| blib/lib/Statistics/ANOVA/KW.pm | |||
|---|---|---|---|
| Criterion | Covered | Total | % |
| statement | 68 | 78 | 87.1 |
| branch | 15 | 28 | 53.5 |
| condition | 1 | 3 | 33.3 |
| subroutine | 14 | 16 | 87.5 |
| pod | 5 | 5 | 100.0 |
| total | 103 | 130 | 79.2 |
| line | stmt | bran | cond | sub | pod | time | code |
|---|---|---|---|---|---|---|---|
| 1 | package Statistics::ANOVA::KW; | ||||||
| 2 | |||||||
| 3 | 3 | 3 | 58166 | use 5.006; | |||
| 3 | 11 | ||||||
| 4 | 3 | 3 | 27 | use strict; | |||
| 3 | 4 | ||||||
| 3 | 97 | ||||||
| 5 | 3 | 3 | 24 | use warnings FATAL => 'all'; | |||
| 3 | 9 | ||||||
| 3 | 162 | ||||||
| 6 | 3 | 3 | 16 | use base qw(Statistics::Data); | |||
| 3 | 3 | ||||||
| 3 | 2379 | ||||||
| 7 | 3 | 3 | 85726 | use Carp qw(croak); | |||
| 3 | 6 | ||||||
| 3 | 182 | ||||||
| 8 | 3 | 3 | 17 | use List::AllUtils qw(sum0); | |||
| 3 | 4 | ||||||
| 3 | 179 | ||||||
| 9 | 3 | 3 | 2707 | use Math::Cephes qw(:dists); | |||
| 3 | 15865 | ||||||
| 3 | 930 | ||||||
| 10 | 3 | 3 | 1799 | use Statistics::Data::Rank; | |||
| 3 | 9273 | ||||||
| 3 | 92 | ||||||
| 11 | 3 | 3 | 19 | use Statistics::Lite qw(mean); | |||
| 3 | 3 | ||||||
| 3 | 2293 | ||||||
| 12 | $Statistics::ANOVA::KW::VERSION = '0.01'; | ||||||
| 13 | |||||||
| 14 | =head1 NAME | ||||||
| 15 | |||||||
| 16 | Statistics::ANOVA::KW - Kruskall-Wallis statistics and test (nonparametric independent analysis of variance by ranks for nominally grouped data) | ||||||
| 17 | |||||||
| 18 | =head1 VERSION | ||||||
| 19 | |||||||
| 20 | This is documentation for B |
||||||
| 21 | |||||||
| 22 | =head1 SYNOPSIS | ||||||
| 23 | |||||||
| 24 | use Statistics::ANOVA::KW; | ||||||
| 25 | my $kw = Statistics::ANOVA::KW->new(); | ||||||
| 26 | $kw->load({1 => [2, 4, 6], 2 => [3, 3, 12], 3 => [5, 7, 11, 16]}); | ||||||
| 27 | my $h_value = $kw->h_value(); # default used to correct for ties | ||||||
| 28 | my $p_value = $kw->chiprob_test(); # H taken as chi^2 distributed | ||||||
| 29 | my ($h_value, $df, $count, $p_value_by_chi, $phi) = $kw->chiprob_test(); # same as above, called in array context | ||||||
| 30 | my ($f_value, $df_b, $df_w, $p_value_by_f, $omega_sq) = $kw->fprob_test(); # F-equivalent value tests | ||||||
| 31 | |||||||
| 32 | # or without pre-loading, and specify correct_ties as well: | ||||||
| 33 | $h_value = $kw->h_value(data => {1 => [2, 4, 6], 2 => [5, 3, 12]}, correct_ties => 1); | ||||||
| 34 | # or test only a subset of the loaded data: | ||||||
| 35 | $h_value = $kw->h_value(lab => [1, 3]); | ||||||
| 36 | |||||||
| 37 | =head1 DESCRIPTION | ||||||
| 38 | |||||||
| 39 | Performs calculations for the Kruskal-Wallis one-way nonparametric analysis of variance by ranks. This is for (at least) ordinal-level measurements of two or more samples of a nominal/categorical variable with equality of variances across the samples. The test is unreliable for small number of observations per sample (conventionally, all samples should have more than five observations). See L |
||||||
| 40 | |||||||
| 41 | Data-loading and retrieval are as provided in L |
||||||
| 42 | |||||||
| 43 | Return values are tested on installation against published examples and output from other software (e.g., SPSS). | ||||||
| 44 | |||||||
| 45 | =head2 new | ||||||
| 46 | |||||||
| 47 | $kw = Statistics::ANOVA::KW->new(); | ||||||
| 48 | |||||||
