| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::Distributions; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
614
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
32
|
|
|
4
|
1
|
|
|
1
|
|
5
|
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK); |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
78
|
|
|
5
|
1
|
|
|
1
|
|
7
|
use constant PI => 3.1415926536; |
|
|
1
|
|
|
|
|
5
|
|
|
|
1
|
|
|
|
|
76
|
|
|
6
|
1
|
|
|
1
|
|
4
|
use constant SIGNIFICANT => 5; # number of significant digits to be returned |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
2859
|
|
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
require Exporter; |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
@ISA = qw(Exporter AutoLoader); |
|
11
|
|
|
|
|
|
|
# Items to export into callers namespace by default. Note: do not export |
|
12
|
|
|
|
|
|
|
# names by default without a very good reason. Use EXPORT_OK instead. |
|
13
|
|
|
|
|
|
|
# Do not simply export all your public functions/methods/constants. |
|
14
|
|
|
|
|
|
|
@EXPORT_OK = qw(chisqrdistr tdistr fdistr udistr uprob chisqrprob tprob fprob); |
|
15
|
|
|
|
|
|
|
$VERSION = '1.02'; |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
# Preloaded methods go here. |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
sub chisqrdistr { # Percentage points X^2(x^2,n) |
|
20
|
1
|
|
|
1
|
0
|
46
|
my ($n, $p) = @_; |
|
21
|
1
|
50
|
33
|
|
|
11
|
if ($n <= 0 || abs($n) - abs(int($n)) != 0) { |
|
22
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; # degree of freedom |
|
23
|
|
|
|
|
|
|
} |
|
24
|
1
|
50
|
33
|
|
|
10
|
if ($p <= 0 || $p > 1) { |
|
25
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
26
|
|
|
|
|
|
|
} |
|
27
|
1
|
|
|
|
|
7
|
return precision_string(_subchisqr($n, $p)); |
|
28
|
|
|
|
|
|
|
} |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
sub udistr { # Percentage points N(0,1^2) |
|
31
|
1
|
|
|
1
|
0
|
32
|
my ($p) = (@_); |
|
32
|
1
|
50
|
33
|
|
|
9
|
if ($p > 1 || $p <= 0) { |
|
33
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
34
|
|
|
|
|
|
|
} |
|
35
|
1
|
|
|
|
|
5
|
return precision_string(_subu($p)); |
|
36
|
|
|
|
|
|
|
} |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
sub tdistr { # Percentage points t(x,n) |
|
39
|
1
|
|
|
1
|
0
|
28
|
my ($n, $p) = @_; |
|
40
|
1
|
50
|
33
|
|
|
10
|
if ($n <= 0 || abs($n) - abs(int($n)) != 0) { |
|
41
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; |
|
42
|
|
|
|
|
|
|
} |
|
