_CORRECTION_FEATURE} && ($self->{SCALER} eq "gis")) { |
|
814
|
18432
|
|
|
|
|
32979
|
$sum += ($self->{M} - $norm) * $self->{CORRECTION_PARAMETER}; |
|
815
|
|
|
|
|
|
|
} |
|
816
|
77824
|
|
|
|
|
168315
|
return(exp($sum)); |
|
817
|
|
|
|
|
|
|
} |
|
818
|
|
|
|
|
|
|
|
|
819
|
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
# computes the `a' coefficients of |
|
821
|
|
|
|
|
|
|
# \sum_{m=0}^{M} a_{m,j}^{(n)} e^{\alpha^{(n)}_j m} |
|
822
|
|
|
|
|
|
|
# according to the current distribution |
|
823
|
|
|
|
|
|
|
sub A { |
|
824
|
96
|
|
|
96
|
0
|
123
|
my($self) = @_; |
|
825
|
|
|
|
|
|
|
|
|
826
|
96
|
|
|
|
|
108
|
my($f, |
|
827
|
|
|
|
|
|
|
$m, |
|
828
|
|
|
|
|
|
|
$x, |
|
829
|
|
|
|
|
|
|
$weight, |
|
830
|
|
|
|
|
|
|
$vec, |
|
831
|
|
|
|
|
|
|
$class); |
|
832
|
|
|
|
|
|
|
|
|
833
|
96
|
|
|
|
|
937
|
undef $self->{A}; |
|
834
|
96
|
|
|
|
|
566
|
undef $self->{C}; |
|
835
|
96
|
100
|
|
|
|
213
|
if ($self->{SAMPLING} eq "enum") { |
|
836
|
8
|
|
|
|
|
27
|
undef $self->{Z}; |
|
837
|
8
|
|
|
|
|
29
|
$vec = $VECTOR_PACKAGE->new($self->{NR_FEATURES}); |
|
838
|
8
|
|
|
|
|
33
|
for ($x = 0; $x < 2 ** $self->{NR_FEATURES}; $x++) { |
|
839
|
59392
|
|
|
|
|
121944
|
$weight = $self->weight($vec); |
|
840
|
59392
|
|
|
|
|
159868
|
for $f ($vec->indices()) { |
|
841
|
395264
|
|
|
|
|
1054831
|
$self->{A}{$vec->Norm()}{$f} += $weight * $vec->weight($f); |
|
842
|
395264
|
|
|
|
|
1113796
|
$self->{C}{$vec->Norm()}{$f} += $vec->weight($f); |
|
843
|
|
|
|
|
|
|
} |
|
844
|
59392
|
|
|
|
|
138935
|
$self->{Z} += $weight; |
|
845
|
59392
|
50
|
|
|
|
112051
|
print "Z = $self->{Z}" unless is_float($self->{Z}); |
|
846
|
59392
|
|
|
|
|
184110
|
$vec->increment(); |
|
847
|
|
|
|
|
|
|
} |
|
848
|
|
|
|
|
|
|
} |
|
849
|
|
|
|
|
|
|
else { # mc or corpus |
|
850
|
88
|
|
|
|
|
276
|
for ($class = 0; $class < $self->{NR_CLASSES}; $class++) { |
|
851
|
8789
|
|
|
|
|
25068
|
for $f ($self->{CLASSES}[$class]->indices()) { |
|
852
|
|
|
|
|
|
|
$self->{A}{$self->{CLASSES}[$class]->Norm()}{$f} += |
|
853
|
|
|
|
|
|
|
$self->{CLASS_EXP_WEIGHTS}[$class] * |
|
854
|
22878
|
|
|
|
|
66984
|
$self->{CLASSES}[$class]->weight($f); |
|
855
|
|
|
|
|
|
|
$self->{C}{$self->{CLASSES}[$class]->Norm()}{$f} += |
|
856
|
22878
|
|
|
|
|
67247
|
$self->{CLASSES}[$class]->weight($f); |
|
857
|
|
|
|
|
|
|
} |
|
858
|
|
|
|
|
|
|
} |
|
859
|
|
|
|
|
|
|
} |
|
860
|
|
|
|
|
|
|
} |
|
861
|
|
|
|
|
|
|
|
|
862
|
|
|
|
|
|
|
|
|
863
|
|
|
|
|
|
|
# |
|
864
|
|
|
|
|
|
|
# Monte Carlo sampling with the Metropolis update |
|
865
|
|
|
|
|
|
|
# |
|
866
|
|
|
|
|
|
|
|
|
867
|
|
|
|
|
|
|
# returns heads up with probability $load |
|
868
|
|
|
|
|
|
|
sub loaded_die { |
|
869
|
4795
|
|
|
4795
|
0
|
5679
|
my($load) = @_; |
|
870
|
|
|
|
|
|
|
|
|
871
|
4795
|
100
|
|
|
|
12232
|
(rand() <= $load) ? 1 : 0; |
|
872
|
|
|
|
|
|
|
} |
|
873
|
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
|
|
875
|
|
|
|
|
|
|
# samples from the probability distribution of $other to create $self |
|
876
|
|
|
|
|