| 49 | New object for accessing methods and storing results. This "isa" Statistics::Data object. | ||||||
| 50 | |||||||
| 51 | =head2 load, add, unload | ||||||
| 52 | |||||||
| 53 | $kw->load('a' => [1, 4, 3.2], 'b' => [6.5, 6.5, 9], 'c' => [3, 7, 4.4]); | ||||||
| 54 | |||||||
| 55 | The given data can now be used by any of the following methods. This is inherited from L |
||||||
| 56 | |||||||
| 57 | Alternatively, without pre-loading the data, directly give the following methods the HOA of data as the value for the optional named argument B. | ||||||
| 58 | |||||||
| 59 | =cut | ||||||
| 60 | |||||||
| 61 | =head2 h_value | ||||||
| 62 | |||||||
| 63 | $h_value = $kw->h_value(data => \%data, correct_ties => 1); | ||||||
| 64 | $h_value = $kw->h_value(); # assuming data have already been loaded, & default of TRUE for correct_ties | ||||||
| 65 | |||||||
| 66 | Returns the Kruskall-Wallis I |
||||||
| 67 | |||||||
| 68 | =cut | ||||||
| 69 | |||||||
| 70 | sub h_value { | ||||||
| 71 | 4 | 4 | 1 | 8617 | my ( $self, %args ) = ( shift, @_ ); | ||
| 72 | my $data = | ||||||
| 73 | $args{'data'} | ||||||
| 74 | 4 | 50 | 45 | ? delete $args{'data'} | |||
| 75 | : $self->get_hoa_by_lab_numonly_indep(%args); | ||||||
| 76 | my $correct_ties = defined $args{'correct_ties'} | ||||||
| 77 | 4 | 100 | 707 | and $args{'correct_ties'} == 0 ? 0 : 1; | |||
| 50 | |||||||
| 78 | 4 | 18 | return ( _kw_stats( $data, $correct_ties ) )[0]; | ||||
| 79 | } | ||||||
| 80 | |||||||
| 81 | =head2 chiprob_test | ||||||
| 82 | |||||||
| 83 | ($chi_value, $df, $count, $p_value, $phi) = $kw->chiprob_test(data => HOA, correct_ties => 1); # H as chi-square | ||||||
| 84 | $p_value = $kw->chiprob_test(data => HOA, correct_ties => 1); | ||||||
| 85 | $p_value = $kw->chiprob_test(); # assuming data have already been loaded, & default of TRUE for correct_ties | ||||||
| 86 | |||||||
| 87 | Performs the ANOVA and, assuming I -value if called in scalar context. Default value of optional argument B |
||||||
| 88 | |||||||
| 89 | =cut | ||||||
| 90 | |||||||
| 91 | sub chiprob_test { | ||||||
| 92 | 1 | 1 | 1 | 414 | my ( $self, %args ) = ( shift, @_ ); | ||
| 93 | my $data = | ||||||
| 94 | $args{'data'} | ||||||
| 95 | 1 | 50 | 13 | ? delete $args{'data'} | |||
| 96 | : $self->get_hoa_by_lab_numonly_indep(%args); | ||||||
| 97 | my $correct_ties = defined $args{'correct_ties'} | ||||||
| 98 | 1 | 50 | 127 | and $args{'correct_ties'} == 0 ? 0 : 1; | |||
| 50 | |||||||
| 99 | 1 | 3 | my ( $chi, $df_b, $count ) = _kw_stats( $data, $correct_ties ); | ||||
| 100 | 1 | 35 | my $p_value = chdtrc( $df_b, $chi ); # Math::Cephes fn | ||||
| 101 | return | ||||||
| 102 | wantarray | ||||||
| 103 | 1 | 50 | 7 | ? ( $chi, $df_b, $count, $p_value, sqrt( $chi / $count ) ) | |||
| 104 | : $p_value; | ||||||
| 105 | } | ||||||
| 106 | |||||||
| 107 | =head2 chiprob_str | ||||||
| 108 | |||||||
| 109 | $str = $kw->chiprob_str(data => HOA, correct_ties => 1); | ||||||
| 110 | $str = $kw->chiprob_str(); # assuming data have already been loaded, & default of TRUE for correct_ties | ||||||
| 111 | |||||||
| 112 | Performs the same test as for L |
||||||
| 113 | |||||||
| 114 | =cut | ||||||
| 115 | |||||||
| 116 | sub chiprob_str { | ||||||
| 117 | 0 | 0 | 1 | 0 | my ( $self, %args ) = ( shift, @_ ); | ||
| 118 | 0 | 0 | my ( $chi_value, $df, $count, $p_value, $phi ) = $self->chiprob_test(%args); | ||||
