| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Math::Vec; |
|
2
|
|
|
|
|
|
|
our $VERSION = '1.01'; |
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=pod |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Math::Vec - Object-Oriented Vector Math Methods in Perl |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use Math::Vec; |
|
13
|
|
|
|
|
|
|
$v = Math::Vec->new(0,1,2); |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
or |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
use Math::Vec qw(NewVec); |
|
18
|
|
|
|
|
|
|
$v = NewVec(0,1,2); |
|
19
|
|
|
|
|
|
|
@res = $v->Cross([1,2.5,0]); |
|
20
|
|
|
|
|
|
|
$p = NewVec(@res); |
|
21
|
|
|
|
|
|
|
$q = $p->Dot([0,1,0]); |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
or |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
use Math::Vec qw(:terse); |
|
26
|
|
|
|
|
|
|
$v = V(0,1,2); |
|
27
|
|
|
|
|
|
|
$q = ($v x [1,2.5,0]) * [0,1,0]; |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=head1 NOTICE |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
This module is still somewhat incomplete. If a function does nothing, |
|
32
|
|
|
|
|
|
|
there is likely a really good reason. Please have a look at the code |
|
33
|
|
|
|
|
|
|
if you are trying to use this in a production environment. |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
=head1 AUTHOR |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Eric L. Wilhelm |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
http://scratchcomputing.com |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
This module was adapted from Math::Vector, written by Wayne M. Syvinski. |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
It uses most of the same algorithms, and currently preserves the same |
|
46
|
|
|
|
|
|
|
names as the original functions, though some aliases have been added to |
|
47
|
|
|
|
|
|
|
make the interface more natural (at least to the way I think.) |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
The "object" for the object oriented calling style is a blessed array |
|
50
|
|
|
|
|
|
|
reference which contains a vector of the form [x,y,z]. Methods will |
|
51
|
|
|
|
|
|
|
typically return a list. |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
=head1 COPYRIGHT NOTICE |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
Copyright (C) 2003-2006 Eric Wilhelm |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
portions Copyright 2003 Wayne M. Syvinski |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
=head1 NO WARRANTY |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
Absolutely, positively NO WARRANTY, neither express or implied, is |
|
62
|
|
|
|
|
|
|
offered with this software. You use this software at your own risk. |
|
63
|
|
|
|
|
|
|
In case of loss, neither Wayne M. Syvinski, Eric Wilhelm, nor anyone |
|
64
|
|
|
|
|
|
|
else, owes you anything whatseover. You have been warned. |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
Note that this includes NO GUARANTEE of MATHEMATICAL CORRECTNESS. If |
|
67
|
|
|
|
|
|
|
you are going to use this code in a production environment, it is YOUR |
|
68
|
|
|
|
|
|
|
RESPONSIBILITY to verify that the methods return the correct values. |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
=head1 LICENSE |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
You may use this software under one of the following licenses: |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
(1) GNU General Public License |
|
75
|
|
|
|
|
|
|
(found at http://www.gnu.org/copyleft/gpl.html) |
|
76
|
|
|
|
|
|
|
(2) Artistic License |
|
77
|
|
|
|
|
|
|
(found at http://www.perl.com/pub/language/misc/Artistic.html) |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=head1 SEE ALSO |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
Math::Vector |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
=cut |
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
######################################################################## |
|
86
|
|
|
|
|
|
|
|
|
87
|
3
|
|
|
3
|
|
111771
|
use strict; |
|
|
3
|
|
|
|
|
8
|
|
|
|
3
|
|
|
|
|
113
|
|
|
88
|
3
|
|
|
3
|
|
17
|
use warnings; |
|
|
3
|
|
|
|
|
4
|
|
|
|
3
|
|
|
|
|
83
|
|
|
89
|
3
|
|
|
3
|
|
15
|
use Carp; |
|
|
3
|
|
|
|
|
10
|
|
|
|
3
|
|
|
|
|
733
|
|
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
{ |
|
92
|
|
|
|
|
|
|
package Math::Vec::Support; |
|
93
|
|
|
|
|
|
|
# Dropping the usage of Math::Complex acos() because we don't want any |
|
94
|
|
|
|
|
|
|
# complex numbers to happen due to errors in the whee bits. |
|
95
|
|
|
|
|
|
|
sub acos { |
|
96
|
3
|
|
|
3
|
|
14
|
my ($z) = @_; |
|
97
|
|
|
|
|
|
|
|
|
98
|
3
|
|
|
|
|
6
|
my $abs = abs($z); |
|
99
|
3
|
50
|
|
|
|
13
|
if($abs > 1) { |
|
100
|
|
|
|
|
|
|
# just a little sanity checking |
|
101
|
3
|
50
|
|
|
|
12
|
(($abs - 1) > 2**-16) and die "bad input to acos($z)"; |
|
102
|
|
|
|
|
|
|
# make it safe |
|
103
|
3
|
100
|
|
|
|
8
|
$z = ($z > 0) ? 1 : -1; |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
|
|
106
|
3
|
|
|
|
|
38
|
return CORE::atan2(CORE::sqrt(1-$z*$z), $z); |
|
107
|
|
|
|
|
|
|
} |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
BEGIN { |
|
111
|
3
|
|
|
3
|
|
22
|
use Exporter; |
|
|
3
|
|
|
|
|
12
|
|
|
|
3
|
|
|
|
|
120
|
|
|
112
|
3
|
|
|
3
|
|
4287
|
*{import} = \&Exporter::import; |
|
113
|
|
|
|
|
|
|
} |
|
114
|
|
|
|
|
|
|
our @EXPORT = (); |
|
115
|
|
|
|
|
|
|
our @EXPORT_OK = qw( |
|
116
|
|
|
|
|
|
|
NewVec |
|
117
|
|
|
|
|
|
|
); |
|
118
|
|
|
|
|
|
|
our @terse_exp = qw( |
|
119
|
|
|
|
|
|
|
V |
|
120
|
|
|
|
|
|
|
U |
|
121
|
|
|
|
|
|
|
X |
|
122
|
|
|
|
|
|
|
Y |
|
123
|
|
|
|
|
|
|
Z |
|
124
|
|
|
|
|
|
|
); |
|
125
|
|
|
|
|
|
|
our %EXPORT_TAGS = ( |
|
126
|
|
|
|
|
|
|
terse => [@terse_exp], |
|
127
|
|
|
|
|
|
|
); |
|
128
|
|
|
|
|
|
|
