| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Statistics::CalinskiHarabasz; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
21972
|
use 5.008005; |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
49
|
|
|
4
|
1
|
|
|
1
|
|
8
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
5
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
|
1
|
|
|
|
|
7
|
|
|
|
1
|
|
|
|
|
51
|
|
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
require Exporter; |
|
8
|
1
|
|
|
1
|
|
1059
|
use AutoLoader qw(AUTOLOAD); |
|
|
1
|
|
|
|
|
1806
|
|
|
|
1
|
|
|
|
|
6
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
our @ISA = qw(Exporter); |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
our @EXPORT = qw( ch ); |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
our $VERSION = '0.01'; |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
# global variable |
|
17
|
|
|
|
|
|
|
my @d = (); |
|
18
|
|
|
|
|
|
|
my $g_mean = 0; |
|
19
|
|
|
|
|
|
|
my $rcnt = 0; |
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
sub ch |
|
22
|
|
|
|
|
|
|
{ |
|
23
|
|
|
|
|
|
|
# Input params |
|
24
|
0
|
|
|
0
|
0
|
|
my $matrixfile = shift; |
|
25
|
0
|
|
|
|
|
|
my $clustmtd = shift; |
|
26
|
0
|
|
|
|
|
|
my $K = shift; |
|
27
|
|
|
|
|
|
|
|
|
28
|
0
|
|
|
|
|
|
my $i = 0; |
|
29
|
0
|
|
|
|
|
|
my $j = 0; |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
# Read the matrix file into a 2 dimensional array. |
|
32
|
0
|
|
|
|
|
|
my @inpmat = (); |
|
33
|
0
|
0
|
|
|
|
|
open(INP,"<$matrixfile") || die "Error opening input matrix file!"; |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# Extract the number of rows from the first line in the file. |
|
36
|
0
|
|
|
|
|
|
my $ccnt = 0; |
|
37
|
0
|
|
|
|
|
|
my $line; |
|
38
|
|
|
|
|
|
|
|
|
39
|
0
|
|
|
|
|
|
$line = ; |
|
40
|
0
|
|
|
|
|
|
chomp($line); |
|
41
|
0
|
|
|
|
|
|
$line=~s/\s+/ /; |
|
42
|
|
|
|
|
|
|
|
|
43
|
0
|
|
|
|
|
|
($rcnt,$ccnt) = split(/\s+/,$line); |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
# Not a valid condition: |
|
46
|
|
|
|
|
|
|
# If maximum number of clusters requested (k) is greater than the |
|
47
|
|
|
|
|
|
|
# number of observations. |
|
48
|
0
|
0
|
|
|
|
|
if($K > $rcnt) |
|
49
|
|
|
|
|
|
|
{ |
|
50
|
0
|
|
|
|
|
|
print STDERR "The K value ($K) cannot be greater than the number of observations present in the input data ($rcnt). \n"; |
|
51
|
0
|
|
|
|
|
|
exit 1; |
|
52
|
|
|
|
|
|
|
} |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
# Copy the complete matrix to a 2D array |
|
55
|
0
|
|
|
|
|
|
while() |
|
56
|
|
|
|
|
|
|
{ |
|
57
|
|
|
|
|
|
|
# remove the newline at the end of the input line |
|
58
|
0
|
|
|
|
|
|
chomp; |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
# skip empty lines |
|
61
|
0
|
0
|
|
|
|
|
if(m/^\s*\s*\s*$/) |
|
62
|
|
|
|
|
|
|
{ |
|
63
|
0
|