|
|
# we use the so-called Metropolis update R = h(new)/h(old) |
|
877
|
|
|
|
|
|
|
# Metropolis algorithm \cite{neal:probabilistic} |
|
878
|
|
|
|
|
|
|
sub mc { |
|
879
|
16
|
|
|
16
|
0
|
30
|
my($self, $other, $type) = @_; |
|
880
|
|
|
|
|
|
|
|
|
881
|
16
|
|
|
|
|
49
|
my($R, |
|
882
|
|
|
|
|
|
|
$weight, |
|
883
|
|
|
|
|
|
|
$state, |
|
884
|
|
|
|
|
|
|
$old_weight, |
|
885
|
|
|
|
|
|
|
$k, |
|
886
|
|
|
|
|
|
|
%events |
|
887
|
|
|
|
|
|
|
); |
|
888
|
|
|
|
|
|
|
|
|
889
|
16
|
|
|
|
|
827
|
srand(); |
|
890
|
|
|
|
|
|
|
# take some class from the sample space as initial state |
|
891
|
16
|
|
|
|
|
67
|
$state = $VECTOR_PACKAGE->new($self->{NR_FEATURES}); |
|
892
|
|
|
|
|
|
|
# make sure there are no constant features! |
|
893
|
16
|
|
|
|
|
79
|
$state->Fill(); |
|
894
|
16
|
|
|
|
|
79
|
$events{$state->to_Bin(' ')}++; |
|
895
|
16
|
|
|
|
|
89
|
$state->Empty(); |
|
896
|
16
|
|
|
|
|
23
|
$weight = 0; |
|
897
|
|
|
|
|
|
|
# iterate |
|
898
|
16
|
|
|
|
|
20
|
$k = 0; |
|
899
|
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
do { |
|
901
|
4795
|
|
|
|
|
5862
|
$old_weight = $weight; |
|
902
|
4795
|
100
|
|
|
|
11803
|
if ($state->bit_flip($k)) { |
|
903
|
1205
|
|
|
|
|
2220
|
$weight += $self->{PARAMETERS}[$k]; |
|
904
|
|
|
|
|
|
|
} |
|
905
|
|
|
|
|
|
|
else { |
|
906
|
3590
|
|
|
|
|
5517
|
$weight -= $self->{PARAMETERS}[$k]; |
|
907
|
|
|
|
|
|
|
} |
|
908
|
4795
|
|
|
|
|
6655
|
$R = exp($weight - $old_weight); |
|
909
|
4795
|
100
|
|
|
|
12107
|
if (!loaded_die(1 < $R ? 1 : $R)) { # stay at the old state |
|
|
|
100
|
|
|
|
|
|
|
910
|
2511
|
|
|
|
|
5821
|
$state->bit_flip($k); |
|
911
|
2511
|
|
|
|
|
3137
|
$weight = $old_weight; |
|
912
|
|
|
|
|
|
|
} |
|
913
|
|
|
|
|
|
|
else { # add state |
|
914
|
2284
|
|
|
|
|
6085
|
$events{$state->to_Bin(' ')}++; |
|
915
|
|
|
|
|
|
|
} |
|
916
|
4795
|
50
|
|
|
|
10245
|
if ($debug) { |
|
917
|
0
|
|
|
|
|
0
|
print $state->to_Bin(' '),"\t",scalar(keys(%events)),"\t$R\n"; |
|
918
|
|
|
|
|
|
|
} |
|
919
|
|
|
|
|
|
|
# next component |
|
920
|
4795
|
|
|
|
|
24514
|
$k = ($k + 1) % $self->{NR_FEATURES}; |
|
921
|
|
|
|
|
|
|
} until ((scalar(keys(%events)) == $SAMPLE_size) || |
|
922
|
16
|
|
66
|
|
|
24
|
(scalar(keys(%events)) == 2 ** $self->{NR_FEATURES})); |
|
923
|
|
|
|
|
|
|
|
|
924
|
16
|
|
|
|
|
263
|
for (keys(%events)) { |
|
925
|
1600
|
|
|
|
|
6703
|
push @{$self->{CLASSES}}, |
|
926
|
1600
|
|
|
|
|
1851
|
$VECTOR_PACKAGE->new_vec($self->{NR_FEATURES}, $_, $self->{VECTYPE}); |
|
927
|
|
|
|
|
|
|
} |
|
928
|
16
|
|
|
|
|
139
|
$self->{NR_CLASSES} = scalar(keys(%events)) - 1; |
|
929
|
|
|
|
|
|
|
|
|
930
|
16
|
|
|
|
|
49
|
$self->{CLASSES_CHANGED} = 1; |
|
931
|
16
|
|
|
|
|
459
|
$self->{PARAMETERS_CHANGED} = 1; |
|
932
|
|
|
|
|
|
|
} |
|
933
|
|
|
|
|
|
|
|
|
934
|
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
# |
|
936
|
|
|
|
|
|
|
# IIS |
|
937
|
|
|
|
|
|
|
# |
|
938
|
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
# Newton estimation according to (Abney 1997), Appendix B |
|
