| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | # Copyright 2012, 2013, 2014, 2015 Kevin Ryde | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | # This file is part of Math-PlanePath-Toothpick. | 
| 4 |  |  |  |  |  |  | # | 
| 5 |  |  |  |  |  |  | # Math-PlanePath-Toothpick is free software; you can redistribute it and/or | 
| 6 |  |  |  |  |  |  | # modify it under the terms of the GNU General Public License as published | 
| 7 |  |  |  |  |  |  | # by the Free Software Foundation; either version 3, or (at your option) any | 
| 8 |  |  |  |  |  |  | # later version. | 
| 9 |  |  |  |  |  |  | # | 
| 10 |  |  |  |  |  |  | # Math-PlanePath-Toothpick is distributed in the hope that it will be | 
| 11 |  |  |  |  |  |  | # useful, but WITHOUT ANY WARRANTY; without even the implied warranty of | 
| 12 |  |  |  |  |  |  | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General | 
| 13 |  |  |  |  |  |  | # Public License for more details. | 
| 14 |  |  |  |  |  |  | # | 
| 15 |  |  |  |  |  |  | # You should have received a copy of the GNU General Public License along | 
| 16 |  |  |  |  |  |  | # with Math-PlanePath-Toothpick.  If not, see . | 
| 17 |  |  |  |  |  |  |  | 
| 18 |  |  |  |  |  |  | # block_order => 'AB123' | 
| 19 |  |  |  |  |  |  | # block_order => 'A1B32' is depth first and finite parts first, | 
| 20 |  |  |  |  |  |  | # in parts=1 where single infinite spine | 
| 21 |  |  |  |  |  |  | # | 
| 22 |  |  |  |  |  |  | # maybe tree methods same structure as ToothpickTree | 
| 23 |  |  |  |  |  |  | # | 
| 24 |  |  |  |  |  |  |  | 
| 25 |  |  |  |  |  |  | # cf A175262 odd binary length and middle digit 1 | 
| 26 |  |  |  |  |  |  | #    A175263 odd binary length and middle digit 0 | 
| 27 |  |  |  |  |  |  | # | 
| 28 |  |  |  |  |  |  |  | 
| 29 |  |  |  |  |  |  | package Math::PlanePath::ToothpickReplicate; | 
| 30 | 1 |  |  | 1 |  | 1939 | use 5.004; | 
|  | 1 |  |  |  |  | 3 |  | 
| 31 | 1 |  |  | 1 |  | 6 | use strict; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 43 |  | 
| 32 |  |  |  |  |  |  | #use List::Util 'max'; | 
| 33 |  |  |  |  |  |  | *max = \&Math::PlanePath::_max; | 
| 34 |  |  |  |  |  |  |  | 
| 35 | 1 |  |  | 1 |  | 4 | use vars '$VERSION', '@ISA'; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 61 |  | 
| 36 |  |  |  |  |  |  | $VERSION = 18; | 
| 37 | 1 |  |  | 1 |  | 1111 | use Math::PlanePath; | 
|  | 1 |  |  |  |  | 6453 |  | 
|  | 1 |  |  |  |  | 135 |  | 
| 38 |  |  |  |  |  |  | @ISA = ('Math::PlanePath'); | 
| 39 |  |  |  |  |  |  |  | 
| 40 |  |  |  |  |  |  |  | 
| 41 |  |  |  |  |  |  | # return ($quotient, $remainder) | 
| 42 |  |  |  |  |  |  | sub _divrem { | 
| 43 | 14 |  |  | 14 |  | 20 | my ($n, $d) = @_; | 
| 44 | 14 | 50 | 33 |  |  | 32 | if (ref $n && $n->isa('Math::BigInt')) { | 
| 45 | 0 |  |  |  |  | 0 | my ($quot,$rem) = $n->copy->bdiv($d); | 
| 46 | 0 | 0 | 0 |  |  | 0 | if (! ref $d || $d < 1_000_000) { | 