Exporter::export_ok_tags(keys(%EXPORT_TAGS)); |
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
|
|
131
|
|
|
|
|
|
|
######################################################################## |
|
132
|
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
=head1 Constructor |
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
=head2 new |
|
136
|
|
|
|
|
|
|
|
|
137
|
|
|
|
|
|
|
Returns a blessed array reference to cartesian point ($x, $y, $z), |
|
138
|
|
|
|
|
|
|
where $z is optional. Note the feed-me-list, get-back-reference syntax |
|
139
|
|
|
|
|
|
|
here. This is the opposite of the rest of the methods for a good |
|
140
|
|
|
|
|
|
|
reason (it allows nesting of function calls.) |
|
141
|
|
|
|
|
|
|
|
|
142
|
|
|
|
|
|
|
The z value is optional, (and so are x and y.) Undefined values are |
|
143
|
|
|
|
|
|
|
silently translated into zeros upon construction. |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
$vec = Math::Vec->new($x, $y, $z); |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=cut |
|
148
|
|
|
|
|
|
|
sub new { |
|
149
|
57
|
|
|
57
|
1
|
2987
|
my $caller = shift; |
|
150
|
57
|
|
33
|
|
|
375
|
my $class = ref($caller) || $caller; |
|
151
|
57
|
100
|
|
|
|
105
|
my $self = [map({defined($_) ? $_ : 0} @_[0,1,2])]; |
|
|
171
|
|
|
|
|
402
|
|
|
152
|
57
|
|
|
|
|
122
|
bless($self, $class); |
|
153
|
57
|
|
|
|
|
219
|
return($self); |
|
154
|
|
|
|
|
|
|
} # end subroutine new definition |
|
155
|
|
|
|
|
|
|
######################################################################## |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
=head2 NewVec |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
This is simply a shortcut to Math::Vec->new($x, $y, $z) for those of |
|
160
|
|
|
|
|
|
|
you who don't want to type so much so often. This also makes it easier |
|
161
|
|
|
|
|
|
|
to nest / chain your function calls. Note that methods will typically |
|
162
|
|
|
|
|
|
|
output lists (e.g. the answer to your question.) While you can simply |
|
163
|
|
|
|
|
|
|
[bracket] the answer to make an array reference, you need that to be |
|
164
|
|
|
|
|
|
|
blessed in order to use the $object->method(@args) syntax. This |
|
165
|
|
|
|
|
|
|
function does that blessing. |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
This function is exported as an option. To use it, simply use |
|
168
|
|
|
|
|
|
|
Math::Vec qw(NewVec); at the start of your code. |
|
169
|
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
use Math::Vec qw(NewVec); |
|
171
|
|
|
|
|
|
|
$vec = NewVec($x, $y, $z); |
|
172
|
|
|
|
|
|
|
$diff = NewVec($vec->Minus([$ovec->ScalarMult(0.5)])); |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=cut |
|
175
|
|
|
|
|
|
|
sub NewVec { |
|
176
|
5
|
|
|
5
|
1
|
19
|
return(Math::Vec->new(@_)); |
|
177
|
|
|
|
|
|
|
} # end subroutine NewVec definition |
|
178
|
|
|
|
|
|
|
######################################################################## |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=head1 Terse Functions |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
These are all one-letter shortcuts which are imported to your namespace |
|
183
|
|
|
|
|
|
|
with the :terse flag. |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
use Math::Vec qw(:terse); |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=head2 V |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
This is the same as Math::Vec->new($x,$y,$z). |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
$vec = V($x, $y, $z); |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
=cut |
|
194
|
|
|
|
|
|
|
sub V { |
|
195
|
49
|
|
|
49
|
1
|
1373
|
return(Math::Vec->new(@_)); |
|
196
|
|
|
|
|
|
|
} # end subroutine V definition |
|
197
|
|
|
|
|
|
|
######################################################################## |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
=head2 U |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
Shortcut to V($x,$y,$z)->UnitVector() |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
$unit = U($x, $y, $z); |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
This will also work if called with a vector object: |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
$unit = U($vector); |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=cut |
|
210
|
|
|
|
|
|
|
sub U { |
|
211
|
0
|
|
|
0
|
1
|
0
|
my $v; |
|
212
|
0
|
0
|
|
|
|
0
|
if(ref($_[0])) { |
|
213
|
0
|
|
|
|
|
0
|
$v = _vec_check($_[0]); |
|
214
|
|
|
|
|
|
|
} |
|
215
|
|
|
|
|
|
|
else { |
|
216
|
0
|
|
|
|
|
0
|
$v = V(@_); |
|
217
|
|
|
|
|
|
|
} |
|
218
|
0
|
|
|
|
|
0
|
return(V($v->UnitVector())); |
|
219
|
|
|
|
|
|
|
} # end subroutine U definition |
|
220
|
|
|
|
|
|
|
######################################################################## |
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
=head2 X |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
Returns an x-axis unit vector. |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
$xvec = X(); |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
=cut |
|
229
|
|
|
|
|
|
|
sub X { |
|
230
|
1
|
|
|
1
|
1
|
4
|
V(1,0,0); |
|
231
|
|
|
|
|
|
|
} # end subroutine X definition |
|
232
|
|
|
|
|
|
|
######################################################################## |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
=head2 Y |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
Returns a y-axis unit vector. |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
$yvec = Y(); |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
=cut |
|
241
|
|
|
|
|
|
|
sub Y { |
|
242
|
1
|
|
|
1
|
1
|
3
|
V(0,1,0); |
|
243
|
|
|
|
|
|
|
} # end subroutine Y definition |
|
244
|
|
|
|
|
|
|
######################################################################## |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
=head2 Z |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