940
|
|
|
|
|
|
|
sub C_func { |
|
941
|
0
|
|
|
0
|
0
|
0
|
my($self, $j, $x) = @_; |
|
942
|
|
|
|
|
|
|
|
|
943
|
0
|
|
|
|
|
0
|
my($m, |
|
944
|
|
|
|
|
|
|
$s0, |
|
945
|
|
|
|
|
|
|
$s1, |
|
946
|
|
|
|
|
|
|
$a_x_m); |
|
947
|
|
|
|
|
|
|
|
|
948
|
0
|
|
|
|
|
0
|
$s0 = - $self->{NR_EVENTS} * $self->{E_REF}[$j]; |
|
949
|
0
|
|
|
|
|
0
|
$s1 = 0; |
|
950
|
0
|
|
|
|
|
0
|
for ($m = 1; $m <= $self->{M}; $m++) { |
|
951
|
0
|
0
|
|
|
|
0
|
if ($self->{"C"}{$m}{$j}) { |
|
952
|
0
|
|
|
|
|
0
|
$a_x_m = $self->{"C"}{$m}{$j} * exp($x * $m); |
|
953
|
0
|
|
|
|
|
0
|
$s0 += $a_x_m; |
|
954
|
0
|
|
|
|
|
0
|
$s1 += $m * $a_x_m; |
|
955
|
|
|
|
|
|
|
} |
|
956
|
|
|
|
|
|
|
} |
|
957
|
0
|
0
|
|
|
|
0
|
print "sum_func not a number: $s0\n" |
|
958
|
|
|
|
|
|
|
unless is_float($s0); |
|
959
|
0
|
0
|
|
|
|
0
|
print "sum_deriv not a number: $s1\n" |
|
960
|
|
|
|
|
|
|
unless is_float($s1); |
|
961
|
|
|
|
|
|
|
|
|
962
|
0
|
0
|
|
|
|
0
|
if ($s1 == 0) { |
|
963
|
0
|
|
|
|
|
0
|
return(0); |
|
964
|
|
|
|
|
|
|
} |
|
965
|
|
|
|
|
|
|
else { |
|
966
|
0
|
|
|
|
|
0
|
return($s0 / $s1); |
|
967
|
|
|
|
|
|
|
} |
|
968
|
|
|
|
|
|
|
} |
|
969
|
|
|
|
|
|
|
|
|
970
|
|
|
|
|
|
|
|
|
971
|
|
|
|
|
|
|
# Newton estimation according to (Della Pietra et al. 1997) |
|
972
|
|
|
|
|
|
|
sub A_func { |
|
973
|
3538
|
|
|
3538
|
0
|
7401
|
my($self, $j, $x) = @_; |
|
974
|
|
|
|
|
|
|
|
|
975
|
3538
|
|
|
|
|
3826
|
my($m, |
|
976
|
|
|
|
|
|
|
$sum_func, |
|
977
|
|
|
|
|
|
|
$sum_deriv, |
|
978
|
|
|
|
|
|
|
$a_x_m); |
|
979
|
|
|
|
|
|
|
|
|
980
|
3538
|
|
|
|
|
4987
|
$sum_func = -$self->{E_REF}[$j] * $self->{Z}; |
|
981
|
3538
|
|
|
|
|
3432
|
$sum_deriv = 0; |
|
982
|
3538
|
|
|
|
|
7952
|
for ($m = 1; $m <= $self->{M}; $m++) { |
|
983
|
45279
|
100
|
|
|
|
126808
|
if ($self->{"A"}{$m}{$j}) { |
|
984
|
21560
|
|
|
|
|
41114
|
$a_x_m = $self->{"A"}{$m}{$j} * exp($x * $m); |
|
985
|
21560
|
|
|
|
|
23045
|
$sum_func += $a_x_m; |
|
986
|
21560
|
|
|
|
|
50776
|
$sum_deriv += $m * $a_x_m; |
|
987
|
|
|
|
|
|
|
} |
|
988
|
|
|
|
|
|
|
} |
|
989
|
3538
|
50
|
|
|
|
5733
|
if ($sum_deriv == 0) { |
|
990
|
0
|
|
|
|
|
0
|
return(0); |
|
991
|
|
|
|
|
|
|
} |
|
992
|
|
|
|
|
|
|
else { |
|
993
|
3538
|
|
|
|
|
17901
|
return($sum_func / $sum_deriv); |
|
994
|
|
|
|
|
|
|
} |
|
995
|
|
|
|
|
|
|
} |
|
996
|
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
|
|
998
|
|
|
|
|
|
|
# solves \alpha from |
|
999
|
|
|
|
|
|
|
# \sum_{m=0}^{M} a_{m,j}^{(n)} e^{\alpha^{(n)}_j m}=0 |
|
1000
|
|
|
|
|
|
|
sub iis_estimate_with_newton { |
|
1001
|
1103
|
|
|
1103
|
0
|
1399
|
my($self, $i) = @_; |
|
1002
|
|
|
|
|
|
|
|
|
1003
|
1103
|
|
|
|
|
1153
|
my($x, |
|
1004
|
|
|
|
|
|
|
$old_x, |
|
1005
|
|
|
|
|
|
|
$deriv_res, |
|
1006
|
|
|
|
|
|
|
$func_res, |
|
1007
|
|
|
|
|
|
|
$k); |
|
1008
|
|
|
|
|
|
|
|
|
1009
|
|
|
|
|
|
|
# $x = log(0) |
|
1010
|
1103
|
|
|
|
|
1136
|
$x = 0; |
|
1011
|
1103
|
|
|
|
|
1118
|
$k = 0; |
|
1012
|
|
|
|
|
|
|
|
|
1013
|
|
|
|
|
|
|
# do newton's method |
|
1014
|
1103
|