43
|
1
|
50
|
33
|
|
|
8
|
if ($p <= 0 || $p >= 1) { |
|
44
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
45
|
|
|
|
|
|
|
} |
|
46
|
1
|
|
|
|
|
5
|
return precision_string(_subt($n, $p)); |
|
47
|
|
|
|
|
|
|
} |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
sub fdistr { # Percentage points F(x,n1,n2) |
|
50
|
1
|
|
|
1
|
0
|
31
|
my ($n, $m, $p) = @_; |
|
51
|
1
|
50
|
33
|
|
|
10
|
if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) { |
|
52
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; # first degree of freedom |
|
53
|
|
|
|
|
|
|
} |
|
54
|
1
|
50
|
33
|
|
|
11
|
if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) { |
|
55
|
0
|
|
|
|
|
0
|
die "Invalid m: $m\n"; # second degree of freedom |
|
56
|
|
|
|
|
|
|
} |
|
57
|
1
|
50
|
33
|
|
|
10
|
if (($p<=0) || ($p>1)) { |
|
58
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
59
|
|
|
|
|
|
|
} |
|
60
|
1
|
|
|
|
|
5
|
return precision_string(_subf($n, $m, $p)); |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub uprob { # Upper probability N(0,1^2) |
|
64
|
1
|
|
|
1
|
0
|
31
|
my ($x) = @_; |
|
65
|
1
|
|
|
|
|
6
|
return precision_string(_subuprob($x)); |
|
66
|
|
|
|
|
|
|
} |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
sub chisqrprob { # Upper probability X^2(x^2,n) |
|
69
|
1
|
|
|
1
|
0
|
31
|
my ($n,$x) = @_; |
|
70
|
1
|
50
|
33
|
|
|
9
|
if (($n <= 0) || ((abs($n) - (abs(int($n)))) != 0)) { |
|
71
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; # degree of freedom |
|
72
|
|
|
|
|
|
|
} |
|
73
|
1
|
|
|
|
|
4
|
return precision_string(_subchisqrprob($n, $x)); |
|
74
|
|
|
|
|
|
|
} |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub tprob { # Upper probability t(x,n) |
|
77
|
1
|
|
|
1
|
0
|
30
|
my ($n, $x) = @_; |
|
78
|
1
|
50
|
33
|
|
|
9
|
if (($n <= 0) || ((abs($n) - abs(int($n))) !=0)) { |
|
79
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; # degree of freedom |
|
80
|
|
|
|
|
|
|
} |
|
81
|
1
|
|
|
|
|
3
|
return precision_string(_subtprob($n, $x)); |
|
82
|
|
|
|
|
|
|
} |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub fprob { # Upper probability F(x,n1,n2) |
|
85
|
1
|
|
|
1
|
0
|
31
|
my ($n, $m, $x) = @_; |
|
86
|
1
|
50
|
33
|
|
|
12
|
if (($n<=0) || ((abs($n)-(abs(int($n))))!=0)) { |
|
87
|
0
|
|
|
|
|
0
|
die "Invalid n: $n\n"; # first degree of freedom |
|
88
|
|
|
|
|
|
|
} |
|
89
|
1
|
50
|
33
|
|
|
18
|
if (($m<=0) || ((abs($m)-(abs(int($m))))!=0)) { |
|
90
|
0
|
|
|
|
|
0
|