Returns a z-axis unit vector. |
|
249
|
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
$zvec = Z(); |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
=cut |
|
253
|
|
|
|
|
|
|
sub Z { |
|
254
|
2
|
|
|
2
|
1
|
6
|
V(0,0,1); |
|
255
|
|
|
|
|
|
|
} # end subroutine Z definition |
|
256
|
|
|
|
|
|
|
######################################################################## |
|
257
|
|
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
=head1 Overloading |
|
259
|
|
|
|
|
|
|
|
|
260
|
|
|
|
|
|
|
Best used with the :terse functions, the Overloading scheme introduces |
|
261
|
|
|
|
|
|
|
an interface which is unique from the Methods interface. Where the |
|
262
|
|
|
|
|
|
|
methods take references and return lists, the overloaded operators will |
|
263
|
|
|
|
|
|
|
return references. This allows vector arithmetic to be chained together |
|
264
|
|
|
|
|
|
|
more easily. Of course, you can easily dereference these with @{$vec}. |
|
265
|
|
|
|
|
|
|
|
|
266
|
|
|
|
|
|
|
The following sections contain equivelant expressions from the longhand |
|
267
|
|
|
|
|
|
|
and terse interfaces, respectively. |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head2 Negation: |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
@a = NewVec->(0,1,1)->ScalarMult(-1); |
|
272
|
|
|
|
|
|
|
@a = @{-V(0,1,1)}; |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
=head2 Stringification: |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
This also performs concatenation and other string operations. |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
print join(", ", 0,1,1), "\n"; |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
print V(0,1,1), "\n"; |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
$v = V(0,1,1); |
|
283
|
|
|
|
|
|
|
print "$v\n"; |
|
284
|
|
|
|
|
|
|
print "$v" . "\n"; |
|
285
|
|
|
|
|
|
|
print $v, "\n"; |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
=head2 Addition: |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->Plus([2,2]); |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
@a = @{V(0,1,1) + V(2,2)}; |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
# only one argument needs to be blessed: |
|
294
|
|
|
|
|
|
|
@a = @{V(0,1,1) + [2,2]}; |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
# and which one is blessed doesn't matter: |
|
297
|
|
|
|
|
|
|
@a = @{[0,1,1] + V(2,2)}; |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
=head2 Subtraction: |
|
300
|
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->Minus([2,2]); |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
@a = @{[0,1,1] - V(2,2)}; |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
=head2 Scalar Multiplication: |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->ScalarMult(2); |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
@a = @{V(0,1,1) * 2}; |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
@a = @{2 * V(0,1,1)}; |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
=head2 Scalar Division: |
|
314
|
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->ScalarMult(1/2); |
|
316
|
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
# order matters! |
|
318
|
|
|
|
|
|
|
@a = @{V(0,1,1) / 2}; |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
=head2 Cross Product: |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->Cross([0,1]); |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
@a = @{V(0,1,1) x [0,1]}; |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
@a = @{[0,1,1] x V(0,1)}; |
|
327
|
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
=head2 Dot Product: |
|
329
|
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
Also known as the "Scalar Product". |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
$a = NewVec(0,1,1)->Dot([0,1]); |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
$a = V(0,1,1) * [0,1]; |
|
335
|
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
Note: Not using the '.' operator here makes everything more efficient. |
|
337
|
|
|
|
|
|
|
I know, the * is not a dot, but at least it's a mathematical operator |
|
338
|
|
|
|
|
|
|
(perl does some implied string concatenation somewhere which drove me to |
|
339
|
|
|
|
|
|
|
avoid the dot.) |
|
340
|
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
=head2 Comparison: |
|
342
|
|
|
|
|
|
|
|
|
343
|
|
|
|
|
|
|
The == and != operators will compare vectors for equal direction and |
|
344
|
|
|
|
|
|
|
magnitude. No attempt is made to apply tolerance to this equality. |
|
345
|
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
=head2 Length: |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
$a = NewVec(0,1,1)->Length(); |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
$a = abs(V(0,1,1)); |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
=head2 Vector Projection: |
|
353
|
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
This one is a little different. Where the method is written |
|
355
|
|
|
|
|
|
|
$a->Proj($b) to give the projection of $b onto $a, this reads like you |
|
356
|
|
|
|
|
|
|
would say it (b projected onto a): $b>>$a. |
|
357
|
|
|
|
|
|
|
|
|
358
|
|
|
|
|
|
|
@a = NewVec(0,1,1)->Proj([0,0,1]); |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
@a = @{V(0,0,1)>>[0,1,1]}; |
|
361
|
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
=head1 Chaining Operations |
|
363
|
|
|
|
|
|
|
|
|
364
|
|
|
|
|
|
|
The above examples simply show how to go from the method interface to |
|
365
|
|
|
|
|
|
|
the overloaded interface, but where the overloading really shines is in |
|
366
|
|
|
|
|
|
|
chaining multiple operations together. Because the return values from |
|
367
|
|
|
|
|
|
|
the overloaded operators are all references, you dereference them only |
|
368
|
|
|
|
|
|
|
when you are done. |
|
369
|