|
66
|
|
|
1210
|
do { |
|
1015
|
|
|
|
|
|
|
# save old x |
|
1016
|
3538
|
|
|
|
|
4086
|
$old_x = $x; |
|
1017
|
|
|
|
|
|
|
# compute new x |
|
1018
|
3538
|
100
|
|
|
|
6560
|
if ($self->{SAMPLING} eq "enum") { |
|
1019
|
|
|
|
|
|
|
# (DDL 1997) |
|
1020
|
504
|
|
|
|
|
912
|
$x -= $self->A_func($i, $x); |
|
1021
|
|
|
|
|
|
|
} |
|
1022
|
|
|
|
|
|
|
else { |
|
1023
|
|
|
|
|
|
|
# sample -> (Abney 1997) |
|
1024
|
3034
|
|
|
|
|
6113
|
$x -= $self->A_func($i, $x); |
|
1025
|
|
|
|
|
|
|
} |
|
1026
|
|
|
|
|
|
|
} until ((abs($x - $old_x) <= $NEWTON_min) || |
|
1027
|
|
|
|
|
|
|
($k++ > $NEWTON_max_it)); |
|
1028
|
1103
|
50
|
|
|
|
2642
|
if ($debug) { |
|
1029
|
0
|
|
|
|
|
0
|
print "Estimated gamma_$i with Newton's method: $x\n"; |
|
1030
|
|
|
|
|
|
|
} |
|
1031
|
1103
|
|
|
|
|
3008
|
return($x); |
|
1032
|
|
|
|
|
|
|
} |
|
1033
|
|
|
|
|
|
|
|
|
1034
|
|
|
|
|
|
|
|
|
1035
|
|
|
|
|
|
|
# updates parameter $i |
|
1036
|
|
|
|
|
|
|
sub gamma { |
|
1037
|
332
|
|
|
332
|
0
|
497
|
my($self, $sample) = @_; |
|
1038
|
|
|
|
|
|
|
|
|
1039
|
332
|
|
|
|
|
437
|
my($f); |
|
1040
|
|
|
|
|
|
|
|
|
1041
|
332
|
|
|
|
|
865
|
for $f (0..$self->{NR_FEATURES} - 1) { |
|
1042
|
3644
|
50
|
|
|
|
9846
|
if (!$self->{FEATURE_IGNORE}->bit_test($f)) { |
|
1043
|
3644
|
100
|
|
|
|
6768
|
if ($self->{SCALER} eq "gis") { |
|
1044
|
|
|
|
|
|
|
$self->{PARAMETERS}[$f] += |
|
1045
|
2541
|
|
|
|
|
7796
|
log($self->{E_REF}[$f] / $sample->{E_LOGLIN}[$f]) / $sample->{M}; |
|
1046
|
|
|
|
|
|
|
} |
|
1047
|
|
|
|
|
|
|
else { |
|
1048
|
1103
|
|
|
|
|
2405
|
$self->{PARAMETERS}[$f] += |
|
1049
|
|
|
|
|
|
|
$sample->iis_estimate_with_newton($f); |
|
1050
|
|
|
|
|
|
|
} |
|
1051
|
|
|
|
|
|
|
} |
|
1052
|
|
|
|
|
|
|
} |
|
1053
|
|
|
|
|
|
|
|
|
1054
|
332
|
50
|
66
|
|
|
1409
|
if (($self->{SCALER} eq "gis") && ($self->{NEED_CORRECTION_FEATURE})) { |
|
1055
|
|
|
|
|
|
|
$self->{CORRECTION_PARAMETER} += |
|
1056
|
|
|
|
|
|
|
log($self->{E_REF}[$self->{NR_FEATURES}] / |
|
1057
|
236
|
|
|
|
|
801
|
$sample->{E_LOGLIN}[$self->{NR_FEATURES}]) / $self->{M}; |
|
1058
|
|
|
|
|
|
|
} |
|
1059
|
|
|
|
|
|
|
} |
|
1060
|
|
|
|
|
|
|
|
|
1061
|
|
|
|
|
|
|
|
|
1062
|
|
|
|
|
|
|
# the iterative scaling algorithms |
|
1063
|
|
|
|
|
|
|
sub scale { |
|
1064
|
22
|
|
|
22
|
1
|
94
|
my($self, $sampling, $scaler) = @_; |
|
1065
|
|
|
|
|
|
|
|
|
1066
|
22
|
|
|
|
|
40
|
my($k, |
|
1067
|
|
|
|
|
|
|
$i, |
|
1068
|
|
|
|
|
|
|
$kl, |
|
1069
|
|
|
|
|
|
|
$old_kl, |
|
1070
|
|
|
|
|
|
|
$diff, |
|
1071
|
|
|
|
|
|
|
$sample, |
|
1072
|
|
|
|
|
|
|
$old_correction_parameter, |
|
1073
|
|
|
|
|
|
|
@old_parameters); |
|
1074
|
|
|
|
|
|
|
|
|
1075
|
22
|
100
|
|
|
|
51
|
if ($sampling) { |
|
1076
|
10
|
|
|
|
|
26
|
$self->{SAMPLING} = $sampling; |
|
1077
|
|
|
|
|
|
|
} |
|
1078
|
22
|
100
|
|
|
|
69
|
if ($scaler) { |
|
1079
|
10
|
|
|
|
|
25
|
$self->{SCALER} = $scaler; |
|
1080
|
|
|
|
|
|
|
} |
|
1081
|
22
|
50
|
66
|
|
|
119
|
if (($self->{SAMPLING} eq "enum") && ($self->{VECTYPE} eq "integer")) { |
|
1082