| 47 | 0 |  |  |  |  | 0 | $rem = $rem->numify;  # plain remainder if fits | 
| 48 |  |  |  |  |  |  | } | 
| 49 | 0 |  |  |  |  | 0 | return ($quot, $rem); | 
| 50 |  |  |  |  |  |  | } | 
| 51 | 14 |  |  |  |  | 19 | my $rem = $n % $d; | 
| 52 | 14 |  |  |  |  | 30 | return (int(($n-$rem)/$d), # exact division stays in UV | 
| 53 |  |  |  |  |  |  | $rem); | 
| 54 |  |  |  |  |  |  | } | 
| 55 |  |  |  |  |  |  |  | 
| 56 |  |  |  |  |  |  |  | 
| 57 |  |  |  |  |  |  | use Math::PlanePath::Base::Generic | 
| 58 | 1 |  |  |  |  | 51 | 'is_infinite', | 
| 59 | 1 |  |  | 1 |  | 6 | 'round_nearest'; | 
|  | 1 |  |  |  |  | 2 |  | 
| 60 |  |  |  |  |  |  | use Math::PlanePath::Base::Digits 119  # v.119 for round_up_pow() | 
| 61 | 1 |  |  |  |  | 61 | 'round_up_pow', | 
| 62 | 1 |  |  | 1 |  | 758 | 'round_down_pow'; | 
|  | 1 |  |  |  |  | 1609 |  | 
| 63 |  |  |  |  |  |  |  | 
| 64 |  |  |  |  |  |  | # uncomment this to run the ### lines | 
| 65 |  |  |  |  |  |  | # use Smart::Comments; | 
| 66 |  |  |  |  |  |  |  | 
| 67 | 1 |  |  | 1 |  | 1205 | use Math::PlanePath::ToothpickTree; | 
|  | 1 |  |  |  |  | 3 |  | 
|  | 1 |  |  |  |  | 158 |  | 
| 68 |  |  |  |  |  |  | *new = \&Math::PlanePath::ToothpickTree::new; | 
| 69 |  |  |  |  |  |  | *x_negative = \&Math::PlanePath::ToothpickTree::x_negative; | 
| 70 |  |  |  |  |  |  | *y_negative = \&Math::PlanePath::ToothpickTree::y_negative; | 
| 71 |  |  |  |  |  |  | *rect_to_n_range = \&Math::PlanePath::ToothpickTree::rect_to_n_range; | 
| 72 |  |  |  |  |  |  | *x_minimum = \&Math::PlanePath::ToothpickTree::x_minimum; | 
| 73 |  |  |  |  |  |  | *y_minimum = \&Math::PlanePath::ToothpickTree::y_minimum; | 
| 74 |  |  |  |  |  |  | *sumxy_minimum    = \&Math::PlanePath::ToothpickTree::sumxy_minimum; | 
| 75 |  |  |  |  |  |  | *sumabsxy_minimum = \&Math::PlanePath::ToothpickTree::sumabsxy_minimum; | 
| 76 |  |  |  |  |  |  | *rsquared_minimum = \&Math::PlanePath::ToothpickTree::rsquared_minimum; | 
| 77 |  |  |  |  |  |  |  | 
| 78 | 1 |  |  |  |  | 71 | use constant parameter_info_array => | 
| 79 |  |  |  |  |  |  | [ { name      => 'parts', | 
| 80 |  |  |  |  |  |  | share_key => 'parts_toothpickreplicate', | 
| 81 |  |  |  |  |  |  | display   => 'Parts', | 
| 82 |  |  |  |  |  |  | type      => 'enum', | 
| 83 |  |  |  |  |  |  | default   => '4', | 
| 84 |  |  |  |  |  |  | choices   => ['4','3','2','1'], | 
| 85 |  |  |  |  |  |  | choices_display => ['4','3','2','1'], | 
| 86 |  |  |  |  |  |  | description => 'Which parts of the pattern to generate.', | 
| 87 |  |  |  |  |  |  | }, | 
| 88 | 1 |  |  | 1 |  | 7 | ]; | 
|  | 1 |  |  |  |  | 2 |  | 
| 89 |  |  |  |  |  |  |  | 
| 90 | 1 |  |  | 1 |  | 5 | use constant n_start => 0; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 42 |  | 
| 91 | 1 |  |  | 1 |  | 4 | use constant class_x_negative => 1; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 45 |  | 