|
|
|
|
|
next; |
|
64
|
|
|
|
|
|
|
} |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
# remove leading white spaces |
|
67
|
0
|
|
|
|
|
|
s/^\s+//; |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
# seperate individual values in a line |
|
70
|
0
|
|
|
|
|
|
my @tmp = (); |
|
71
|
0
|
|
|
|
|
|
@tmp = split(/\s+/); |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
# populate them into the 2D matrix |
|
74
|
0
|
|
|
|
|
|
push @inpmat, [ @tmp ]; |
|
75
|
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
|
|
77
|
0
|
|
|
|
|
|
close INP; |
|
78
|
|
|
|
|
|
|
|
|
79
|
0
|
|
|
|
|
|
my @row1 = (); |
|
80
|
0
|
|
|
|
|
|
my @row2 = (); |
|
81
|
0
|
|
|
|
|
|
my $acc = 0; |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
# Calculate all possible unique pairwise distances between the vectors |
|
84
|
0
|
|
|
|
|
|
for($i = 0; $i < $rcnt; $i++) |
|
85
|
|
|
|
|
|
|
{ |
|
86
|
|
|
|
|
|
|
# for all the rows in the cluster |
|
87
|
0
|
|
|
|
|
|
for($j = $i+1; $j < $rcnt; $j++) |
|
88
|
|
|
|
|
|
|
{ |
|
89
|
0
|
|
|
|
|
|
@row1 = @{$inpmat[$i]}; |
|
|
0
|
|
|
|
|
|
|
|
90
|
0
|
|
|
|
|
|
@row2 = @{$inpmat[$j]}; |
|
|
0
|
|
|
|
|
|
|
|
91
|
0
|
|
|
|
|
|
$d[$i][$j] = &dist_euclidean_sqr(\@row1, \@row2); |
|
92
|
0
|
|
|
|
|
|
$acc += $d[$i][$j]; |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
} |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
# Calculate general mean (d^2) |
|
97
|
0
|
|
|
|
|
|
$g_mean = ($acc * 2)/($rcnt * ($rcnt - 1)); |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# Calculate mean for each cluster |
|
100
|
|
|
|
|
|
|
# Calculate Ak |
|
101
|
|
|
|
|
|
|
# Calculate VRC (Variance Ratio Criterion) |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# For each K |
|
104
|
0
|
|
|
|
|
|
my $k = 0; |
|
105
|
0
|
|
|
|
|
|
my @VRC = (); |
|
106
|
|
|
|
|
|
|
|
|
107
|
0
|
|
|
|
|
|
for($k=2; $k<=$K; $k++) |
|
108
|
|
|
|
|
|
|
{ |
|
109
|
|
|
|
|
|
|
# avoid the case K = #ofContexts because then the denominator of VRC (n-k) |
|
110
|
|
|
|
|
|
|
# become 0 and gives "division by 0" error. |
|
111
|
0
|
0
|
|
|
|
|
if($k == $rcnt) |
|
112
|
|
|
|
|
|
|
{ |
|
113
|
0
|
|
|
|
|
|
last; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
|
|
116
|
0
|
|
|
|
|
|
my $lineNo = 0; |
|
117
|
0
|
|
|
|
|
|
my %hash = (); |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# Cluster the input dataset into k clusters |
|
120
|
0
|
|
|
|
|
|
my $out_filename = "tmp.op" . $k . time(); |
|
121
|
0
|
|
|
|
|
|
my $status = 0; |
|
122
|
|
|
|
|
|
|
|
|
123
|
0
|
|
|
|
|
|
$status = system("vcluster --clmethod $clustmtd $matrixfile $k >& $out_filename "); |
|
124
|
0
|
0
|
|
|
|
|
die "Error running vcluster \n" unless $status==0; |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# read the clustering output file |
|
127
|
0
|
0
|
|
|
|
|