|
0
|
|
|
|
|
0
|
$self->die("Cannot enumerate integer vectors\n"); |
|
1083
|
|
|
|
|
|
|
} |
|
1084
|
22
|
50
|
66
|
|
|
90
|
if (($self->{SAMPLING} eq "mc") && ($self->{VECTYPE} eq "integer")) { |
|
1085
|
0
|
|
|
|
|
0
|
$self->die("Cannot sample from integer vector space\n"); |
|
1086
|
|
|
|
|
|
|
} |
|
1087
|
|
|
|
|
|
|
|
|
1088
|
22
|
|
|
|
|
91
|
$self->init_parameters(); |
|
1089
|
22
|
|
|
|
|
81
|
$self->prepare_model(); |
|
1090
|
22
|
|
|
|
|
429
|
$self->log_msg("scale($self->{SCALER}, $self->{SAMPLING}, $self->{VECTYPE}): H(p_ref)=$self->{H_p_ref}\nit.\tD(p_ref||p)\t\tH(p)\t\t\tL(p_ref,p)\t\ttime\n0\t$self->{KL}\t$self->{H_p}\t$self->{L}\t" . time() . "\n"); |
|
1091
|
22
|
|
|
|
|
35
|
$k = 0; |
|
1092
|
22
|
|
|
|
|
43
|
$kl = 1e99; |
|
1093
|
22
|
|
66
|
|
|
30
|
do { |
|
|
|
|
66
|
|
|
|
|
|
1094
|
|
|
|
|
|
|
# store parameters for reverting if converging stops |
|
1095
|
332
|
|
|
|
|
436
|
@old_parameters = @{$self->{PARAMETERS}}; |
|
|
332
|
|
|
|
|
2038
|
|
|
1096
|
332
|
|
|
|
|
650
|
$old_correction_parameter = $self->{CORRECTION_PARAMETER}; |
|
1097
|
332
|
100
|
|
|
|
720
|
if ($sample) { |
|
1098
|
310
|
|
|
|
|
1018
|
$sample->DESTROY(); |
|
1099
|
|
|
|
|
|
|
} |
|
1100
|
332
|
|
|
|
|
836
|
$sample = $self->sample(); |
|
1101
|
332
|
|
|
|
|
1027
|
$self->gamma($sample); |
|
1102
|
332
|
|
|
|
|
582
|
$self->{PARAMETERS_CHANGED} = 1; |
|
1103
|
332
|
|
|
|
|
788
|
$self->prepare_model(); |
|
1104
|
332
|
|
|
|
|
609
|
$diff = $kl - $self->{KL}; |
|
1105
|
332
|
|
|
|
|
498
|
$kl = $self->{KL}; |
|
1106
|
|
|
|
|
|
|
|
|
1107
|
332
|
|
|
|
|
414
|
$k++; |
|
1108
|
332
|
|
|
|
|
3922
|
$self->log_msg("$k\t$self->{KL}\t$self->{H_p}\t$self->{L}\t" . time() . "\n"); |
|
1109
|
332
|
50
|
|
|
|
866
|
if ($debug) { |
|
1110
|
0
|
|
|
|
|
0
|
$self->check(); |
|
1111
|
|
|
|
|
|
|
} |
|
1112
|
332
|
100
|
|
|
|
726
|
if ($diff < 0) { |
|
1113
|
10
|
|
|
|
|
31
|
$self->log_msg("Scaling is not converging (anymore); will revert parameters!\n"); |
|
1114
|
|
|
|
|
|
|
# restore old parameters |
|
1115
|
10
|
|
|
|
|
35
|
$self->{PARAMETERS} = \@old_parameters; |
|
1116
|
10
|
|
|
|
|
26
|
$self->{CORRECTION_PARAMETER} = $old_correction_parameter; |
|
1117
|
10
|
|
|
|
|
18
|
$self->{PARAMETERS_CHANGED} = 1; |
|
1118
|
10
|
|
|
|
|
27
|
$self->prepare_model(); |
|
1119
|
|
|
|
|
|
|
} |
|
1120
|
332
|
50
|
|
|
|
9036
|
if ($cntrl_backslash_pressed) { |
|
1121
|
0
|
|
|
|
|
0
|
$self->dump(); |
|
1122
|
0
|
|
|
|
|
0
|
$cntrl_backslash_pressed = 0; |
|
1123
|
|
|
|
|
|
|
} |
|
1124
|
|
|
|
|
|
|
} until ($diff <= $KL_min || ($k > $KL_max_it) || ($diff < 0)); |
|
1125
|
|
|
|
|
|
|
} |
|
1126
|
|
|
|
|
|
|
|
|
1127
|
|
|
|
|
|
|
|
|
1128
|
|
|
|
|
|
|
# |
|
1129
|
|
|
|
|
|
|
# Field Induction Algorithm |
|
1130
|
|
|
|
|
|
|
# |
|
1131
|
|
|
|
|
|
|
|
|
1132
|
|
|
|
|
|
|
# add feature $g to $self |
|
1133
|
|
|
|
|
|
|
sub add_candidate { |
|
1134
|
28
|
|
|
28
|
0
|
45
|
my($self, $candidates, $g) = @_; |
|
1135
|
|
|
|
|
|
|
|
|
1136
|
28
|
|
|
|
|
39
|
my($i); |
|
1137