| 92 | 1 |  |  | 1 |  | 5 | use constant class_y_negative => 1; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 150 |  | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | { | 
| 95 |  |  |  |  |  |  | my @x_negative_at_n = (undef, | 
| 96 |  |  |  |  |  |  | undef,  # 1 | 
| 97 |  |  |  |  |  |  | 3,      # 2 | 
| 98 |  |  |  |  |  |  | 6,      # 3 | 
| 99 |  |  |  |  |  |  | 5,      # 4 | 
| 100 |  |  |  |  |  |  | ); | 
| 101 |  |  |  |  |  |  | sub x_negative_at_n { | 
| 102 | 0 |  |  | 0 | 1 | 0 | my ($self) = @_; | 
| 103 | 0 |  |  |  |  | 0 | return $x_negative_at_n[$self->{'parts'}]; | 
| 104 |  |  |  |  |  |  | } | 
| 105 |  |  |  |  |  |  | } | 
| 106 |  |  |  |  |  |  | { | 
| 107 |  |  |  |  |  |  | my @y_negative_at_n = (undef, | 
| 108 |  |  |  |  |  |  | undef,  # 1 | 
| 109 |  |  |  |  |  |  | undef,  # 2 | 
| 110 |  |  |  |  |  |  | 2,      # 3 | 
| 111 |  |  |  |  |  |  | 2,      # 4 | 
| 112 |  |  |  |  |  |  | ); | 
| 113 |  |  |  |  |  |  | sub y_negative_at_n { | 
| 114 | 0 |  |  | 0 | 1 | 0 | my ($self) = @_; | 
| 115 | 0 |  |  |  |  | 0 | return $y_negative_at_n[$self->{'parts'}]; | 
| 116 |  |  |  |  |  |  | } | 
| 117 |  |  |  |  |  |  | } | 
| 118 |  |  |  |  |  |  |  | 
| 119 |  |  |  |  |  |  | # parts=1 same as parts=4 | 
| 120 |  |  |  |  |  |  | # parts=2 same as parts=4 | 
| 121 |  |  |  |  |  |  | # parts=3 same as parts=4 | 
| 122 |  |  |  |  |  |  | # parts=4    33,-12 | 
| 123 |  |  |  |  |  |  | #           133,-30 | 
| 124 |  |  |  |  |  |  | #           333,-112 | 
| 125 |  |  |  |  |  |  | #          1333,-230 | 
| 126 |  |  |  |  |  |  | #          3332,-1112    -> 3,-1 | 
| 127 | 1 |  |  | 1 |  | 5 | use constant dir_maximum_dxdy => (3,-1); | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 1728 |  | 
| 128 |  |  |  |  |  |  |  | 
| 129 |  |  |  |  |  |  | #------------------------------------------------------------------------------ | 
| 130 |  |  |  |  |  |  | # Fraction covered | 
| 131 |  |  |  |  |  |  | # Xlevel = 2^(level+1) - 1 | 
| 132 |  |  |  |  |  |  | # Ylevel = 2^(level+1) | 
| 133 |  |  |  |  |  |  | # Nend = (2*4^(level+1) + 1)/3 - 1 | 
| 134 |  |  |  |  |  |  | # | 
| 135 |  |  |  |  |  |  | # Nend / (Xlevel*Ylevel) | 
| 136 |  |  |  |  |  |  | #  -> ((2*4^(level+1) + 1)/3 - 1) / 4^(level+1) | 
| 137 |  |  |  |  |  |  | #  -> (2*4^(level+1) + 1)/3 / 4^(level+1) | 
| 138 |  |  |  |  |  |  | #  -> 2*4^(level+1)/3 / 4^(level+1) | 
| 139 |  |  |  |  |  |  | #  -> 2/3 | 
| 140 |  |  |  |  |  |  |  | 
| 141 |  |  |  |  |  |  | # Leading diagonal 1,3, 7,11, | 
| 142 |  |  |  |  |  |  | #                  23,25,29,43,  +22,22,22,32 | 
| 143 |  |  |  |  |  |  | #                  87,89,93,97,  +86,86,86,86 | 
| 144 |  |  |  |  |  |  | #                  109,111,115,171,  +86,128 | 
| 145 |  |  |  |  |  |  | #                  343 | 
| 146 |  |  |  |  |  |  | # part2start = (4^level + 5)/3    = 3,7,23,87,343 | 
