| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright Infomation |
|
2
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
3
|
|
|
|
|
|
|
# Author : Dr. Ahmed Amin Elsheshtawy, Ph.D. |
|
4
|
|
|
|
|
|
|
# Website: http://www.mewsoft.com |
|
5
|
|
|
|
|
|
|
# Email : support@mewsoft.com |
|
6
|
|
|
|
|
|
|
# Copyrights (c) 2000-2015 Mewsoft Corporation. All rights reserved. |
|
7
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
8
|
|
|
|
|
|
|
package Religion::Islam::Qibla; |
|
9
|
|
|
|
|
|
|
|
|
10
|
1
|
|
|
1
|
|
17434
|
use Carp; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
83
|
|
|
11
|
1
|
|
|
1
|
|
4
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
30
|
|
|
12
|
1
|
|
|
1
|
|
3
|
use warnings; |
|
|
1
|
|
|
|
|
5
|
|
|
|
1
|
|
|
|
|
24
|
|
|
13
|
1
|
|
|
1
|
|
1617
|
use Math::Trig; |
|
|
1
|
|
|
|
|
21059
|
|
|
|
1
|
|
|
|
|
1157
|
|
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
our $VERSION = '4.0'; |
|
16
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
17
|
|
|
|
|
|
|
sub new { |
|
18
|
0
|
|
|
0
|
0
|
|
my ($class, %args) = @_; |
|
19
|
0
|
|
|
|
|
|
my $self = bless {}, $class; |
|
20
|
|
|
|
|
|
|
# Default destination point is the Kabah Lat=21 Deg N, Long 40 Deg E |
|
21
|
0
|
0
|
|
|
|
|
$self->{DestLat} = $args{DestLat}? $args{DestLat}: 21.423333; # 21.423333; |
|
22
|
0
|
0
|
|
|
|
|
$self->{DestLong} = $args{DestLong}? $args{DestLong}: 39.823333; # 39.823333; |
|
23
|
0
|
|
|
|
|
|
return $self; |
|
24
|
|
|
|
|
|
|
} |
|
25
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
26
|
|
|
|
|
|
|
sub DestLat { |
|
27
|
0
|
|
|
0
|
0
|
|
my ($self) = shift; |
|
28
|
0
|
0
|
|
|
|
|
$self->{DestLat} = shift if @_; |
|
29
|
0
|
|
|
|
|
|
return $self->{DestLat}; |
|
30
|
|
|
|
|
|
|
} |
|
31
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
32
|
|
|
|
|
|
|
sub DestLong { |
|
33
|
0
|
|
|
0
|
0
|
|
my ($self) = shift; |
|
34
|
0
|
0
|
|
|
|
|
$self->{DestLong} = shift if @_; |
|
35
|
0
|
|
|
|
|
|
return $self->{DestLong}; |
|
36
|
|
|
|
|
|
|
} |
|
37
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
38
|
|
|
|
|
|
|
#Converting from Degrees, Minutes and Seconds to Decimal Degrees |
|
39
|
|
|
|
|
|
|
sub DegreeToDecimal { |
|
40
|
0
|
|
|
0
|
0
|
|
my ($self, $degrees, $minutes, $seconds) = @_; |
|
41
|
0
|
|
|
|
|
|
return $degrees + ($minutes / 60) + ($seconds / 3600); |
|
42
|
|
|
|
|
|
|
} |
|
43
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
44
|
|
|
|
|
|
|
#Converting from Decimal Degrees to Degrees, Minutes and Seconds |
|
45
|
|
|
|
|
|
|
sub DecimalToDegree { |
|
46
|
0
|
|
|
0
|
0
|
|
my ($self, $decimal_degree) = @_; |
|
47
|
0
|
|
|
|
|
|
my ($degrees, $minutes, $seconds, $ff); |
|
48
|
|
|
|
|
|
|
|
|
49
|
0
|
|
|
|
|
|
$degrees = int($decimal_degree); |