|
|
|
|
|
|
|
|
|
1138
|
28
|
|
|
|
|
57
|
$self->{NR_FEATURES}++; |
|
1139
|
28
|
|
|
|
|
102
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
1140
|
|
|
|
|
|
|
$self->{CLASSES}[$i]->insert_column($g, |
|
1141
|
2800
|
|
|
|
|
7938
|
$candidates->{CANDIDATES}[$i]->weight($g)); |
|
1142
|
|
|
|
|
|
|
} |
|
1143
|
28
|
100
|
|
|
|
90
|
if ($self->{SCALER} eq "gis") { |
|
1144
|
14
|
|
|
|
|
44
|
$self->{PARAMETERS}[$self->{NR_FEATURES} - 1] = 1; |
|
1145
|
|
|
|
|
|
|
} |
|
1146
|
|
|
|
|
|
|
else { |
|
1147
|
14
|
|
|
|
|
56
|
$self->{PARAMETERS}[$self->{NR_FEATURES} - 1] = $candidates->{ALPHA}[$g]; |
|
1148
|
|
|
|
|
|
|
} |
|
1149
|
28
|
|
|
|
|
38
|
push @{$self->{FEATURE_NAMES}}, $candidates->{CANDIDATE_NAMES}[$g]; |
|
|
28
|
|
|
|
|
134
|
|
|
1150
|
28
|
|
|
|
|
45
|
$self->{PARAMETERS_CHANGED} = 1; |
|
1151
|
28
|
|
|
|
|
45
|
$self->{CLASSES_CHANGED} = 1; |
|
1152
|
28
|
|
|
|
|
74
|
$self->prepare_model(); |
|
1153
|
|
|
|
|
|
|
} |
|
1154
|
|
|
|
|
|
|
|
|
1155
|
|
|
|
|
|
|
|
|
1156
|
|
|
|
|
|
|
# remove the last column |
|
1157
|
|
|
|
|
|
|
sub remove_candidate { |
|
1158
|
20
|
|
|
20
|
0
|
138
|
my($self) = @_; |
|
1159
|
|
|
|
|
|
|
|
|
1160
|
20
|
|
|
|
|
27
|
my($i); |
|
1161
|
|
|
|
|
|
|
|
|
1162
|
20
|
|
|
|
|
61
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
1163
|
|
|
|
|
|
|
# substitute offset $g length 1 by nothing |
|
1164
|
2000
|
|
|
|
|
5046
|
$self->{CLASSES}[$i]->delete_column($self->{NR_FEATURES}-1); |
|
1165
|
|
|
|
|
|
|
} |
|
1166
|
20
|
|
|
|
|
31
|
pop @{$self->{PARAMETERS}}; |
|
|
20
|
|
|
|
|
43
|
|
|
1167
|
20
|
|
|
|
|
32
|
pop @{$self->{FEATURE_NAMES}}; |
|
|
20
|
|
|
|
|
54
|
|
|
1168
|
20
|
|
|
|
|
45
|
$self->{NR_FEATURES}--; |
|
1169
|
20
|
|
|
|
|
36
|
$self->{PARAMETERS_CHANGED} = 1; |
|
1170
|
20
|
|
|
|
|
30
|
$self->{CLASSES_CHANGED} = 1; |
|
1171
|
20
|
|
|
|
|
52
|
$self->prepare_model(); |
|
1172
|
|
|
|
|
|
|
} |
|
1173
|
|
|
|
|
|
|
|
|
1174
|
|
|
|
|
|
|
|
|
1175
|
|
|
|
|
|
|
# checks for $event, if not there adds it, otherwise increases its {FREQ} |
|
1176
|
|
|
|
|
|
|
sub add_event { |
|
1177
|
0
|
|
|
0
|
0
|
0
|
my($self, $event) = @_; |
|
1178
|
|
|
|
|
|
|
|
|
1179
|
0
|
|
|
|
|
0
|
my($i, |
|
1180
|
|
|
|
|
|
|
$found); |
|
1181
|
|
|
|
|
|
|
|
|
1182
|
0
|
|
|
|
|
0
|
$found = 0; |
|
1183
|
0
|
|
|
|
|
0
|
for ($i = 0; $i < $self->{NR_CLASSES}; $i++) { |
|
1184
|
0
|
|
|
|
|
0
|
$found = ($event->Compare($self->{CLASSES}[$i]) == 0); |
|
1185
|
0
|
0
|
|
|
|
0
|
if ($found) { |
|
1186
|
0
|
|
|
|
|
0
|
$self->{FREQ}[$i]++; |
|
1187
|
0
|
|
|
|
|
0
|
last; |
|
1188
|
|
|
|
|
|
|
} |
|
1189
|
|
|
|
|
|
|
} |
|
1190
|
0
|
0
|
|
|
|
0
|
if (!$found) { |
|
1191
|
0
|
|
|
|
|
0
|
$self->{CLASSES}[$self->{NR_CLASSES}] = $event; |
|
1192
|
0
|
|
|
|
|
0
|
$self->{FREQ}[$self->{NR_CLASSES}] = 1; |
|
1193
|
0
|
|
|
|
|
0
|
$self->{NR_CLASSES}++; |
|
1194
|
|
|
|
|
|
|
} |
|
1195
|
0
|
|
|
|
|
0
|
$self->{NR_EVENTS}++; |
|
1196
|
|
|
|
|
|
|
} |
|
1197
|
|
|
|
|
|
|
|
|
1198
|
|
|
|
|
|
|
|
|
1199
|
|
|
|
|
|
|