die "Invalid m: $m\n"; # second degree of freedom |
|
91
|
|
|
|
|
|
|
} |
|
92
|
1
|
|
|
|
|
4
|
return precision_string(_subfprob($n, $m, $x)); |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
|
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
sub _subfprob { |
|
97
|
1
|
|
|
1
|
|
2
|
my ($n, $m, $x) = @_; |
|
98
|
1
|
|
|
|
|
1
|
my $p; |
|
99
|
|
|
|
|
|
|
|
|
100
|
1
|
50
|
|
|
|
7
|
if ($x<=0) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
101
|
0
|
|
|
|
|
0
|
$p=1; |
|
102
|
|
|
|
|
|
|
} elsif ($m % 2 == 0) { |
|
103
|
1
|
|
|
|
|
3
|
my $z = $m / ($m + $n * $x); |
|
104
|
1
|
|
|
|
|
3
|
my $a = 1; |
|
105
|
1
|
|
|
|
|
10
|
for (my $i = $m - 2; $i >= 2; $i -= 2) { |
|
106
|
2
|
|
|
|
|
13
|
$a = 1 + ($n + $i - 2) / $i * $z * $a; |
|
107
|
|
|
|
|
|
|
} |
|
108
|
1
|
|
|
|
|
10
|
$p = 1 - ((1 - $z) ** ($n / 2) * $a); |
|
109
|
|
|
|
|
|
|
} elsif ($n % 2 == 0) { |
|
110
|
0
|
|
|
|
|
0
|
my $z = $n * $x / ($m + $n * $x); |
|
111
|
0
|
|
|
|
|
0
|
my $a = 1; |
|
112
|
0
|
|
|
|
|
0
|
for (my $i = $n - 2; $i >= 2; $i -= 2) { |
|
113
|
0
|
|
|
|
|
0
|
$a = 1 + ($m + $i - 2) / $i * $z * $a; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
0
|
|
|
|
|
0
|
$p = (1 - $z) ** ($m / 2) * $a; |
|
116
|
|
|
|
|
|
|
} else { |
|
117
|
0
|
|
|
|
|
0
|
my $y = atan2(sqrt($n * $x / $m), 1); |
|
118
|
0
|
|
|
|
|
0
|
my $z = sin($y) ** 2; |
|
119
|
0
|
0
|
|
|
|
0
|
my $a = ($n == 1) ? 0 : 1; |
|
120
|
0
|
|
|
|
|
0
|
for (my $i = $n - 2; $i >= 3; $i -= 2) { |
|
121
|
0
|
|
|
|
|
0
|
$a = 1 + ($m + $i - 2) / $i * $z * $a; |
|
122
|
|
|
|
|
|
|
} |
|
123
|
0
|
|
|
|
|
0
|
my $b = PI; |
|
124
|
0
|
|
|
|
|
0
|
for (my $i = 2; $i <= $m - 1; $i += 2) { |
|
125
|
0
|
|
|
|
|
0
|
$b *= ($i - 1) / $i; |
|
126
|
|
|
|
|
|
|
} |
|
127
|
0
|
|
|
|
|
0
|
my $p1 = 2 / $b * sin($y) * cos($y) ** $m * $a; |
|
128
|
|
|
|
|
|
|
|
|
129
|
0
|
|
|
|
|
0
|
$z = cos($y) ** 2; |
|
130
|
0
|
0
|
|
|
|
0
|
$a = ($m == 1) ? 0 : 1; |
|
131
|
0
|
|
|
|
|
0
|
for (my $i = $m-2; $i >= 3; $i -= 2) { |
|
132
|
0
|
|
|
|
|
0
|
$a = 1 + ($i - 1) / $i * $z * $a; |
|
133
|
|
|
|
|
|
|
} |
|
134
|
0
|
|
|
|
|
0
|
$p = max(0, $p1 + 1 - 2 * $y / PI |
|
135
|
|
|
|
|
|
|
- 2 / PI * sin($y) * cos($y) * $a); |
|
136
|
|
|
|
|
|
|
} |
|
137
|
1
|
|
|
|
|
3
|
return $p; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
sub _subchisqrprob { |
|
142
|
1
|
|
|
1
|
|
2
|
my ($n,$x) = @_; |
|
143
|
1
|
|
|
|
|
2
|
my $p; |
|
144
|
|
|
|
|
|
|
|
|
145
|
1
|
50
|
|
|
|
10
|