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
=head2 Unit Vector left of a line |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
This comes from the CAD::Calc::line_to_rectangle() function. |
|
373
|
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
use Math::Vec qw(:terse); |
|
375
|
|
|
|
|
|
|
@line = ([0,1],[1,0]); |
|
376
|
|
|
|
|
|
|
my ($a, $b) = map({V(@$_)} @line); |
|
377
|
|
|
|
|
|
|
$unit = U($b - $a); |
|
378
|
|
|
|
|
|
|
$left = $unit x -Z(); |
|
379
|
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
=head2 Length of a cross product |
|
381
|
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
$length = abs($va x $vb); |
|
383
|
|
|
|
|
|
|
|
|
384
|
|
|
|
|
|
|
=head2 Vectors as coordinate axes |
|
385
|
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
This is useful in drawing eliptical arcs using dxf data. |
|
387
|
|
|
|
|
|
|
|
|
388
|
|
|
|
|
|
|
$val = 3.14159; # the 'start parameter' |
|
389
|
|
|
|
|
|
|
@c = (14.15973317961194, 6.29684276451746); # codes 10, 20, 30 |
|
390
|
|
|
|
|
|
|
@e = (6.146127847120538, 0); # codes 11, 21, 31 |
|
391
|
|
|
|
|
|
|
@ep = @{V(@c) + \@e}; # that's the axis endpoint |
|
392
|
|
|
|
|
|
|
$ux = U(@e); # unit on our x' axis |
|
393
|
|
|
|
|
|
|
$uy = U($ux x -Z()); # y' is left of x' |
|
394
|
|
|
|
|
|
|
$center = V(@c); |
|
395
|
|
|
|
|
|
|
# autodesk gives you this: |
|
396
|
|
|
|
|
|
|
@pt = ($a * cos($val), $b * sin($val)); |
|
397
|
|
|
|
|
|
|
# but they don't tell you about the major/minor axis issue: |
|
398
|
|
|
|
|
|
|
@pt = @{$center + $ux * $pt[0] + $uy * $pt[1]};; |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
=head1 Precedence |
|
401
|
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
The operator precedence is going to be whatever perl wants it to be. I |
|
403
|
|
|
|
|
|
|
have not yet investigated this to see if it matches standard vector |
|
404
|
|
|
|
|
|
|
arithmetic notation. If in doubt, use parentheses. |
|
405
|
|
|
|
|
|
|
|
|
406
|
|
|
|
|
|
|
One item of note here is that the 'x' and '*' operators have the same |
|
407
|
|
|
|
|
|
|
precedence, so the leftmost wins. In the following example, you can get |
|
408
|
|
|
|
|
|
|
away without parentheses if you have the cross-product first. |
|
409
|
|
|
|
|
|
|
|
|
410
|
|
|
|
|
|
|
# dot product of a cross product: |
|
411
|
|
|
|
|
|
|
$v1 x $v2 * $v3 |
|
412
|
|
|
|
|
|
|
($v1 x $v2) * $v3 |
|
413
|
|
|
|
|
|
|
|
|
414
|
|
|
|
|
|
|
# scalar crossed with a vector (illegal!) |
|
415
|
|
|
|
|
|
|
$v3 * $v1 x $v2 |
|
416
|
|
|
|
|
|
|
|
|
417
|
|
|
|
|
|
|
=cut |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
use overload |
|
420
|
|
|
|
|
|
|
'neg' => sub { |
|
421
|
1
|
|
|
1
|
|
5
|
return(V($_[0]->ScalarMult(-1))); |
|
422
|
|
|
|
|
|
|
}, |
|
423
|
|
|
|
|
|
|
'""' => sub { |
|
424
|
1
|
|
|
1
|
|
104
|
return(join(",", @{$_[0]})); |
|
|
1
|
|
|
|
|
8
|
|
|
425
|
|
|
|
|
|
|
}, |
|
426
|
|
|
|
|
|
|
'+' => sub { |
|
427
|
1
|
|
|
1
|
|
3
|
my ($v, $arg) = @_; |
|
428
|
1
|
|
|
|
|
4
|
$arg = _vec_check($arg); |
|
429
|
1
|
|
|
|
|
4
|
return(V($v->Plus($arg))); |
|
430
|
|
|
|
|
|
|
}, |
|
431
|
|
|
|
|
|
|
'-' => sub { |
|
432
|
1
|
|
|
1
|
|
3
|
my ($v, $arg, $flip) = @_; |
|
433
|
1
|
|
|
|
|
3
|
$arg = _vec_check($arg); |
|
434
|
1
|
50
|
|
|
|
20
|
$flip and (($v, $arg) = ($arg, $v)); |
|
435
|
1
|
|
|
|
|
4
|
return(V($v->Minus($arg))); |
|
436
|
|
|
|
|
|
|
}, |
|
437
|
|
|
|
|
|
|
'*' => sub { |
|
438
|
1
|
|
|
1
|
|
8
|
my($v, $arg) = @_; |
|
439
|
1
|
50
|
|
|
|
5
|
ref($arg) and |
|
440
|
|
|
|
|
|
|
return($v->Dot($arg)); |
|
441
|
0
|
|
|
|
|
0
|
return(V($v->ScalarMult($arg))); |
|
442
|
|
|
|
|
|
|
}, |
|
443
|
|
|
|
|
|
|
'/' => sub { |
|
444
|
0
|
|
|
0
|
|
0
|
my($v, $arg, $flip) = @_; |
|
445
|
0
|
0
|
|
|
|
0
|
$flip and croak("cannot divide by vector"); |
|
446
|
0
|
0
|
|
|
|
0
|
$arg or croak("cannot divide vector by zero"); |
|
447
|
0
|
|
|
|
|
0
|
return(V($v->ScalarMult(1 / $arg))); |
|
448
|
|
|
|
|
|
|
}, |
|
449
|
|
|
|
|
|
|
'x' => sub { |
|
450
|
2
|
|
|
2
|
|
5
|
my ($v, $arg, $flip) = @_; |
|
451
|
2
|
|
|
|
|
6
|
$arg = _vec_check($arg); |
|
452
|
2
|
50
|
|
|
|
6
|
$flip and (($v, $arg) = ($arg, $v)); |
|
453
|
2
|
|
|
|
|
7
|
return(V($v->Cross($arg))); |
|
454
|
|
|
|
|
|
|
}, |
|
455
|
|
|
|
|
|
|
'==' => sub { |
|
456
|
14
|
|
|
14
|
|
26
|
my ($v, $arg) = @_; |
|
457
|
14
|
|
|
|
|
27
|
$arg = _vec_check($arg); |
|
458
|
14
|
|
|
|
|
40
|
for(my $i = 0; $i < 3; $i++) { |
|
459
|
41
|
100
|
|
|
|
139
|
($v->[$i] == $arg->[$i]) or return(0); |
|
460
|
|
|
|
|
|
|
} |
|
461
|
13
|
|
|
|
|
101
|
return(1); |
|
462
|
|
|
|
|
|
|
}, |
|
463
|
|
|
|
|
|
|
'!=' => sub { |
|
464
|
1
|
|
|
1
|
|
2
|
my ($v, $arg) = @_; |
|
465
|
1
|
|
|
|
|
4
|
return(! ($v == $arg)); |
|
466
|
|
|
|
|
|
|
}, |
|
467
|
|
|
|
|
|
|
'abs' => sub { |
|
468
|
2
|
|
|
2
|
|
8
|
return($_[0]->Length()); |
|
469
|
|
|
|
|
|
|
}, |
|
470
|
|
|
|
|
|
|
'>>' => sub { |
|
471
|
2
|
|
|
2
|
|
6
|
my ($v, $arg, $flip) = @_; |
|
472
|
2
|
|
|
|
|
20
|
$arg = _vec_check($arg); |
|
473
|
2
|
50
|
|
|
|
7
|
$flip and (($v, $arg) = ($arg, $v)); |
|
474
|
2
|
|
|
|
|
7
|
return(V($arg->Proj($v))); |
|
475
|
|
|
|
|
|
|
}, |
|
476
|
3
|
|
|
3
|
|
6571
|
; |
|
|
3
|
|
|
|
|
3400
|
|
|
|
3
|
|
|
|
|
92
|
|
|
477
|
|
|
|
|
|
|
|
|
478
|
|
|
|
|
|
|
# Check and return a vector (or array reference turns into a vector.) |
|
479
|
|
|
|
|
|
|
# also serves to initialize Z-coordinate. |
|
480
|
|
|
|
|
|
|
sub _vec_check { |
|
481
|
34
|
|
|
34
|
|
43
|
my $arg = shift; |
|
482
|
34
|
50
|
|
|
|
63
|
if(ref($arg)) { |
|
483
|
34
|
100
|
|
|
|
69
|
if(ref($arg) eq "ARRAY") { |
|
484
|
19
|
|
|
|
|
39
|
$arg = V(@$arg); |
|
485
|
|
|
|
|
|
|
} |
|
486
|
|
|
|
|
|
|
else { |
|
487
|
15
|
|
|
|
|
24
|
eval{$arg->isa('Math::Vec')}; |
|
|
15
|
|
|
|
|
48
|
|
|
488
|
15
|
50
|
|
|
|
38
|
$@ and |