open(CO,"<$matrixfile.clustering.$k") || die "Error opening clustering output file."; |
|
128
|
|
|
|
|
|
|
|
|
129
|
0
|
|
|
|
|
|
my $clust = 0; |
|
130
|
0
|
|
|
|
|
|
while($clust = ) |
|
131
|
|
|
|
|
|
|
{ |
|
132
|
|
|
|
|
|
|
# hash on the cluster# and append the observation# |
|
133
|
0
|
|
|
|
|
|
chomp($clust); |
|
134
|
0
|
0
|
|
|
|
|
if(exists $hash{$clust}) |
|
135
|
|
|
|
|
|
|
{ |
|
136
|
0
|
|
|
|
|
|
$hash{$clust} .= " $lineNo"; |
|
137
|
|
|
|
|
|
|
} |
|
138
|
|
|
|
|
|
|
else |
|
139
|
|
|
|
|
|
|
{ |
|
140
|
0
|
|
|
|
|
|
$hash{$clust} = $lineNo; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
# increment the line number |
|
144
|
0
|
|
|
|
|
|
$lineNo++; |
|
145
|
|
|
|
|
|
|
} |
|
146
|
|
|
|
|
|
|
|
|
147
|
0
|
|
|
|
|
|
close CO; |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
# Calculate the "Within Cluster Dispersion Measure / Error Measure" Wk |
|
150
|
|
|
|
|
|
|
# for given matrix and k value. |
|
151
|
0
|
|
|
|
|
|
$VRC[$k] = &variance_ratio(\%hash,$k); |
|
152
|
|
|
|
|
|
|
|
|
153
|
0
|
|
|
|
|
|
unlink "$out_filename","$matrixfile.clustering.$k"; |
|
154
|
|
|
|
|
|
|
} |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
# Calculate smallest k for which VRC is maximum |
|
157
|
0
|
|
|
|
|
|
my $max = 0; |
|
158
|
0
|
|
|
|
|
|
my $ans = 0; |
|
159
|
0
|
|
|
|
|
|
for($k=2; $k<=$K; $k++) |
|
160
|
|
|
|
|
|
|
{ |
|
161
|
|
|
|
|
|
|
# avoid the case K = #ofContexts because then the denominator of VRC (n-k) |
|
162
|
|
|
|
|
|
|
# become 0 and gives "division by 0" error. |
|
163
|
0
|
0
|
|
|
|
|
if($k == $rcnt) |
|
164
|
|
|
|
|
|
|
{ |
|
165
|
0
|
|
|
|
|
|
last; |
|
166
|
|
|
|
|
|
|
} |
|
167
|
0
|
0
|
|
|
|
|
if($VRC[$k] > $max) |
|
168
|
|
|
|
|
|
|
{ |
|
169
|
0
|
|
|
|
|
|
$max = $VRC[$k]; |
|
170
|
0
|
|
|
|
|
|
$ans = $k; |
|
171
|
|
|
|
|
|
|
} |
|
172
|
|
|
|
|
|
|
} |
|
173
|
0
|
|
|
|
|
|
print "$ans\n"; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
sub dist_euclidean_sqr |
|
177
|
|
|
|
|
|
|
{ |
|
178
|
|
|
|
|
|
|
# arguments |
|
179
|
0
|
|
|
0
|
0
|
|
my @i = @{(shift)}; |
|
|
0
|
|
|
|
|
|
|
|
180
|
0
|
|
|
|
|
|
my @j = @{(shift)}; |
|
|
0
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
# local variables |
|
183
|
0
|
|
|
|
|
|
my $a; |
|
184
|
0
|
|
|
|
|
|
my $dist = 0; |
|
185
|
0
|
|
|
|
|
|
my $retvalue = 0; |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
# Squared Euclidean measure |
|
188
|
|
|
|
|
|
|
# summation on all j (xij - xi'j)^2 where i, i' are the rows indicies. |
|
189
|
0
|
|
|
|
|
|
for $a (0 .. $#i) |
|
190
|
|
|
|
|
|
|
{ |
|
191
|
0
|
|
|
|
|
|
$dist += (($i[$a] - $j[$a])**2); |
|
192
|
|
|
|
|
|
|
} |
|
193
|
|
|
|
|
|
|
|
|
194
|
0
|
|
|
|
|
|
$retvalue = sprintf("%.4f",$dist); |
|
195
|
0
|
|
|
|
|
|
return $retvalue; |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
sub variance_ratio |