| 119 | 0 | 0 | return "chi^2($df, N = $count) = $chi_value, p = $p_value, phi = $phi"; | ||||
| 120 | } | ||||||
| 121 | |||||||
| 122 | =head2 fprob_test | ||||||
| 123 | |||||||
| 124 | ($f_value, $df_b, $df_w, $p_value, $es_omega) = $kw->fprob_test(data => HOA, correct_ties => BOOL); | ||||||
| 125 | $p_value = $kw->fprob_test(data => HOA, correct_ties => BOOL); | ||||||
| 126 | $p_value = $kw->fprob_test(); # assuming data have already been loaded, & default of TRUE for correct_ties | ||||||
| 127 | |||||||
| 128 | Performs the same test as above but transforms the I -value is returned. The default value of the optional argument B |
||||||
| 129 | |||||||
| 130 | =cut | ||||||
| 131 | |||||||
| 132 | sub fprob_test { | ||||||
| 133 | 2 | 2 | 1 | 1189 | my ( $self, %args ) = ( shift, @_ ); | ||
| 134 | my $data = | ||||||
| 135 | $args{'data'} | ||||||
| 136 | 2 | 50 | 15 | ? delete $args{'data'} | |||
| 137 | : $self->get_hoa_by_lab_numonly_indep(%args); | ||||||
| 138 | my $correct_ties = defined $args{'correct_ties'} | ||||||
| 139 | 2 | 50 | 334 | and $args{'correct_ties'} == 0 ? 0 : 1; | |||
| 50 | |||||||
| 140 | 2 | 17 | my ( $f_value, $df_b, $df_w ) = _f_stats( $data, $correct_ties ); | ||||
| 141 | 2 | 64 | my $p_value = fdtrc( $df_b, $df_w, $f_value ); # Math::Cephes fn | ||||
| 142 | 2 | 100 | 13 | return $p_value if !wantarray; | |||
| 143 | |||||||
| 144 | 1 | 2 | my $es_omega; | ||||
| 145 | 1 | 2 | eval { require Statistics::ANOVA::EffectSize; }; | ||||
| 1 | 379 | ||||||
| 146 | 1 | 50 | 8 | if ( !$@ ) { | |||
| 147 | 0 | 0 | $es_omega = Statistics::ANOVA::EffectSize->omega_sq_partial_by_f( | ||||
| 148 | f_value => $f_value, | ||||||
| 149 | df_b => $df_b, | ||||||
| 150 | df_w => $df_w | ||||||
| 151 | ); | ||||||
| 152 | } | ||||||
| 153 | 1 | 10 | return ( $f_value, $df_b, $df_w, $p_value, $es_omega ); | ||||
| 154 | } | ||||||
| 155 | |||||||
| 156 | =head2 fprob_str | ||||||
| 157 | |||||||
| 158 | $str = $kw->chiprob_str(data => HOA, correct_ties => BOOL); | ||||||
| 159 | $str = $kw->chiprob_str(); # assuming data have already been loaded, using default of TRUE for correct_ties | ||||||
| 160 | |||||||
| 161 | Performs the same test as for L |
||||||
| 162 | |||||||
| 163 | =cut | ||||||
| 164 | |||||||
| 165 | sub fprob_str { | ||||||
| 166 | 0 | 0 | 1 | 0 | my ( $self, %args ) = ( shift, @_ ); | ||
| 167 | 0 | 0 | my ( $f_value, $df_b, $df_w, $p_value, $es_omega ) = | ||||
| 168 | $self->fprob_test(%args); | ||||||
| 169 | 0 | 0 | my $str = "F($df_b, $df_w) = $f_value, p = $p_value"; | ||||
| 170 | 0 | 0 | 0 | if ( defined $es_omega ) { | |||
| 171 | 0 | 0 | $str .= ', est_omega^2_p = ' . $es_omega; | ||||
| 172 | } | ||||||
| 173 | 0 | 0 | return $str; | ||||
| 174 | } | ||||||
| 175 | |||||||
| 176 | sub _kw_stats { | ||||||
| 177 | 7 | 7 | 26 | my ( $data, $correct_ties ) = @_; | |||
| 178 | 7 | 40 | my ( $ranks_href, $ties_aref, $gn, $ties_var ) = | ||||
| 179 | Statistics::Data::Rank->ranks_between( data => $data ); | ||||||
| 180 | my $num = sum0( | ||||||
| 181 | map { | ||||||
| 182 | 17 | 28 | scalar @{ $ranks_href->{$_} } * | ||||
| 183 | 17 | 428 | ( mean( @{ $ranks_href->{$_} } ) - ( ( $gn + 1 ) / 2 ) )**2 | ||||
| 17 | 53 | ||||||
| 184 | 7 | 2772 | } keys %{$ranks_href} | ||||
| 7 | 24 | ||||||
| 185 | ); | ||||||
| 186 | 7 | 284 | my $h = 12 / ( $gn * ( $gn + 1 ) ) * $num; | ||||