|
50
|
0
|
|
|
|
|
|
$ff = $decimal_degree - $degrees; |
|
51
|
0
|
|
|
|
|
|
$minutes = int(60 * $ff); |
|
52
|
0
|
|
|
|
|
|
$seconds = 60 * ((60 * $ff) - $minutes); |
|
53
|
0
|
|
|
|
|
|
return ($degrees, $minutes, $seconds); |
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
56
|
|
|
|
|
|
|
# The shortest distance between points 1 and 2 on the earth's surface is |
|
57
|
|
|
|
|
|
|
# d = arccos{cos(Dlat) - [1 - cos(Dlong)]cos(lat1)cos(lat2)} |
|
58
|
|
|
|
|
|
|
# Dlat = lab - lat2 |
|
59
|
|
|
|
|
|
|
# Dlong = 10ng - long2 |
|
60
|
|
|
|
|
|
|
# lati, = latitude of point i |
|
61
|
|
|
|
|
|
|
# longi, = longitude of point i |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
#Conversion of grad to degrees is as follows: |
|
64
|
|
|
|
|
|
|
#Grad=400-degrees/0.9 or Degrees=0.9x(400-Grad) |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
#Latitude is determined by the earth's polar axis. Longitude is determined |
|
67
|
|
|
|
|
|
|
#by the earth's rotation. If you can see the stars and have a sextant and |
|
68
|
|
|
|
|
|
|
#a good clock set to Greenwich time, you can find your latitude and longitude. |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
# one nautical mile equals to: |
|
71
|
|
|
|
|
|
|
# 6076.10 feet |
|
72
|
|
|
|
|
|
|
# 2027 yards |
|
73
|
|
|
|
|
|
|
# 1.852 kilometers |
|
74
|
|
|
|
|
|
|
# 1.151 statute mile |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
# Calculates the distance between any two points on the Earth |
|
77
|
|
|
|
|
|
|
sub GreatCircleDistance { |
|
78
|
0
|
|
|
0
|
0
|
|
my ($self, $orig_lat , $dest_lat, $orig_long, $dest_long) = @_; |
|
79
|
0
|
|
|
|
|
|
my ($d, $l1, $l2, $i1, $i2); |
|
80
|
|
|
|
|
|
|
|
|
81
|
0
|
|
|
|
|
|
$l1 = deg2rad($orig_lat); |
|
82
|
0
|
|
|
|
|
|
$l2 = deg2rad($dest_lat); |
|
83
|
0
|
|
|
|
|
|
$i1 = deg2rad($orig_long); |
|
84
|
0
|
|
|
|
|
|
$i2 = deg2rad($dest_long); |
|
85
|
|
|
|
|
|
|
|
|
86
|
0
|
|
|
|
|
|
$d = acos(cos($l1 - $l2) - (1 - cos($i1 - $i2)) * cos($l1) * cos($l2)); |
|
87
|
|
|
|
|
|
|
# One degree of such an arc on the earth's surface is 60 international nautical miles NM |
|
88
|
0
|
|
|
|
|
|
return rad2deg($d * 60); |
|
89
|
|
|
|
|
|
|
} |
|
90
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
91
|
|
|
|
|
|
|
#Calculates the direction from one point to another on the Earth |
|
92
|
|
|
|
|
|
|
# a = arccos{[sin(lat2) - cos(d + lat1 - 1.5708)]/cos(lat1)/sin(d) + 1} |
|
93
|
|
|
|
|
|
|
# Great Circle Bearing |
|
94
|
|
|
|
|
|
|
sub GreatCircleDirection { |
|
95
|
0
|
|
|
0
|
0
|
|
my ($self, $orig_lat, $dest_lat, $orig_long, $dest_long, $distance) = @_; |
|
96
|
0
|
|
|
|
|
|
my ($a, $b, $d, $l1, $l2, $i1, $i2, $result, $dlong); |
|
97
|
|
|
|
|
|
|
|
|
98
|
0
|
|
|
|
|
|
$l1 = deg2rad($orig_lat); |