|
489
|
|
|
|
|
|
|
croak("cannot use $arg as a vector"); |
|
490
|
|
|
|
|
|
|
} |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
else { |
|
493
|
0
|
|
|
|
|
0
|
croak("cannot use $arg as a vector"); |
|
494
|
|
|
|
|
|
|
} |
|
495
|
34
|
|
|
|
|
65
|
return($arg); |
|
496
|
|
|
|
|
|
|
} # end subroutine _vec_check definition |
|
497
|
|
|
|
|
|
|
######################################################################## |
|
498
|
|
|
|
|
|
|
|
|
499
|
|
|
|
|
|
|
=head1 Methods |
|
500
|
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
The typical theme is that methods require array references and return |
|
502
|
|
|
|
|
|
|
lists. This means that you can choose whether to create an anonymous |
|
503
|
|
|
|
|
|
|
array ref for use in feeding back into another function call, or you |
|
504
|
|
|
|
|
|
|
can simply use the list as-is. Methods which return a scalar or list |
|
505
|
|
|
|
|
|
|
of scalars (in the mathematical sense, not the Perl SV sense) are |
|
506
|
|
|
|
|
|
|
exempt from this theme, but methods which return what could become one |
|
507
|
|
|
|
|
|
|
vector will return it as a list. |
|
508
|
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
If you want to chain calls together, either use the NewVec constructor, |
|
510
|
|
|
|
|
|
|
or enclose the call in square brackets to make an anonymous array out |
|
511
|
|
|
|
|
|
|
of the result. |
|
512
|
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
my $vec = NewVec(@pt); |
|
514
|
|
|
|
|
|
|
my $doubled = NewVec($vec->ScalarMult(0.5)); |
|
515
|
|
|
|
|
|
|
my $other = NewVec($vec->Plus([0,2,1], [4,2,3])); |
|
516
|
|
|
|
|
|
|
my @result = $other->Minus($doubled); |
|
517
|
|
|
|
|
|
|
$unit = NewVec(NewVec(@result)->UnitVector()); |
|
518
|
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
The vector objects are simply blessed array references. This makes for |
|
520
|
|
|
|
|
|
|
a fairly limited amount of manipulation, but vector math is not |
|
521
|
|
|
|
|
|
|
complicated stuff. Hopefully, you can save at least two lines of code |
|
522
|
|
|
|
|
|
|
per calculation using this module. |
|
523
|
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
=head2 Dot |
|
525
|
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
Returns the dot product of $vec 'dot' $othervec. |
|
527
|
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
$vec->Dot($othervec); |
|
529
|
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
=cut |
|
531
|
|
|
|
|
|
|
sub Dot { |
|
532
|
7
|
|
|
7
|
1
|
14
|
my $self = shift; |
|
533
|
7
|
|
|
|
|
10
|
my ($operand) = @_; |
|
534
|
7
|
|
|
|
|
16
|
$operand = _vec_check($operand); |
|
535
|
7
|
|
|
|
|
13
|
my @r = map( {$self->[$_] * $operand->[$_]} 0,1,2); |
|
|
21
|
|
|
|
|
92
|
|
|
536
|
7
|
|
|
|
|
34
|
return( $r[0] + $r[1] + $r[2]); |
|
537
|
|
|
|
|
|
|
} # end subroutine Dot definition |
|
538
|
|
|
|
|
|
|
######################################################################## |
|
539
|
|
|
|
|
|
|
|
|
540
|
|
|
|
|
|
|
=head2 DotProduct |
|
541
|
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
Alias to Dot() |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
$number = $vec->DotProduct($othervec); |
|
545
|
|
|
|
|
|
|
|
|
546
|
|
|
|
|
|
|
=cut |
|
547
|
|
|
|
|
|
|
sub DotProduct { |
|
548
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
549
|
0
|
|
|
|
|
0
|
return($self->Dot(@_)); |
|
550
|
|
|
|
|
|
|
} # end subroutine DotProduct definition |
|
551
|
|
|
|
|
|
|
######################################################################## |
|
552
|
|
|
|
|
|
|
|
|
553
|
|
|
|
|
|
|
=head2 Cross |
|
554
|
|
|
|
|
|
|
|
|
555
|
|
|
|
|
|
|
Returns $vec x $other_vec |
|
556
|
|
|
|
|
|
|
|
|
557
|
|
|
|
|
|
|
@list = $vec->Cross($other_vec); |
|
558
|
|
|
|
|
|
|
# or, to use the result as a vec: |
|
559
|
|
|
|
|
|
|
$cvec = NewVec($vec->Cross($other_vec)); |
|
560
|
|
|
|
|
|
|
|
|
561
|
|
|
|
|
|
|
=cut |
|
562
|
|
|
|
|
|
|
sub Cross { |
|
563
|
3
|
|
|
3
|
1
|
9
|
my $a = shift; |
|
564
|
3
|
|
|
|
|
5
|
my $b = shift; |
|
565
|
3
|
|
|
|
|
7
|
$b = _vec_check($b); |
|
566
|
3
|
|
|
|
|
9
|
my $x = (($a->[1] * $b->[2]) - ($a->[2] * $b->[1])); |
|
567
|
3
|
|
|
|
|
8
|
my $y = (($a->[2] * $b->[0]) - ($a->[0] * $b->[2])); |
|
568
|
3
|
|
|
|
|
6
|
my $z = (($a->[0] * $b->[1]) - ($a->[1] * $b->[0])); |
|
569
|
3
|
|
|
|
|
12
|
return($x, $y, $z); |
|
570
|
|
|
|
|
|
|
} # end subroutine Cross definition |
|
571
|
|
|
|
|
|
|
######################################################################## |
|
572
|
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=head2 CrossProduct |
|
574
|
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
Alias to Cross() (should really strip out all of this clunkiness and go |
|
576
|
|
|
|
|
|
|
to operator overloading, but that gets into other hairiness.) |
|
577
|
|
|
|
|
|
|
|
|
578
|
|
|
|
|
|
|
$vec->CrossProduct(); |
|
579
|
|
|
|
|
|
|
|
|
580
|
|
|
|
|
|
|
=cut |
|
581
|
|
|
|
|
|
|
sub CrossProduct { |
|
582
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
583
|
0
|
|
|
|
|
0
|
return($self->Cross(@_)); |
|
584
|
|
|
|
|
|
|
} # end subroutine CrossProduct definition |
|
585
|
|
|
|
|
|
|
######################################################################## |
|
586
|
|
|
|
|
|
|
|
|
587
|
|
|
|
|
|
|
=head2 Length |
|
588
|
|
|
|
|
|
|
|
|
589
|
|
|
|
|
|
|
Returns the length of $vec |
|
590
|
|
|
|
|
|
|
|
|
591
|
|
|
|
|
|
|
$length = $vec->Length(); |
|
592
|
|
|
|
|
|
|
|
|
593
|
|
|
|
|
|
|
=cut |
|
594
|
|
|
|
|
|
|
sub Length { |
|
595
|
11
|
|
|
11
|
1
|
15
|
my Math::Vec $self = shift; |
|
596
|
11
|
|
|
|
|
299
|
my $sum; |
|
597
|
11
|
|
|
|
|
45
|
map( {$sum+=$_**2} @$self ); |
|
|
33
|
|
|
|
|
102
|
|
|
598
|
11
|
|
|
|
|
38
|
return(sqrt($sum)); |
|
599
|
|
|
|
|
|
|
} # end subroutine Length definition |
|
600
|
|
|
|
|
|
|