if ($x <= 0) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
146
|
0
|
|
|
|
|
0
|
$p = 1; |
|
147
|
|
|
|
|
|
|
} elsif ($n > 100) { |
|
148
|
0
|
|
|
|
|
0
|
$p = _subuprob((($x / $n) ** (1/3) |
|
149
|
|
|
|
|
|
|
- (1 - 2/9/$n)) / sqrt(2/9/$n)); |
|
150
|
|
|
|
|
|
|
} elsif ($x > 400) { |
|
151
|
0
|
|
|
|
|
0
|
$p = 0; |
|
152
|
|
|
|
|
|
|
} else { |
|
153
|
1
|
|
|
|
|
2
|
my ($a, $i, $i1); |
|
154
|
1
|
50
|
|
|
|
3
|
if (($n % 2) != 0) { |
|
155
|
1
|
|
|
|
|
3
|
$p = 2 * _subuprob(sqrt($x)); |
|
156
|
1
|
|
|
|
|
4
|
$a = sqrt(2/PI) * exp(-$x/2) / sqrt($x); |
|
157
|
1
|
|
|
|
|
11
|
$i1 = 1; |
|
158
|
|
|
|
|
|
|
} else { |
|
159
|
0
|
|
|
|
|
0
|
$p = $a = exp(-$x/2); |
|
160
|
0
|
|
|
|
|
0
|
$i1 = 2; |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
|
|
163
|
1
|
|
|
|
|
5
|
for ($i = $i1; $i <= ($n-2); $i += 2) { |
|
164
|
1
|
|
|
|
|
2
|
$a *= $x / $i; |
|
165
|
1
|
|
|
|
|
4
|
$p += $a; |
|
166
|
|
|
|
|
|
|
} |
|
167
|
|
|
|
|
|
|
} |
|
168
|
1
|
|
|
|
|
3
|
return $p; |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
sub _subu { |
|
172
|
3
|
|
|
3
|
|
5
|
my ($p) = @_; |
|
173
|
3
|
|
|
|
|
9
|
my $y = -log(4 * $p * (1 - $p)); |
|
174
|
3
|
|
|
|
|
15
|
my $x = sqrt( |
|
175
|
|
|
|
|
|
|
$y * (1.570796288 |
|
176
|
|
|
|
|
|
|
+ $y * (.03706987906 |
|
177
|
|
|
|
|
|
|
+ $y * (-.8364353589E-3 |
|
178
|
|
|
|
|
|
|
+ $y *(-.2250947176E-3 |
|
179
|
|
|
|
|
|
|
+ $y * (.6841218299E-5 |
|
180
|
|
|
|
|
|
|
+ $y * (0.5824238515E-5 |
|
181
|
|
|
|
|
|
|
+ $y * (-.104527497E-5 |
|
182
|
|
|
|
|
|
|
+ $y * (.8360937017E-7 |
|
183
|
|
|
|
|
|
|
+ $y * (-.3231081277E-8 |
|
184
|
|
|
|
|
|
|
+ $y * (.3657763036E-10 |
|
185
|
|
|
|
|
|
|
+ $y *.6936233982E-12))))))))))); |
|
186
|
3
|
100
|
|
|
|
10
|
$x = -$x if ($p>.5); |
|
187
|
3
|
|
|
|
|
8
|
return $x; |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
sub _subuprob { |
|
191
|
2
|
|
|
2
|
|
3
|
my ($x) = @_; |
|
192
|
2
|
|
|
|
|
3
|
my $p = 0; # if ($absx > 100) |
|
193
|
2
|
|
|
|
|
3
|
my $absx = abs($x); |
|
194
|
|
|
|
|
|
|
|
|
195
|
2
|
100
|
|
|
|
10
|
if ($absx < 1.9) { |
|
|
|
50
|
|
|
|
|
|
|
196
|
1
|
|
|
|
|
17
|
$p = (1 + |
|
197
|
|
|
|
|
|
|
$absx * (.049867347 |
|
198
|
|
|
|
|
|
|
+ $absx * (.0211410061 |
|
199
|
|
|
|
|
|
|
+ $absx * (.0032776263 |
|
200
|
|
|
|
|
|
|
+ $absx * (.0000380036 |
|
201
|
|
|
|
|
|
|
+ $absx * (.0000488906 |
|
202
|
|
|
|
|
|
|
+ $absx * .000005383)))))) ** -16/2; |
|
203
|
|
|
|
|
|
|
} elsif ($absx <= 100) { |
|
204
|
1
|
|
|
|
|
4
|