| 187 | |||||||
| 188 | # correction for ties: | ||||||
| 189 | 7 | 50 | 33 | 57 | $h /= ( 1 - ( $ties_var / ( $gn**3 - $gn ) ) ) | ||
| 190 | unless defined $correct_ties and not $correct_ties; | ||||||
| 191 | 7 | 8 | return ( $h, ( scalar keys %{$ranks_href} ) - 1, $gn ); # H, df, and grand N | ||||
| 7 | 51 | ||||||
| 192 | } | ||||||
| 193 | |||||||
| 194 | sub _f_stats { | ||||||
| 195 | 2 | 2 | 4 | my ( $data, $correct_ties ) = @_; | |||
| 196 | 2 | 5 | my ( $h, $df_b, $n ) = _kw_stats( $data, $correct_ties ); | ||||
| 197 | 2 | 9 | my $df_w = sum0( map { scalar @{ $data->{$_} } - 1 } keys %{$data} ); | ||||
| 6 | 6 | ||||||
| 6 | 16 | ||||||
| 2 | 6 | ||||||
| 198 | 2 | 5 | my $n_bt = scalar keys( %{$data} ); | ||||
| 2 | 3 | ||||||
| 199 | 2 | 6 | my $f_val = ( $h / ( $n_bt - 1 ) ) / ( ( $n - 1 - $h ) / ( $n - $n_bt ) ); | ||||
| 200 | 2 | 7 | return ( $f_val, $df_b, $df_w ); | ||||
| 201 | } | ||||||
| 202 | |||||||
| 203 | =head1 DEPENDENCIES | ||||||
| 204 | |||||||
| 205 | L |
||||||
| 206 | |||||||
| 207 | L |
||||||
| 208 | |||||||
| 209 | L |
||||||
| 210 | |||||||
| 211 | L |
||||||
| 212 | |||||||
| 213 | =head1 REFERENCES | ||||||
| 214 | |||||||
| 215 | Hollander, M., & Wolfe, D. A. (1999). I |
||||||
| 216 | |||||||
| 217 | Rice, J. A. (1995). I |
||||||
| 218 | |||||||
| 219 | Sarantakos, S. (1993). I |
||||||
| 220 | |||||||
| 221 | Siegal, S. (1956). I |
||||||
| 222 | |||||||
| 223 | =head1 SEE ALSO | ||||||
| 224 | |||||||
| 225 | L |
||||||
| 226 | |||||||
| 227 | L -value (only), and implements the Newman-Keuls test for pairwise comparison. |
||||||
| 228 | |||||||
| 229 | =head1 AUTHOR | ||||||
| 230 | |||||||
| 231 | Roderick Garton, C<< |
||||||
| 232 | |||||||
| 233 | =head1 BUGS | ||||||
| 234 | |||||||
| 235 | Please report any bugs or feature requests to C |
||||||
| 236 | the web interface at L |
||||||
| 237 | automatically be notified of progress on your bug as I make changes. | ||||||
| 238 | |||||||
| 239 | =head1 SUPPORT | ||||||
| 240 | |||||||
| 241 | You can find documentation for this module with the perldoc command. | ||||||
| 242 | |||||||
| 243 | perldoc Statistics::ANOVA::KW | ||||||
| 244 | |||||||
| 245 | You can also look for information at: | ||||||
| 246 | |||||||
| 247 | =over 4 | ||||||
| 248 | |||||||
| 249 | =item * RT: CPAN's request tracker (report bugs here) | ||||||
| 250 | |||||||
| 251 | L |
||||||
| 252 | |||||||
| 253 | =item * AnnoCPAN: Annotated CPAN documentation | ||||||
| 254 | |||||||
| 255 | L |
||||||
| 256 | |||||||
| 257 | =item * CPAN Ratings | ||||||
| 258 | |||||||
| 259 | L |
||||||
| 260 | |||||||
| 261 | =item * Search CPAN | ||||||
| 262 | |||||||
| 263 | L |
||||||
| 264 | |||||||
| 265 | =back | ||||||
| 266 | |||||||
| 267 | |||||||
| 268 | =head1 ACKNOWLEDGEMENTS | ||||||
| 269 | |||||||
| 270 | |||||||
| 271 | =head1 LICENSE AND COPYRIGHT | ||||||
| 272 | |||||||
| 273 | Copyright 2015 Roderick Garton. | ||||||
| 274 | |||||||
| 275 | This program is free software; you can redistribute it and/or modify it | ||||||
| 276 | under the terms of either: the GNU General Public License as published | ||||||
| 277 | by the Free Software Foundation; or the Artistic License. | ||||||
| 278 | |||||||
| 279 | See L |
||||||
| 280 | |||||||
| 281 | |||||||
| 282 | =cut | ||||||
| 283 | |||||||
| 284 | 1; # End of Statistics::ANOVA::KW |