######################################################################## |
|
601
|
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
=head2 Magnitude |
|
603
|
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
$vec->Magnitude(); |
|
605
|
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
=cut |
|
607
|
|
|
|
|
|
|
sub Magnitude { |
|
608
|
0
|
|
|
0
|
1
|
0
|
my Math::Vec $self = shift; |
|
609
|
0
|
|
|
|
|
0
|
return($self->Length()); |
|
610
|
|
|
|
|
|
|
} # end subroutine Magnitude definition |
|
611
|
|
|
|
|
|
|
######################################################################## |
|
612
|
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
=head2 UnitVector |
|
614
|
|
|
|
|
|
|
|
|
615
|
|
|
|
|
|
|
$vec->UnitVector(); |
|
616
|
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
=cut |
|
618
|
|
|
|
|
|
|
sub UnitVector { |
|
619
|
3
|
|
|
3
|
1
|
4
|
my Math::Vec $self = shift; |
|
620
|
3
|
|
|
|
|
7
|
my $mag = $self->Length(); |
|
621
|
3
|
50
|
|
|
|
8
|
$mag || croak("zero-length vector (@$self) has no unit vector"); |
|
622
|
3
|
|
|
|
|
5
|
return(map({$_ / $mag} @$self) ); |
|
|
9
|
|
|
|
|
22
|
|
|
623
|
|
|
|
|
|
|
} # end subroutine UnitVector definition |
|
624
|
|
|
|
|
|
|
######################################################################## |
|
625
|
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
=head2 ScalarMult |
|
627
|
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
Factors each element of $vec by $factor. |
|
629
|
|
|
|
|
|
|
|
|
630
|
|
|
|
|
|
|
@new = $vec->ScalarMult($factor); |
|
631
|
|
|
|
|
|
|
|
|
632
|
|
|
|
|
|
|
=cut |
|
633
|
|
|
|
|
|
|
sub ScalarMult { |
|
634
|
5
|
|
|
5
|
1
|
9
|
my Math::Vec $self = shift; |
|
635
|
5
|
|
|
|
|
14
|
my($factor) = @_; |
|
636
|
5
|
|
|
|
|
7
|
return(map( {$_ * $factor} @{$self})); |
|
|
15
|
|
|
|
|
39
|
|
|
|
5
|
|
|
|
|
9
|
|
|
637
|
|
|
|
|
|
|
} # end subroutine ScalarMult definition |
|
638
|
|
|
|
|
|
|
######################################################################## |
|
639
|
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
=head2 Minus |
|
641
|
|
|
|
|
|
|
|
|
642
|
|
|
|
|
|
|
Subtracts an arbitrary number of vectors. |
|
643
|
|
|
|
|
|
|
|
|
644
|
|
|
|
|
|
|
@result = $vec->Minus($other_vec, $another_vec?); |
|
645
|
|
|
|
|
|
|
|
|
646
|
|
|
|
|
|
|
This would be equivelant to: |
|
647
|
|
|
|
|
|
|
|
|
648
|
|
|
|
|
|
|
@result = $vec->Minus([$other_vec->Plus(@list_of_vectors)]); |
|
649
|
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
=cut |
|
651
|
|
|
|
|
|
|
sub Minus { |
|
652
|
1
|
|
|
1
|
1
|
3
|
my Math::Vec $self = shift; |
|
653
|
1
|
|
|
|
|
2
|
my @list = @_; |
|
654
|
1
|
|
|
|
|
3
|
my @result = @$self; |
|
655
|
1
|
|
|
|
|
2
|
foreach my $vec (@list) { |
|
656
|
1
|
|
|
|
|
4
|
@result = map( {$result[$_] - $vec->[$_]} 0..$#$vec); |
|
|
3
|
|
|
|
|
9
|
|
|
657
|
|
|
|
|
|
|
} |
|
658
|
1
|
|
|
|
|
5
|
return(@result); |
|
659
|
|
|
|
|
|
|
} # end subroutine Minus definition |
|
660
|
|
|
|
|
|
|
######################################################################## |
|
661
|
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
=head2 VecSub |
|
663
|
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
Alias to Minus() |
|
665
|
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
$vec->VecSub(); |
|
667
|
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
=cut |
|
669
|
|
|
|
|
|
|
sub VecSub { |
|
670
|
0
|
|
|
0
|
1
|
0
|
my Math::Vec $self = shift; |
|
671
|
0
|
|
|
|
|
0
|
return($self->Minus(@_)); |
|
672
|
|
|
|
|
|
|
} # end subroutine VecSub definition |
|
673
|
|
|
|
|
|
|
######################################################################## |
|
674
|
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
=head2 InnerAngle |
|
676
|
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
Returns the acute angle (in radians) in the plane defined by the two |
|
678
|
|
|
|
|
|
|
vectors. |
|
679
|
|
|
|
|
|
|
|
|
680
|
|
|
|
|
|
|
$vec->InnerAngle($other_vec); |
|
681
|
|
|
|
|
|
|
|
|
682
|
|
|
|
|
|
|
=cut |
|
683
|
|
|
|
|
|
|
sub InnerAngle { |
|
684
|
1
|
|
|
1
|
1
|
6
|
my $A = shift; |
|
685
|
1
|
|
|
|
|
3
|
my $B = shift; |
|
686
|
1
|
|
|
|
|
4
|
my $dot_prod = $A->Dot($B); |
|
687
|
1
|
|
|
|
|
5
|
my $m_A = $A->Length(); |
|
688
|
1
|
|
|
|
|
4
|
my $m_B = $B->Length(); |
|
689
|
|
|
|
|
|
|
# NOTE occasionally returned an answer with a very small imaginary |
|
690
|
|
|
|
|
|
|
# part (for d/(A*B) values very slightly under -1 or very slightly |
|
691
|
|
|
|
|
|
|
# over 1.) Large imaginary results are not possible with vector |
|
692
|
|
|
|
|
|
|
# inputs, so we can just drop the imaginary bit. |
|
693
|
1
|
|
|
|
|
5
|
return(Math::Vec::Support::acos($dot_prod / ($m_A * $m_B)) ); |
|
694
|
|
|
|
|
|
|
} # end subroutine InnerAngle definition |
|
695
|
|
|
|
|
|
|
######################################################################## |
|
696
|
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
=head2 DirAngles |
|
698
|
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
$vec->DirAngles(); |
|
700
|
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
=cut |
|
702
|
|
|
|
|
|
|
sub DirAngles { |
|
703
|
0
|
|
|
0
|
1
|
0
|
my Math::Vec $self = shift; |
|
704
|
0
|
|
|
|
|
0
|
my @unit = $self->UnitVector(); |
|
705
|
0
|
|
|
|
|
0
|
return( map( {acos($_)} @unit) ); |
|
|
0
|
|
|
|
|
0
|
|
|
706
|
|
|
|
|
|
|
} # end subroutine DirAngles definition |
|
707
|
|
|
|
|
|
|
######################################################################## |
|
708
|
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
=head2 Plus |
|
710
|
|
|
|
|
|
|
|
|
711
|
|
|
|
|
|
|
Adds an arbitrary number of vectors. |
|
712
|
|
|
|
|
|
|
|
|
713
|
|
|
|
|
|
|
@result = $vec->Plus($other_vec, $another_vec); |
|
714
|
|
|
|
|
|
|
|
|
715
|
|
|
|
|
|
|
=cut |
|
716
|
|
|
|
|
|
|