for (my $i = 18; $i >= 1; $i--) { |
|
205
|
18
|
|
|
|
|
37
|
$p = $i / ($absx + $p); |
|
206
|
|
|
|
|
|
|
} |
|
207
|
1
|
|
|
|
|
4
|
$p = exp(-.5 * $absx * $absx) |
|
208
|
|
|
|
|
|
|
/ sqrt(2 * PI) / ($absx + $p); |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
|
|
211
|
2
|
100
|
|
|
|
9
|
$p = 1 - $p if ($x<0); |
|
212
|
2
|
|
|
|
|
6
|
return $p; |
|
213
|
|
|
|
|
|
|
} |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub _subt { |
|
217
|
4
|
|
|
4
|
|
6
|
my ($n, $p) = @_; |
|
218
|
|
|
|
|
|
|
|
|
219
|
4
|
50
|
33
|
|
|
23
|
if ($p >= 1 || $p <= 0) { |
|
220
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
4
|
50
|
|
|
|
17
|
if ($p == 0.5) { |
|
|
|
100
|
|
|
|
|
|
|
224
|
0
|
|
|
|
|
0
|
return 0; |
|
225
|
|
|
|
|
|
|
} elsif ($p < 0.5) { |
|
226
|
2
|
|
|
|
|
20
|
return - _subt($n, 1 - $p); |
|
227
|
|
|
|
|
|
|
} |
|
228
|
|
|
|
|
|
|
|
|
229
|
2
|
|
|
|
|
4
|
my $u = _subu($p); |
|
230
|
2
|
|
|
|
|
5
|
my $u2 = $u ** 2; |
|
231
|
|
|
|
|
|
|
|
|
232
|
2
|
|
|
|
|
5
|
my $a = ($u2 + 1) / 4; |
|
233
|
2
|
|
|
|
|
5
|
my $b = ((5 * $u2 + 16) * $u2 + 3) / 96; |
|
234
|
2
|
|
|
|
|
5
|
my $c = (((3 * $u2 + 19) * $u2 + 17) * $u2 - 15) / 384; |
|
235
|
2
|
|
|
|
|
5
|
my $d = ((((79 * $u2 + 776) * $u2 + 1482) * $u2 - 1920) * $u2 - 945) |
|
236
|
|
|
|
|
|
|
/ 92160; |
|
237
|
2
|
|
|
|
|
16
|
my $e = (((((27 * $u2 + 339) * $u2 + 930) * $u2 - 1782) * $u2 - 765) * $u2 |
|
238
|
|
|
|
|
|
|
+ 17955) / 368640; |
|
239
|
|
|
|
|
|
|
|
|
240
|
2
|
|
|
|
|
7
|
my $x = $u * (1 + ($a + ($b + ($c + ($d + $e / $n) / $n) / $n) / $n) / $n); |
|
241
|
|
|
|
|
|
|
|
|
242
|
2
|
50
|
|
|
|
5
|
if ($n <= log10($p) ** 2 + 3) { |
|
243
|
2
|
|
|
|
|
3
|
my $round; |
|
244
|
2
|
|
66
|
|
|
3
|
do { |
|
245
|
7
|
|
|
|
|
14
|
my $p1 = _subtprob($n, $x); |
|
246
|
7
|
|
|
|
|
12
|
my $n1 = $n + 1; |
|
247
|
7
|
|
|
|
|
50
|
my $delta = ($p1 - $p) |
|
248
|
|
|
|
|
|
|
/ exp(($n1 * log($n1 / ($n + $x * $x)) |
|
249
|
|
|
|
|
|
|
+ log($n/$n1/2/PI) - 1 |
|
250
|
|
|
|
|
|
|
+ (1/$n1 - 1/$n) / 6) / 2); |
|
251
|
7
|
|
|
|
|
9
|
$x += $delta; |
|
252
|
7
|
|
|
|
|
14
|
$round = sprintf("%.".abs(int(log10(abs $x)-4))."f",$delta); |
|
253
|
|
|
|
|
|
|
} while (($x) && ($round != 0)); |
|
254
|
|
|
|
|
|
|
} |
|
255
|
2
|
|
|
|
|
17
|
return $x; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
sub _subtprob { |
|
259
|
8
|
|
|
8
|
|
11
|
my ($n, $x) = @_; |
|
260
|
|
|
|
|
|
|
|
|
261
|
8
|
|
|
|
|
15
|
my ($a,$b); |
|
262
|
8
|
|
|
|
|
44
|
my $w = atan2($x / sqrt($n), 1); |