|
99
|
0
|
|
|
|
|
|
$l2 = deg2rad($dest_lat); |
|
100
|
0
|
|
|
|
|
|
$d = deg2rad($distance / 60); # divide by 60 for nautical miles NM to degree |
|
101
|
|
|
|
|
|
|
|
|
102
|
0
|
|
|
|
|
|
$i1 = deg2rad($orig_long); |
|
103
|
0
|
|
|
|
|
|
$i2 = deg2rad($dest_long); |
|
104
|
0
|
|
|
|
|
|
$dlong = $i1 - $i2; |
|
105
|
|
|
|
|
|
|
|
|
106
|
0
|
|
|
|
|
|
$a = sin($l2) - cos($d + $l1 - pi / 2); |
|
107
|
0
|
|
|
|
|
|
$b = acos($a / (cos($l1) * sin($d)) + 1); |
|
108
|
0
|
0
|
0
|
|
|
|
if ((abs($dlong) < pi && $dlong < 0) || (abs($dlong) > pi && $dlong > 0) ) { |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
109
|
|
|
|
|
|
|
#$b = (2 * pi) - $b; |
|
110
|
|
|
|
|
|
|
} |
|
111
|
0
|
|
|
|
|
|
$result = rad2deg($b); |
|
112
|
|
|
|
|
|
|
|
|
113
|
0
|
|
|
|
|
|
return $result; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
116
|
|
|
|
|
|
|
#The Equivalent Earth redius is 6,378.14 Kilometers. |
|
117
|
|
|
|
|
|
|
# Calculates the direction of the Qibla from any point on |
|
118
|
|
|
|
|
|
|
# the Earth From North Clocklwise |
|
119
|
|
|
|
|
|
|
sub QiblaDirection_ { |
|
120
|
0
|
|
|
0
|
0
|
|
my ($self, $orig_lat, $orig_long) = @_; |
|
121
|
0
|
|
|
|
|
|
my ($distance, $bearing); |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# Kabah Lat=21 Deg N, Long 40 Deg E |
|
124
|
0
|
|
|
|
|
|
$distance = $self->GreatCircleDistance($orig_lat, $self->{DestLat}, $orig_long, $self->{DestLong}); |
|
125
|
0
|
|
|
|
|
|
$bearing = $self->GreatCircleDirection($orig_lat, $self->{DestLat}, $orig_long, $self->{DestLong}, $distance); |
|
126
|
|
|
|
|
|
|
|
|
127
|
0
|
0
|
|
|
|
|
if ($orig_lat > $self->{DestLat}) { |
|
128
|
|
|
|
|
|
|
#$bearing += 180; |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
|
|
131
|
0
|
|
|
|
|
|
return $bearing; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
134
|
|
|
|
|
|
|
# Determine Qibla direction using basic spherical trigonometric formula |
|
135
|
|
|
|
|
|
|
# Return float Qibla Direction from the north direction in degrees |
|
136
|
|
|
|
|
|
|
sub QiblaDirection__ { |
|
137
|
|
|
|
|
|
|
|
|
138
|
0
|
|
|
0
|
0
|
|
my ($self, $orig_lat, $orig_long) = @_; |
|
139
|
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
#$orig_lat = 35.3833; |
|
141
|
|
|
|
|
|
|
#$orig_long = 119.0166; |
|
142
|
|
|
|
|
|
|
#Saudi Arabia, Riyadh Qibla = 245, Qibla Direction: 244.53 degees from true North, Distance from Ka'bah in Makkah: 790.18 km |
|
143
|
|
|
|
|
|
|
|
|
144
|
0
|
|
|
|
|
|
my $numerator = sin(deg2rad($self->{DestLong} - $orig_long)); |
|
145
|
|
|
|
|
|
|
|
|
146
|
0
|
|
|
|
|
|
my $denominator = (cos(deg2rad($orig_lat)) * tan(deg2rad($self->{DestLat}))) - |
|
147
|
|
|
|
|
|
|
(sin(deg2rad($orig_lat)) * cos(deg2rad($self->{DestLong} - $orig_long))); |
|