| 147 |  |  |  |  |  |  | # sums of part2start(level), but +2 in second half of each | 
| 148 |  |  |  |  |  |  | # (3)/3=1 | 
| 149 |  |  |  |  |  |  | # (3+ 1+5)/3=3 | 
| 150 |  |  |  |  |  |  | # (3+ 1+5 + 4+5)/3=9 | 
| 151 |  |  |  |  |  |  |  | 
| 152 |  |  |  |  |  |  |  | 
| 153 |  |  |  |  |  |  | # v              v | 
| 154 |  |  |  |  |  |  | # |      ->      |     part 3 | 
| 155 |  |  |  |  |  |  | # +---h      h---+ | 
| 156 |  |  |  |  |  |  | # | 
| 157 |  |  |  |  |  |  | # +---v      h | 
| 158 |  |  |  |  |  |  | # |      ->  |         part 1 rot then part 3 | 
| 159 |  |  |  |  |  |  | # h          +---v | 
| 160 |  |  |  |  |  |  | # | 
| 161 |  |  |  |  |  |  | #     v      v | 
| 162 |  |  |  |  |  |  | #     |  ->  |         part 3 then part 3 again | 
| 163 |  |  |  |  |  |  | # h---+      +---h | 
| 164 |  |  |  |  |  |  | # | 
| 165 |  |  |  |  |  |  |  | 
| 166 |  |  |  |  |  |  | # v          +---v | 
| 167 |  |  |  |  |  |  | # |      ->  |         part 1 | 
| 168 |  |  |  |  |  |  | # +---h      h | 
| 169 |  |  |  |  |  |  | # | 
| 170 |  |  |  |  |  |  | #     v      v---+ | 
| 171 |  |  |  |  |  |  | #     |  ->      |     part 3 then part 1 rot is +90 | 
| 172 |  |  |  |  |  |  | # h---+          h | 
| 173 |  |  |  |  |  |  |  | 
| 174 |  |  |  |  |  |  | # N = (2*4^level + 1)/3 + 1   is first of "level" | 
| 175 |  |  |  |  |  |  | # 3N-3 = 2*4^level + 1 | 
| 176 |  |  |  |  |  |  | # 2*4^level = 3N-4 | 
| 177 |  |  |  |  |  |  | # 4^(level+1) = 6N-8 | 
| 178 |  |  |  |  |  |  | # | 
| 179 |  |  |  |  |  |  | # part = (2*4^level - 2)/3  many points in "level" | 
| 180 |  |  |  |  |  |  | # above = (2*4^(level+1) - 2)/3 | 
| 181 |  |  |  |  |  |  | #       = (4*2*4^level - 2)/3 | 
| 182 |  |  |  |  |  |  | #       = 4*(2*4^level - 2/4)/3 | 
| 183 |  |  |  |  |  |  | #       = 4*(2*4^level - 2)/3 + 4*(+ 2 - 2/4)/3 | 
| 184 |  |  |  |  |  |  | #       = 4*(2*4^level - 2)/3 + 2 | 
| 185 |  |  |  |  |  |  | #       = 4*part + 2 | 
| 186 |  |  |  |  |  |  | # part = (above-2)/4 | 
| 187 |  |  |  |  |  |  |  | 
| 188 |  |  |  |  |  |  | my @quadrant_to_hdx = (1,-1, -1,1); | 
| 189 |  |  |  |  |  |  | my @quadrant_to_vdy = (1, 1, -1,-1); | 
| 190 |  |  |  |  |  |  |  | 
| 191 |  |  |  |  |  |  | sub n_to_xy { | 
| 192 | 54 |  |  | 54 | 1 | 4131 | my ($self, $n) = @_; | 
| 193 |  |  |  |  |  |  | ### ToothpickReplicate n_to_xy(): $n | 
| 194 |  |  |  |  |  |  |  | 
| 195 | 54 | 50 |  |  |  | 112 | if ($n < 0) { return; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 196 | 54 | 50 |  |  |  | 120 | if (is_infinite($n)) { return ($n,$n); } | 
|  | 0 |  |  |  |  | 0 |  | 
| 197 |  |  |  |  |  |  |  | 
| 198 |  |  |  |  |  |  | { | 
| 199 | 54 |  |  |  |  | 316 | my $int = int($n); | 
|  | 54 |  |  |  |  | 69 |  | 
| 200 |  |  |  |  |  |  | ### $int | 
| 201 |  |  |  |  |  |  | ### $n | 
| 202 | 54 | 50 |  |  |  | 99 | if ($n != $int) { | 