|
263
|
8
|
|
|
|
|
36
|
my $z = cos($w) ** 2; |
|
264
|
8
|
|
|
|
|
12
|
my $y = 1; |
|
265
|
|
|
|
|
|
|
|
|
266
|
8
|
|
|
|
|
23
|
for (my $i = $n-2; $i >= 2; $i -= 2) { |
|
267
|
0
|
|
|
|
|
0
|
$y = 1 + ($i-1) / $i * $z * $y; |
|
268
|
|
|
|
|
|
|
} |
|
269
|
|
|
|
|
|
|
|
|
270
|
8
|
50
|
|
|
|
18
|
if ($n % 2 == 0) { |
|
271
|
0
|
|
|
|
|
0
|
$a = sin($w)/2; |
|
272
|
0
|
|
|
|
|
0
|
$b = .5; |
|
273
|
|
|
|
|
|
|
} else { |
|
274
|
8
|
100
|
|
|
|
19
|
$a = ($n == 1) ? 0 : sin($w)*cos($w)/PI; |
|
275
|
8
|
|
|
|
|
11
|
$b= .5 + $w/PI; |
|
276
|
|
|
|
|
|
|
} |
|
277
|
8
|
|
|
|
|
51
|
return max(0, 1 - $b - $a * $y); |
|
278
|
|
|
|
|
|
|
} |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
sub _subf { |
|
281
|
1
|
|
|
1
|
|
2
|
my ($n, $m, $p) = @_; |
|
282
|
1
|
|
|
|
|
2
|
my $x; |
|
283
|
|
|
|
|
|
|
|
|
284
|
1
|
50
|
33
|
|
|
9
|
if ($p >= 1 || $p <= 0) { |
|
285
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
|
|
288
|
1
|
50
|
|
|
|
43
|
if ($p == 1) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
289
|
0
|
|
|
|
|
0
|
$x = 0; |
|
290
|
|
|
|
|
|
|
} elsif ($m == 1) { |
|
291
|
0
|
|
|
|
|
0
|
$x = 1 / (_subt($n, 0.5 - $p / 2) ** 2); |
|
292
|
|
|
|
|
|
|
} elsif ($n == 1) { |
|
293
|
1
|
|
|
|
|
11
|
$x = _subt($m, $p/2) ** 2; |
|
294
|
|
|
|
|
|
|
} elsif ($m == 2) { |
|
295
|
0
|
|
|
|
|
0
|
my $u = _subchisqr($m, 1 - $p); |
|
296
|
0
|
|
|
|
|
0
|
my $a = $m - 2; |
|
297
|
0
|
|
|
|
|
0
|
$x = 1 / ($u / $m * (1 + |
|
298
|
|
|
|
|
|
|
(($u - $a) / 2 + |
|
299
|
|
|
|
|
|
|
(((4 * $u - 11 * $a) * $u + $a * (7 * $m - 10)) / 24 + |
|
300
|
|
|
|
|
|
|
(((2 * $u - 10 * $a) * $u + $a * (17 * $m - 26)) * $u |
|
301
|
|
|
|
|
|
|
- $a * $a * (9 * $m - 6) |
|
302
|
|
|
|
|
|
|
)/48/$n |
|
303
|
|
|
|
|
|
|
)/$n |
|
304
|
|
|
|
|
|
|
)/$n)); |
|
305
|
|
|
|
|
|
|
} elsif ($n > $m) { |
|
306
|
0
|
|
|
|
|
0
|
$x = 1 / _subf2($m, $n, 1 - $p) |
|
307
|
|
|
|
|
|
|
} else { |
|
308
|
0
|
|
|
|
|
0
|
$x = _subf2($n, $m, $p) |
|
309
|
|
|
|
|
|
|
} |
|
310
|
1
|
|
|
|
|
6
|
return $x; |
|
311
|
|
|
|
|
|
|
} |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
sub _subf2 { |
|
314
|
0
|
|
|
0
|
|
0
|
my ($n, $m, $p) = @_; |
|
315
|
0
|
|
|
|
|
0
|
my $u = _subchisqr($n, $p); |
|
316
|
0
|
|
|
|
|
0
|
my $n2 = $n - 2; |
|
317
|
0
|
|
|
|
|
0
|
my $x = $u / $n * |
|
318
|
|
|
|
|
|
|
(1 + |
|
319
|
|
|
|
|
|
|
(($u - $n2) / 2 + |
|
320
|
|
|
|
|
|
|
(((4 * $u - 11 * $n2) * $u + $n2 * (7 * $n - 10)) / 24 + |
|
321
|
|