148
|
|
|
|
|
|
|
|
|
149
|
0
|
|
|
|
|
|
my $q = rad2deg(atan($numerator / $denominator)); |
|
150
|
|
|
|
|
|
|
|
|
151
|
0
|
0
|
|
|
|
|
if ($orig_lat > $self->{DestLat}) { |
|
152
|
|
|
|
|
|
|
#$q += 180; |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
# Yemen, Sanaa = -35.57 from North = 324.43 from North |
|
156
|
0
|
0
|
|
|
|
|
if ($q < 0) { |
|
157
|
|
|
|
|
|
|
#$q += 360; |
|
158
|
|
|
|
|
|
|
} |
|
159
|
0
|
|
|
|
|
|
return $q; |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
162
|
|
|
|
|
|
|
# This is the only algorithm working with all other confirmed calculations |
|
163
|
|
|
|
|
|
|
# See JS code source at http://www.moonsighting.com/qibla.html |
|
164
|
|
|
|
|
|
|
sub QiblaDirection { |
|
165
|
|
|
|
|
|
|
|
|
166
|
0
|
|
|
0
|
0
|
|
my ($self, $lat, $lon) = @_; |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
#$orig_lat = 35.3833; |
|
169
|
|
|
|
|
|
|
#$orig_long = 119.0166; |
|
170
|
|
|
|
|
|
|
#Saudi Arabia, Riyadh Qibla = 245, Qibla Direction: 244.53 degees from true North, Distance from Ka'bah in Makkah: 790.18 km |
|
171
|
|
|
|
|
|
|
|
|
172
|
0
|
|
|
|
|
|
my $latk = deg2rad($self->{DestLat}); |
|
173
|
0
|
|
|
|
|
|
my $longk = deg2rad($self->{DestLong}); |
|
174
|
0
|
|
|
|
|
|
my $phi = deg2rad($lat); |
|
175
|
0
|
|
|
|
|
|
my $lambda = deg2rad($lon); |
|
176
|
0
|
|
|
|
|
|
my $qiblad = rad2deg(atan2(sin($longk - $lambda), cos($phi)*tan($latk)-sin($phi)*cos($longk-$lambda))); |
|
177
|
0
|
0
|
|
|
|
|
if ($qiblad < 0) { |
|
178
|
0
|
|
|
|
|
|
$qiblad += 360; |
|
179
|
|
|
|
|
|
|
} |
|
180
|
0
|
|
|
|
|
|
return $qiblad; |
|
181
|
|
|
|
|
|
|
} |
|
182
|
|
|
|
|
|
|
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
183
|
|
|
|
|
|
|
=cuts |
|
184
|
|
|
|
|
|
|
public function getQibla () |
|
185
|
|
|
|
|
|
|
{ |
|
186
|
|
|
|
|
|
|
// The geographical coordinates of the Ka'ba |
|
187
|
|
|
|
|
|
|
$K_latitude = 21.423333; |
|
188
|
|
|
|
|
|
|
$K_longitude = 39.823333; |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
$latitude = $this->lat; |
|
191
|
|
|
|
|
|
|
$longitude = $this->long; |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
$numerator = sin(deg2rad($K_longitude - $longitude)); |
|
194
|
|
|
|
|
|
|
$denominator = (cos(deg2rad($latitude)) * tan(deg2rad($K_latitude))) - |
|
195
|
|
|
|
|
|
|
(sin(deg2rad($latitude)) |
|
196
|
|
|
|
|
|
|
* cos(deg2rad($K_longitude - $longitude))); |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
$q = atan($numerator / $denominator); |
|
199
|
|
|
|
|
|
|
$q = rad2deg($q); |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
if ($this->lat > 21.423333) { |
|
202
|
|
|
|
|
|
|
$q += 180; |
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
return $q; |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
|