# computes the gain for all $candidates |
|
1200
|
|
|
|
|
|
|
sub gain { |
|
1201
|
8
|
|
|
8
|
0
|
149
|
my($self, $candidates) = @_; |
|
1202
|
|
|
|
|
|
|
|
|
1203
|
8
|
|
|
|
|
14
|
my($c, |
|
1204
|
|
|
|
|
|
|
$x, |
|
1205
|
|
|
|
|
|
|
$kl, |
|
1206
|
|
|
|
|
|
|
$below, |
|
1207
|
|
|
|
|
|
|
$above, |
|
1208
|
|
|
|
|
|
|
$sum_p_ref, |
|
1209
|
|
|
|
|
|
|
$sum_p); |
|
1210
|
|
|
|
|
|
|
|
|
1211
|
8
|
|
|
|
|
27
|
$candidates->{MAX_GAIN} = 0; |
|
1212
|
8
|
|
|
|
|
20
|
$candidates->{BEST_CAND} = 0; |
|
1213
|
8
|
|
|
|
|
39
|
for ($c = 0; $c < $candidates->{NR_CANDIDATES}; $c++) { |
|
1214
|
24
|
100
|
|
|
|
89
|
if (!$candidates->{ADDED}{$c}) { |
|
1215
|
20
|
|
|
|
|
29
|
$sum_p_ref = 0; |
|
1216
|
20
|
|
|
|
|
30
|
$sum_p = 0; |
|
1217
|
20
|
|
|
|
|
60
|
for ($x = 0; $x < $self->{NR_CLASSES}; $x++) { |
|
1218
|
2000
|
100
|
|
|
|
5854
|
if ($candidates->{CANDIDATES}[$x]->bit_test($c)) { |
|
1219
|
238
|
|
|
|
|
324
|
$sum_p += $self->{CLASS_EXP_WEIGHTS}[$x]; |
|
1220
|
238
|
|
|
|
|
630
|
$sum_p_ref += $self->{FREQ}[$x]; |
|
1221
|
|
|
|
|
|
|
} |
|
1222
|
|
|
|
|
|
|
} |
|
1223
|
20
|
|
|
|
|
33
|
$sum_p /= $self->{Z}; |
|
1224
|
20
|
|
|
|
|
35
|
$sum_p_ref /= $self->{NR_EVENTS}; |
|
1225
|
20
|
|
|
|
|
37
|
$above = $sum_p_ref * (1 - $sum_p); |
|
1226
|
20
|
|
|
|
|
223
|
$below = $sum_p * (1 - $sum_p_ref); |
|
1227
|
20
|
50
|
|
|
|
68
|
if ($above * $below > 0) { |
|
1228
|
20
|
|
|
|
|
75
|
$candidates->{ALPHA}[$c] = log($above / $below); |
|
1229
|
|
|
|
|
|
|
} |
|
1230
|
|
|
|
|
|
|
else { |
|
1231
|
0
|
|
|
|
|
0
|
$self->die("Cannot take log of negative/zero value: $above / $below\n"); |
|
1232
|
|
|
|
|
|
|
} |
|
1233
|
|
|
|
|
|
|
# temporarily add feature to classes and compute $gain |
|
1234
|
20
|
|
|
|
|
37
|
$kl = $self->{KL}; |
|
1235
|
20
|
|
|
|
|
101
|
$self->add_candidate($candidates, $c); |
|
1236
|
20
|
|
|
|
|
84
|
$candidates->{GAIN}[$c] = $kl - $self->{KL}; |
|
1237
|
20
|
|
|
|
|
254
|
$self->log_msg("G($c, $candidates->{ALPHA}[$c]) = $candidates->{GAIN}[$c]\n"); |
|
1238
|
20
|
100
|
|
|
|
79
|
if (($candidates->{MAX_GAIN} <= $candidates->{GAIN}[$c])) { |
|
1239
|
5
|
|
|
|
|
14
|
$candidates->{MAX_GAIN} = $candidates->{GAIN}[$c]; |
|
1240
|
5
|
|
|
|
|
11
|
$candidates->{BEST_CAND} = $c; |
|
1241
|
|
|
|
|
|
|
} |
|
1242
|
|
|
|
|
|
|
# remove the feature |
|
1243
|
20
|
|
|
|
|
73
|
$self->remove_candidate(); |
|
1244
|
|
|
|
|
|
|
} |
|
1245
|
|
|
|
|
|
|
} |
|
1246
|
|
|
|
|
|
|
} |
|
1247
|
|
|
|
|
|
|
|
|
1248
|
|
|
|
|
|
|
|
|
1249
|
|
|
|
|
|
|
# adds the $n best candidates |
|
1250
|
|
|
|
|
|
|
sub fi { |
|
1251
|
4
|
|
|
4
|
1
|
27
|
my($self, $scaler, $candidates, $n, $sample) = @_; |
|
1252
|
|
|
|
|
|
|
|
|
1253
|
4
|
|
|
|
|
5
|
my ($i, |
|
1254
|
|
|
|
|
|
|
$kl); |
|
1255
|
|
|
|
|
|
|
|
|
1256
|
4
|
|
|
|
|
29
|
$self->log_msg("fi($scaler, $sample, $n, $self->{VECTYPE})\n"); |
|
1257
|
4
|
50
|
|
|
|
13
|
if ($scaler) { |
|
1258
|
4
|
|
|
|
|
48
|
$self->{SCALER} = $scaler; |
|
1259
|
|
|
|
|
|
|
} |
|
1260
|
4
|
50
|
|
|
|
14
|
if ($sample) { |