|
|
|
|
|
(((2 * $u - 10 * $n2) * $u + $n2 * (17 * $n - 26)) * $u |
|
322
|
|
|
|
|
|
|
- $n2 * $n2 * (9 * $n - 6)) / 48 / $m) / $m) / $m); |
|
323
|
0
|
|
|
|
|
0
|
my $delta; |
|
324
|
0
|
|
|
|
|
0
|
do { |
|
325
|
0
|
|
|
|
|
0
|
my $z = exp( |
|
326
|
|
|
|
|
|
|
(($n+$m) * log(($n+$m) / ($n * $x + $m)) |
|
327
|
|
|
|
|
|
|
+ ($n - 2) * log($x) |
|
328
|
|
|
|
|
|
|
+ log($n * $m / ($n+$m)) |
|
329
|
|
|
|
|
|
|
- log(4 * PI) |
|
330
|
|
|
|
|
|
|
- (1/$n + 1/$m - 1/($n+$m))/6 |
|
331
|
|
|
|
|
|
|
)/2); |
|
332
|
0
|
|
|
|
|
0
|
$delta = (_subfprob($n, $m, $x) - $p) / $z; |
|
333
|
0
|
|
|
|
|
0
|
$x += $delta; |
|
334
|
|
|
|
|
|
|
} while (abs($delta)>3e-4); |
|
335
|
0
|
|
|
|
|
0
|
return $x; |
|
336
|
|
|
|
|
|
|
} |
|
337
|
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
sub _subchisqr { |
|
339
|
1
|
|
|
1
|
|
2
|
my ($n, $p) = @_; |
|
340
|
1
|
|
|
|
|
3
|
my $x; |
|
341
|
|
|
|
|
|
|
|
|
342
|
1
|
50
|
33
|
|
|
18
|
if (($p > 1) || ($p <= 0)) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
343
|
0
|
|
|
|
|
0
|
die "Invalid p: $p\n"; |
|
344
|
|
|
|
|
|
|
} elsif ($p == 1){ |
|
345
|
0
|
|
|
|
|
0
|
$x = 0; |
|
346
|
|
|
|
|
|
|
} elsif ($n == 1) { |
|
347
|
0
|
|
|
|
|
0
|
$x = _subu($p / 2) ** 2; |
|
348
|
|
|
|
|
|
|
} elsif ($n == 2) { |
|
349
|
1
|
|
|
|
|
15
|
$x = -2 * log($p); |
|
350
|
|
|
|
|
|
|
} else { |
|
351
|
0
|
|
|
|
|
0
|
my $u = _subu($p); |
|
352
|
0
|
|
|
|
|
0
|
my $u2 = $u * $u; |
|
353
|
|
|
|
|
|
|
|
|
354
|
0
|
|
|
|
|
0
|
$x = max(0, $n + sqrt(2 * $n) * $u |
|
355
|
|
|
|
|
|
|
+ 2/3 * ($u2 - 1) |
|
356
|
|
|
|
|
|
|
+ $u * ($u2 - 7) / 9 / sqrt(2 * $n) |
|
357
|
|
|
|
|
|
|
- 2/405 / $n * ($u2 * (3 *$u2 + 7) - 16)); |
|
358
|
|
|
|
|
|
|
|
|
359
|
0
|
0
|
|
|
|
0
|
if ($n <= 100) { |
|
360
|
0
|
|
|
|
|
0
|
my ($x0, $p1, $z); |
|
361
|
0
|
|
0
|
|
|
0
|
do { |
|
362
|
0
|
|
|
|
|
0
|
$x0 = $x; |
|
363
|
0
|
0
|
|
|
|
0
|
if ($x < 0) { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
364
|
0
|
|
|
|
|
0
|
$p1 = 1; |
|
365
|
|
|
|
|
|
|
} elsif ($n>100) { |
|
366
|
0
|
|
|
|
|
0
|
$p1 = _subuprob((($x / $n)**(1/3) - (1 - 2/9/$n)) |
|
367
|
|
|
|
|
|
|
/ sqrt(2/9/$n)); |
|
368
|
|
|
|
|
|
|
} elsif ($x>400) { |
|
369
|
0
|
|
|
|
|
0
|
$p1 = 0; |
|
370
|
|
|
|
|
|
|
} else { |
|
371
|
0
|
|
|
|
|
0
|
my ($i0, $a); |
|
372
|
0
|
0
|
|
|
|
0
|
if (($n % 2) != 0) { |
|
373
|
0
|
|
|
|
|
0
|
$p1 = 2 * _subuprob(sqrt($x)); |
|
374
|
0
|
|
|
|
|
0
|
$a = sqrt(2/PI) * exp(-$x/2) / sqrt($x); |
|
375
|
0
|
|