sub Plus { |
|
717
|
1
|
|
|
1
|
1
|
2
|
my Math::Vec $self = shift; |
|
718
|
1
|
|
|
|
|
3
|
my @list = @_; |
|
719
|
1
|
|
|
|
|
4
|
my @result = @$self; |
|
720
|
1
|
|
|
|
|
3
|
foreach my $vec (@list) { |
|
721
|
1
|
|
|
|
|
3
|
@result = map( {$result[$_] + $vec->[$_]} 0..$#$vec); |
|
|
3
|
|
|
|
|
10
|
|
|
722
|
|
|
|
|
|
|
} |
|
723
|
1
|
|
|
|
|
5
|
return(@result); |
|
724
|
|
|
|
|
|
|
} # end subroutine Plus definition |
|
725
|
|
|
|
|
|
|
######################################################################## |
|
726
|
|
|
|
|
|
|
|
|
727
|
|
|
|
|
|
|
=head2 PlanarAngles |
|
728
|
|
|
|
|
|
|
|
|
729
|
|
|
|
|
|
|
If called in list context, returns the angle of the vector in each of |
|
730
|
|
|
|
|
|
|
the primary planes. If called in scalar context, returns only the |
|
731
|
|
|
|
|
|
|
angle in the xy plane. Angles are returned in radians |
|
732
|
|
|
|
|
|
|
counter-clockwise from the primary axis (the one listed first in the |
|
733
|
|
|
|
|
|
|
pairs below.) |
|
734
|
|
|
|
|
|
|
|
|
735
|
|
|
|
|
|
|
($xy_ang, $xz_ang, $yz_ang) = $vec->PlanarAngles(); |
|
736
|
|
|
|
|
|
|
|
|
737
|
|
|
|
|
|
|
=cut |
|
738
|
|
|
|
|
|
|
sub PlanarAngles { |
|
739
|
1
|
|
|
1
|
1
|
3
|
my $self = shift; |
|
740
|
1
|
|
|
|
|
6
|
my $xy = atan2($self->[1], $self->[0]); |
|
741
|
1
|
50
|
|
|
|
4
|
wantarray || return($xy); |
|
742
|
1
|
|
|
|
|
41
|
my $xz = atan2($self->[2], $self->[0]); |
|
743
|
1
|
|
|
|
|
2
|
my $yz = atan2($self->[2], $self->[1]); |
|
744
|
1
|
|
|
|
|
4
|
return($xy, $xz, $yz); |
|
745
|
|
|
|
|
|
|
} # end subroutine PlanarAngles definition |
|
746
|
|
|
|
|
|
|
######################################################################## |
|
747
|
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
=head2 Ang |
|
749
|
|
|
|
|
|
|
|
|
750
|
|
|
|
|
|
|
A simpler alias to PlanarAngles() which eliminates the concerns about |
|
751
|
|
|
|
|
|
|
context and simply returns the angle in the xy plane. |
|
752
|
|
|
|
|
|
|
|
|
753
|
|
|
|
|
|
|
$xy_ang = $vec->Ang(); |
|
754
|
|
|
|
|
|
|
|
|
755
|
|
|
|
|
|
|
=cut |
|
756
|
|
|
|
|
|
|
sub Ang { |
|
757
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
758
|
0
|
|
|
|
|
0
|
my ($xy) = $self->PlanarAngles(); |
|
759
|
0
|
|
|
|
|
0
|
return($xy); |
|
760
|
|
|
|
|
|
|
} # end subroutine Ang definition |
|
761
|
|
|
|
|
|
|
######################################################################## |
|
762
|
|
|
|
|
|
|
|
|
763
|
|
|
|
|
|
|
=head2 VecAdd |
|
764
|
|
|
|
|
|
|
|
|
765
|
|
|
|
|
|
|
$vec->VecAdd(); |
|
766
|
|
|
|
|
|
|
|
|
767
|
|
|
|
|
|
|
=cut |
|
768
|
|
|
|
|
|
|
sub VecAdd { |
|
769
|
0
|
|
|
0
|
1
|
0
|
my Math::Vec $self = shift; |
|
770
|
0
|
|
|
|
|
0
|
return($self->Plus(@_)); |
|
771
|
|
|
|
|
|
|
} # end subroutine VecAdd definition |
|
772
|
|
|
|
|
|
|
######################################################################## |
|
773
|
|
|
|
|
|
|
|
|
774
|
|
|
|
|
|
|
=head2 UnitVectorPoints |
|
775
|
|
|
|
|
|
|
|
|
776
|
|
|
|
|
|
|
Returns a unit vector which points from $A to $B. |
|
777
|
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
$A->UnitVectorPoints($B); |
|
779
|
|
|
|
|
|
|
|
|
780
|
|
|
|
|
|
|
=cut |
|
781
|
|
|
|
|
|
|
sub UnitVectorPoints { |
|
782
|
0
|
|
|
0
|
1
|
0
|
my $A = shift; |
|
783
|
0
|
|
|
|
|
0
|
my $B = shift; |
|
784
|
0
|
|
|
|
|
0
|
$B = NewVec(@$B); # because we cannot guarantee that it was blessed |
|
785
|
0
|
|
|
|
|
0
|
return(NewVec($B->Minus($A))->UnitVector()); |
|
786
|
|
|
|
|
|
|
} # end subroutine UnitVectorPoints definition |
|
787
|
|
|
|
|
|
|
######################################################################## |
|
788
|
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
=head2 InnerAnglePoints |
|
790
|
|
|
|
|
|
|
|
|
791
|
|
|
|
|
|
|
Returns the InnerAngle() between the three points. $Vert is the vertex |
|
792
|
|
|
|
|
|
|
of the points. |
|
793
|
|
|
|
|
|
|
|
|
794
|
|
|
|
|
|
|
$Vert->InnerAnglePoints($endA, $endB); |
|
795
|
|
|
|
|
|
|
|
|
796
|
|
|
|
|
|
|
=cut |
|
797
|
|
|
|
|
|
|
sub InnerAnglePoints { |
|
798
|
0
|
|
|
0
|
1
|
0
|
my $v = shift; |
|
799
|
0
|
|
|
|
|
0
|
my ($A, $B) = @_; |
|
800
|
0
|
|
|
|
|
0
|
my $lead = NewVec($v->UnitVectorPoints($A)); |
|
801
|
0
|
|
|
|
|
0
|
my $tail = NewVec($v->UnitVectorPoints($B)); |
|
802
|
0
|
|
|
|
|
0
|
return($lead->InnerAngle($tail)); |
|
803
|
|
|
|
|
|
|
} # end subroutine InnerAnglePoints definition |
|
804
|
|
|
|
|
|
|
######################################################################## |
|
805
|
|
|
|
|
|
|
|
|
806
|
|
|
|
|
|
|
=head2 PlaneUnitNormal |
|
807
|
|
|
|
|
|
|
|
|
808
|
|
|
|
|
|
|
Returns a unit vector normal to the plane described by the three |
|
809
|
|
|
|
|
|
|
points. The sense of this vector is according to the right-hand rule |
|
810
|
|
|
|
|
|
|
and the order of the given points. The $Vert vector is taken as the |
|
811
|
|
|
|
|
|
|
vertex of the three points. e.g. if $Vert is the origin of a |
|
812
|
|
|
|
|
|
|
coordinate system where the x-axis is $A and the y-axis is $B, then the |
|
813
|
|
|
|
|
|
|
return value would be a unit vector along the positive z-axis. |
|
814
|
|
|
|
|
|
|
|
|
815
|
|
|
|
|
|
|
$Vert->PlaneUnitNormal($A, $B); |
|
816
|
|
|
|
|
|
|
|
|
817
|
|
|
|
|
|
|
=cut |
|
818
|
|
|
|
|
|
|
sub PlaneUnitNormal { |
|
819
|
0
|
|
|
0
|
1
|
0
|
my $v = shift; |
|
820
|
0
|
|
|
|
|
0
|
my ($A, $B) = @_; |
|
821
|
0
|
|
|
|
|
0
|
$A = NewVec(@$A); |
|
822
|
0
|
|
|
|
|
0
|
$B = NewVec(@$B); |
|
823
|
0
|
|
|
|
|
0
|
my $lead = NewVec($A->Minus($v)); |
|
824
|
0
|
|
|
|
|
0
|
my $tail = NewVec($B->Minus($v)); |
|
825
|
0
|
|
|
|
|
0
|
return(NewVec($lead->Cross($tail))->UnitVector); |
|
826
|
|
|
|
|
|
|
} # end subroutine PlaneUnitNormal definition |
|
827
|
|
|
|
|
|
|
######################################################################## |
|
828
|
|
|
|
|
|
|
|
|
829
|
|