|
199
|
|
|
|
|
|
|
{ |
|
200
|
|
|
|
|
|
|
# Input arguments |
|
201
|
0
|
|
|
0
|
0
|
|
my %clustout = %{(shift)}; |
|
|
0
|
|
|
|
|
|
|
|
202
|
0
|
|
|
|
|
|
my $k = shift; |
|
203
|
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
# Local variables |
|
205
|
0
|
|
|
|
|
|
my $i; |
|
206
|
|
|
|
|
|
|
my $j; |
|
207
|
0
|
|
|
|
|
|
my @rownum; |
|
208
|
0
|
|
|
|
|
|
my $key; |
|
209
|
0
|
|
|
|
|
|
my $row1; |
|
210
|
0
|
|
|
|
|
|
my $row2; |
|
211
|
0
|
|
|
|
|
|
my $VRC = 0; |
|
212
|
0
|
|
|
|
|
|
my @D = (); |
|
213
|
0
|
|
|
|
|
|
my $tmp; |
|
214
|
0
|
|
|
|
|
|
my $c_mean = (); |
|
215
|
0
|
|
|
|
|
|
my $A = 0; |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# For each cluster |
|
218
|
0
|
|
|
|
|
|
foreach $key (sort keys %clustout) |
|
219
|
|
|
|
|
|
|
{ |
|
220
|
0
|
|
|
|
|
|
$D[$key] = 0; |
|
221
|
|
|
|
|
|
|
|
|
222
|
0
|
|
|
|
|
|
@rownum = split(/\s+/,$clustout{$key}); |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
# for each instance in the cluster |
|
225
|
0
|
|
|
|
|
|
for($i = 0; $i < $#rownum; $i++) |
|
226
|
|
|
|
|
|
|
{ |
|
227
|
|
|
|
|
|
|
# for all the rows in the cluster |
|
228
|
0
|
|
|
|
|
|
for($j = $i+1; $j <= $#rownum; $j++) |
|
229
|
|
|
|
|
|
|
{ |
|
230
|
|
|
|
|
|
|
# find the distance between the 2 rows of the matrix. |
|
231
|
0
|
|
|
|
|
|
$row1 = $rownum[$i]; |
|
232
|
0
|
|
|
|
|
|
$row2 = $rownum[$j]; |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
# store the Dr value |
|
235
|
0
|
0
|
|
|
|
|
if(exists $d[$row1][$row2]) |
|
236
|
|
|
|
|
|
|
{ |
|
237
|
0
|
|
|
|
|
|
$D[$key] += $d[$row1][$row2]; |
|
238
|
|
|
|
|
|
|
} |
|
239
|
|
|
|
|
|
|
else |
|
240
|
|
|
|
|
|
|
{ |
|
241
|
0
|
|
|
|
|
|
$D[$key] += $d[$row2][$row1]; |
|
242
|
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
} |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# Calculate individual cluster mean |
|
247
|
0
|
0
|
|
|
|
|
if($#rownum == 0) |
|
248
|
|
|
|
|
|
|
{ |
|
249
|
0
|
|
|
|
|
|
$c_mean = 0; |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
else |
|
252
|
|
|
|
|
|
|
{ |
|
253
|
0
|
|
|
|
|
|
$c_mean = ($D[$key] * 2)/(($#rownum + 1) * $#rownum); |
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
|
|
256
|
0
|
|
|
|
|
|
$A += $#rownum * ($g_mean - $c_mean); |
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
|
|
259
|
0
|
|
|
|
|
|
$A = $A/($rcnt - $k); |
|
260
|
|
|
|
|
|
|
|
|
261
|
0
|
0
|
|
|
|
|
if($g_mean == $A) |
|
262
|
|
|
|
|
|
|
{ |
|
263
|
0
|
|
|
|
|
|
$VRC = 99999; |
|
264
|
|
|
|
|
|
|
} |
|
265
|
|
|
|
|
|
|
else |
|
266
|
|
|
|
|
|
|
{ |
|
267
|
0
|
|
|
|
|
|
$VRC = ( $g_mean + ($rcnt - $k) / ($k-1) * $A ) / ( $g_mean - $A ); |
|
268
|
|
|
|
|
|
|
} |
|
269
|
0
|
|
|
|
|
|
return $VRC; |
|
270
|
|
|
|
|
|
|
} |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
1; |
|
273
|
|
|
|
|
|
|
__END__ |