|
|
|
0
|
$i0 = 1; |
|
376
|
|
|
|
|
|
|
} else { |
|
377
|
0
|
|
|
|
|
0
|
$p1 = $a = exp(-$x/2); |
|
378
|
0
|
|
|
|
|
0
|
$i0 = 2; |
|
379
|
|
|
|
|
|
|
} |
|
380
|
|
|
|
|
|
|
|
|
381
|
0
|
|
|
|
|
0
|
for (my $i = $i0; $i <= $n-2; $i += 2) { |
|
382
|
0
|
|
|
|
|
0
|
$a *= $x / $i; |
|
383
|
0
|
|
|
|
|
0
|
$p1 += $a; |
|
384
|
|
|
|
|
|
|
} |
|
385
|
|
|
|
|
|
|
} |
|
386
|
0
|
|
|
|
|
0
|
$z = exp((($n-1) * log($x/$n) - log(4*PI*$x) |
|
387
|
|
|
|
|
|
|
+ $n - $x - 1/$n/6) / 2); |
|
388
|
0
|
|
|
|
|
0
|
$x += ($p1 - $p) / $z; |
|
389
|
0
|
|
|
|
|
0
|
$x = sprintf("%.5f", $x); |
|
390
|
|
|
|
|
|
|
} while (($n < 31) && (abs($x0 - $x) > 1e-4)); |
|
391
|
|
|
|
|
|
|
} |
|
392
|
|
|
|
|
|
|
} |
|
393
|
1
|
|
|
|
|
5
|
return $x; |
|
394
|
|
|
|
|
|
|
} |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
sub log10 { |
|
397
|
17
|
|
|
17
|
0
|
18
|
my $n = shift; |
|
398
|
17
|
|
|
|
|
211
|
return log($n) / log(10); |
|
399
|
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
|
|
401
|
|
|
|
|
|
|
sub max { |
|
402
|
8
|
|
|
8
|
0
|
12
|
my $max = shift; |
|
403
|
8
|
|
|
|
|
6
|
my $next; |
|
404
|
8
|
|
|
|
|
18
|
while (@_) { |
|
405
|
8
|
|
|
|
|
9
|
$next = shift; |
|
406
|
8
|
50
|
|
|
|
28
|
$max = $next if ($next > $max); |
|
407
|
|
|
|
|
|
|
} |
|
408
|
8
|
|
|
|
|
28
|
return $max; |
|
409
|
|
|
|
|
|
|
} |
|
410
|
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
sub min { |
|
412
|
0
|
|
|
0
|
0
|
0
|
my $min = shift; |
|
413
|
0
|
|
|
|
|
0
|
my $next; |
|
414
|
0
|
|
|
|
|
0
|
while (@_) { |
|
415
|
0
|
|
|
|
|
0
|
$next = shift; |
|
416
|
0
|
0
|
|
|
|
0
|
$min = $next if ($next < $min); |
|
417
|
|
|
|
|
|
|
} |
|
418
|
0
|
|
|
|
|
0
|
return $min; |
|
419
|
|
|
|
|
|
|
} |
|
420
|
|
|
|
|
|
|
|
|
421
|
|
|
|
|
|
|
sub precision { |
|
422
|
8
|
|
|
8
|
0
|
8
|
my ($x) = @_; |
|
423
|
8
|
|
|
|
|
18
|
return abs int(log10(abs $x) - SIGNIFICANT); |
|
424
|
|
|
|
|
|
|
} |
|
425
|
|
|
|
|
|
|
|
|
426
|
|
|
|
|
|
|
sub precision_string { |
|
427
|
8
|
|
|
8
|
0
|
11
|
my ($x) = @_; |
|
428
|
8
|
50
|
|
|
|
18
|
if ($x) { |
|
429
|
8
|
|
|
|
|
15
|
return sprintf "%." . precision($x) . "f", $x; |
|
430
|
|
|
|
|
|
|
} else { |
|
431
|
0
|
|
|
|
|
|
return "0"; |
|
432
|
|
|
|
|
|
|
} |
|
433
|
|
|
|
|
|
|
} |
|
434
|
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
# Autoload methods go after =cut, and are processed by the autosplit program. |
|
437
|
|
|
|
|
|
|
|
|
438
|
|
|
|
|
|
|
1; |
|
439
|
|
|
|
|
|
|
__END__ |