|
|
|
|
|
=head2 TriAreaPoints |
|
830
|
|
|
|
|
|
|
|
|
831
|
|
|
|
|
|
|
Returns the angle of the triangle formed by the three points. |
|
832
|
|
|
|
|
|
|
|
|
833
|
|
|
|
|
|
|
$A->TriAreaPoints($B, $C); |
|
834
|
|
|
|
|
|
|
|
|
835
|
|
|
|
|
|
|
=cut |
|
836
|
|
|
|
|
|
|
sub TriAreaPoints { |
|
837
|
0
|
|
|
0
|
1
|
0
|
my $A = shift; |
|
838
|
0
|
|
|
|
|
0
|
my ($B, $C) = @_; |
|
839
|
0
|
|
|
|
|
0
|
$B = NewVec(@$B); |
|
840
|
0
|
|
|
|
|
0
|
$C = NewVec(@$C); |
|
841
|
0
|
|
|
|
|
0
|
my $lead = NewVec($A->Minus($B)); |
|
842
|
0
|
|
|
|
|
0
|
my $tail = NewVec($A->Minus($C)); |
|
843
|
0
|
|
|
|
|
0
|
return(NewVec($lead->Cross($tail))->Length() / 2); |
|
844
|
|
|
|
|
|
|
} # end subroutine TriAreaPoints definition |
|
845
|
|
|
|
|
|
|
######################################################################## |
|
846
|
|
|
|
|
|
|
|
|
847
|
|
|
|
|
|
|
=head2 Comp |
|
848
|
|
|
|
|
|
|
|
|
849
|
|
|
|
|
|
|
Returns the scalar projection of $B onto $A (also called the component |
|
850
|
|
|
|
|
|
|
of $B along $A.) |
|
851
|
|
|
|
|
|
|
|
|
852
|
|
|
|
|
|
|
$A->Comp($B); |
|
853
|
|
|
|
|
|
|
|
|
854
|
|
|
|
|
|
|
=cut |
|
855
|
|
|
|
|
|
|
sub Comp { |
|
856
|
4
|
|
|
4
|
1
|
6
|
my $self = shift; |
|
857
|
4
|
|
|
|
|
9
|
my $B = _vec_check(shift); |
|
858
|
4
|
|
|
|
|
17
|
my $length = $self->Length(); |
|
859
|
4
|
50
|
|
|
|
19
|
$length || croak("cannot Comp() vector without length"); |
|
860
|
4
|
|
|
|
|
10
|
return($self->Dot($B) / $length); |
|
861
|
|
|
|
|
|
|
} # end subroutine Comp definition |
|
862
|
|
|
|
|
|
|
######################################################################## |
|
863
|
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
=head2 Proj |
|
865
|
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
Returns the vector projection of $B onto $A. |
|
867
|
|
|
|
|
|
|
|
|
868
|
|
|
|
|
|
|
$A->Proj($B); |
|
869
|
|
|
|
|
|
|
|
|
870
|
|
|
|
|
|
|
=cut |
|
871
|
|
|
|
|
|
|
sub Proj { |
|
872
|
3
|
|
|
3
|
1
|
4
|
my $self = shift; |
|
873
|
3
|
|
|
|
|
5
|
my $B = shift; |
|
874
|
3
|
|
|
|
|
10
|
return(NewVec($self->UnitVector())->ScalarMult($self->Comp($B))); |
|
875
|
|
|
|
|
|
|
} # end subroutine Proj definition |
|
876
|
|
|
|
|
|
|
######################################################################## |
|
877
|
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
=head2 PerpFoot |
|
879
|
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
Returns a point on line $A,$B which is as close to $pt as possible (and |
|
881
|
|
|
|
|
|
|
therefore perpendicular to the line.) |
|
882
|
|
|
|
|
|
|
|
|
883
|
|
|
|
|
|
|
$pt->PerpFoot($A, $B); |
|
884
|
|
|
|
|
|
|
|
|
885
|
|
|
|
|
|
|
=cut |
|
886
|
|
|
|
|
|
|
sub PerpFoot { |
|
887
|
0
|
|
|
0
|
1
|
|
my $pt = shift; |
|
888
|
0
|
|
|
|
|
|
my ($A, $B) = @_; |
|
889
|
0
|
|
|
|
|
|
$pt = NewVec($pt->Minus($A)); |
|
890
|
0
|
|
|
|
|
|
$B = NewVec(NewVec(@$B)->Minus($A)); |
|
891
|
0
|
|
|
|
|
|
my $proj = NewVec($B->Proj($pt)); |
|
892
|
0
|
|
|
|
|
|
return($proj->Plus($A)); |
|
893
|
|
|
|
|
|
|
} # end subroutine PerpFoot definition |
|
894
|
|
|
|
|
|
|
######################################################################## |
|
895
|
|
|
|
|
|
|
|
|
896
|
|
|
|
|
|
|
=head1 Incomplete Methods |
|
897
|
|
|
|
|
|
|
|
|
898
|
|
|
|
|
|
|
The following have yet to be translated into this interface. They are |
|
899
|
|
|
|
|
|
|
shown here simply because I intended to fully preserve the function |
|
900
|
|
|
|
|
|
|
names from the original Math::Vector module written by Wayne M. |
|
901
|
|
|
|
|
|
|
Syvinski. |
|
902
|
|
|
|
|
|
|
|
|
903
|
|
|
|
|
|
|
=head2 TripleProduct |
|
904
|
|
|
|
|
|
|
|
|
905
|
|
|
|
|
|
|
$vec->TripleProduct(); |
|
906
|
|
|
|
|
|
|
|
|
907
|
|
|
|
|
|
|
=cut |
|
908
|
|
|
|
|
|
|
sub TripleProduct { |
|
909
|
0
|
|
|
0
|
1
|
|
die("not written"); |
|
910
|
|
|
|
|
|
|
} # end subroutine TripleProduct definition |
|
911
|
|
|
|
|
|
|
######################################################################## |
|
912
|
|
|
|
|
|
|
|
|
913
|
|
|
|
|
|
|
=head2 IJK |
|
914
|
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
$vec->IJK(); |
|
916
|
|
|
|
|
|
|
|
|
917
|
|
|
|
|
|
|
=cut |
|
918
|
|
|
|
|
|
|
sub IJK { |
|
919
|
0
|
|
|
0
|
1
|
|
die("not written"); |
|
920
|
|
|
|
|
|
|
|
|
921
|
|
|
|
|
|
|
} # end subroutine IJK definition |
|
922
|
|
|
|
|
|
|
######################################################################## |
|
923
|
|
|
|
|
|
|
|
|
924
|
|
|
|
|
|
|
=head2 OrdTrip |
|
925
|
|
|
|
|
|
|
|
|
926
|
|
|
|
|
|
|
$vec->OrdTrip(); |
|
927
|
|
|
|
|
|
|
|
|
928
|
|
|
|
|
|
|
=cut |
|
929
|
|
|
|
|
|
|
sub OrdTrip { |
|
930
|
0
|
|
|
0
|
1
|
|
die("not written"); |
|
931
|
|
|
|
|
|
|
|
|
932
|
|
|
|
|
|
|
} # end subroutine OrdTrip definition |
|
933
|
|
|
|
|
|
|
######################################################################## |
|
934
|
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
=head2 STV |
|
936
|
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
$vec->STV(); |
|
938
|
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
=cut |
|
940
|
|
|
|
|
|
|
sub STV { |
|
941
|
0
|
|
|
0
|
1
|
|
die("not written"); |
|
942
|
|
|
|
|
|
|
|
|
943
|
|
|
|
|
|
|
} # end subroutine STV definition |
|
944
|
|
|
|
|
|
|
######################################################################## |
|
945
|
|
|
|
|
|
|
|
|
946
|
|
|
|
|
|
|
=head2 Equil |
|
947
|
|
|
|
|
|
|
|
|
948
|
|
|
|
|
|
|
$vec->Equil(); |
|
949
|
|
|
|
|
|
|
|
|
950
|
|
|
|
|
|
|
=cut |
|
951
|
|
|
|
|
|
|
sub Equil { |
|
952
|
0
|
|
|
0
|
1
|
|
die("not written"); |
|
953
|
|
|
|
|
|
|
|
|
954
|
|
|
|
|
|
|
} # end subroutine Equil definition |
|
955
|
|
|
|
|
|
|
######################################################################## |
|
956
|
|
|
|
|
|
|
|
|
957
|
|
|
|
|
|
|
1; |
|
958
|
|
|
|
|
|
|
# vim:ts=4:sw=4:noet |