|
1261
|
4
|
|
|
|
|
12
|
$self->{SAMPLING} = $sample; |
|
1262
|
|
|
|
|
|
|
} |
|
1263
|
|
|
|
|
|
|
|
|
1264
|
4
|
50
|
|
|
|
16
|
if ($self->{NR_CLASSES} != $candidates->{NR_CLASSES}) { |
|
1265
|
0
|
|
|
|
|
0
|
$self->die("Candidates have the wrong number of events\n"); |
|
1266
|
|
|
|
|
|
|
} |
|
1267
|
4
|
|
|
|
|
18
|
$self->scale(); |
|
1268
|
4
|
|
|
|
|
15
|
$kl = $self->{KL}; |
|
1269
|
4
|
50
|
|
|
|
20
|
$n = ($n > $candidates->{NR_CANDIDATES}) ? $candidates->{NR_CANDIDATES} : $n; |
|
1270
|
4
|
|
|
|
|
14
|
for ($i = 0; $i < $n; $i++) { |
|
1271
|
8
|
|
|
|
|
45
|
$self->gain($candidates); |
|
1272
|
8
|
|
|
|
|
52
|
$self->add_candidate($candidates, $candidates->{BEST_CAND}); |
|
1273
|
8
|
|
|
|
|
39
|
$candidates->{ADDED}{$candidates->{BEST_CAND}} = 1; |
|
1274
|
8
|
|
|
|
|
42
|
$self->log_msg("Adding candidate $candidates->{BEST_CAND}\n"); |
|
1275
|
8
|
|
|
|
|
37
|
$self->scale(); |
|
1276
|
8
|
|
|
|
|
75
|
$self->log_msg("Actual gain: " . ($self->{KL} - $kl) . "\n"); |
|
1277
|
8
|
|
|
|
|
37
|
$kl = $self->{KL}; |
|
1278
|
|
|
|
|
|
|
} |
|
1279
|
4
|
|
|
|
|
22
|
return(1); |
|
1280
|
|
|
|
|
|
|
} |
|
1281
|
|
|
|
|
|
|
|
|
1282
|
|
|
|
|
|
|
|
|
1283
|
|
|
|
|
|
|
# |
|
1284
|
|
|
|
|
|
|
# Routines for classification, only binary features! |
|
1285
|
|
|
|
|
|
|
# |
|
1286
|
|
|
|
|
|
|
|
|
1287
|
|
|
|
|
|
|
# context features are 0 .. $n-1 |
|
1288
|
|
|
|
|
|
|
# $x is a vector, $sampling |
|
1289
|
|
|
|
|
|
|
sub classify { |
|
1290
|
128
|
|
|
128
|
0
|
618
|
my($self, $x) = @_; |
|
1291
|
|
|
|
|
|
|
|
|
1292
|
128
|
|
|
|
|
172
|
my($y, |
|
1293
|
|
|
|
|
|
|
$sum, |
|
1294
|
|
|
|
|
|
|
$i, |
|
1295
|
|
|
|
|
|
|
$weight, |
|
1296
|
|
|
|
|
|
|
$best_class, |
|
1297
|
|
|
|
|
|
|
$best_weight); |
|
1298
|
|
|
|
|
|
|
|
|
1299
|
128
|
|
|
|
|
448
|
$self->log_msg("classify(" . $x->to_Bin('') . ")\n"); |
|
1300
|
128
|
|
|
|
|
357
|
$sum = 0; |
|
1301
|
|
|
|
|
|
|
# use every possible completion of $x to compute $sum |
|
1302
|
|
|
|
|
|
|
# allocate a class vector |
|
1303
|
128
|
|
|
|
|
666
|
$y = $VECTOR_PACKAGE->new($self->{NR_FEATURES} - $x->Size()); |
|
1304
|
128
|
|
|
|
|
201
|
$best_weight = 0; |
|
1305
|
|
|
|
|
|
|
# for every possible $y |
|
1306
|
128
|
|
|
|
|
406
|
for ($i = 0; $i < 2 ** $y->Size(); $i++) { |
|
1307
|
|
|
|
|
|
|
# compute p(x,y) which proportional to p(y|x) (I hope) |
|
1308
|
0
|
|
|
|
|
0
|
$weight = $self->weight($x, $y); |
|
1309
|
0
|
0
|
|
|
|
0
|
if ($weight > $best_weight) { |
|
1310
|
0
|
|
|
|
|
0
|
$best_class = $y; |
|
1311
|
0
|
|
|
|
|
0
|
$best_weight = $weight; |
|
1312
|
0
|
0
|
|
|
|
0
|
if ($debug) { |
|
1313
|
0
|
|
|
|
|
0
|
print "$i\t", $y->to_Bin(''), "\t$weight\n"; |
|
1314
|
|
|
|
|
|
|
} |
|
1315
|
|
|
|
|
|
|
} |
|
1316
|
0
|
|
|
|
|
0
|
$y->increment(); |
|
1317
|
|
|
|
|
|
|
} |
|
1318
|
128
|
|
|
|
|
492
|
return($best_class, $best_weight); |
|
1319
|
|
|
|
|
|
|
} |
|
1320
|
|
|
|
|
|
|
|
|
1321
|
|
|
|
|
|
|
|
|
1322
|
|
|
|
|
|
|
1; |
|
1323
|
|
|
|
|
|
|
|
|
1324
|
|
|
|
|
|
|
__END__ |