| 203 | 0 |  |  |  |  | 0 | my ($x1,$y1) = $self->n_to_xy($int); | 
| 204 | 0 |  |  |  |  | 0 | my ($x2,$y2) = $self->n_to_xy($int+1); | 
| 205 | 0 |  |  |  |  | 0 | my $frac = $n - $int;  # inherit possible BigFloat | 
| 206 | 0 |  |  |  |  | 0 | my $dx = $x2-$x1; | 
| 207 | 0 |  |  |  |  | 0 | my $dy = $y2-$y1; | 
| 208 | 0 |  |  |  |  | 0 | return ($frac*$dx + $x1, $frac*$dy + $y1); | 
| 209 |  |  |  |  |  |  | } | 
| 210 | 54 |  |  |  |  | 71 | $n = $int;       # BigFloat int() gives BigInt, use that | 
| 211 |  |  |  |  |  |  | } | 
| 212 |  |  |  |  |  |  |  | 
| 213 | 54 |  |  |  |  | 71 | my $parts = $self->{'parts'}; | 
| 214 | 54 |  |  |  |  | 60 | my $x = 0; | 
| 215 | 54 |  |  |  |  | 57 | my $y = 0; | 
| 216 | 54 |  |  |  |  | 57 | my $hdx = 1; | 
| 217 | 54 |  |  |  |  | 60 | my $hdy = 0; | 
| 218 | 54 |  |  |  |  | 54 | my $vdx = 0; | 
| 219 | 54 |  |  |  |  | 58 | my $vdy = 1; | 
| 220 |  |  |  |  |  |  |  | 
| 221 | 54 | 50 |  |  |  | 164 | if ($parts eq '2') { | 
|  |  | 100 |  |  |  |  |  | 
|  |  | 100 |  |  |  |  |  | 
| 222 | 0 | 0 |  |  |  | 0 | if ($n == 0) { | 
| 223 | 0 |  |  |  |  | 0 | return (0,1); | 
| 224 |  |  |  |  |  |  | } | 
| 225 |  |  |  |  |  |  |  | 
| 226 |  |  |  |  |  |  | # first of a replication level | 
| 227 |  |  |  |  |  |  | # Nlevel = 2*(2*4^level - 2)/3 + 1 | 
| 228 |  |  |  |  |  |  | #        = (4*4^level - 4)/3 + 1 | 
| 229 |  |  |  |  |  |  | #        = (4*4^level - 4 + 3)/3 | 
| 230 |  |  |  |  |  |  | #        = (4*4^level - 1)/3     = 5,21 | 
| 231 |  |  |  |  |  |  | # 3N = 4*4^level - 1 | 
| 232 |  |  |  |  |  |  | # 4^(level+1) = 3N+1 | 
| 233 |  |  |  |  |  |  |  | 
| 234 | 0 |  |  |  |  | 0 | my ($len,$level) = round_down_pow(3*$n+1, 4); | 
| 235 | 0 |  |  |  |  | 0 | my $three_parts = $len/2; | 
| 236 |  |  |  |  |  |  |  | 
| 237 |  |  |  |  |  |  | ### $len | 
| 238 |  |  |  |  |  |  | ### $level | 
| 239 |  |  |  |  |  |  | ### $three_parts | 
| 240 |  |  |  |  |  |  | ### start this level: ($len-1)/3 | 
| 241 |  |  |  |  |  |  | ### n reduced: $n-($len-1)/3 | 
| 242 |  |  |  |  |  |  |  | 
| 243 | 0 |  |  |  |  | 0 | (my $quadrant, $n) = _divrem ($n-($len-1)/3, $three_parts); | 
| 244 |  |  |  |  |  |  | ### $quadrant | 
| 245 |  |  |  |  |  |  | ### n remainder: $n | 
| 246 |  |  |  |  |  |  | ### assert: $quadrant >= 0 | 
| 247 |  |  |  |  |  |  | ### assert: $quadrant <= 1 | 
| 248 |  |  |  |  |  |  |  | 
| 249 | 0 |  |  |  |  | 0 | $n += ($len/2-2)/3; | 
| 250 | 0 | 0 |  |  |  | 0 | if ($quadrant) { $hdx = -1; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 251 |  |  |  |  |  |  | ### n in quarter: $n | 
| 252 |  |  |  |  |  |  |  | 
| 253 |  |  |  |  |  |  | } elsif ($parts == 3) { | 
| 254 | 8 | 100 |  |  |  | 16 | if ($n <= 1) { | 
| 255 | 2 |  |  |  |  | 5 | return (0,$n); | 
| 256 |  |  |  |  |  |  | } | 
| 257 |  |  |  |  |  |  | # Nend = 3*(2*4^level - 2)/3 + 2 | 
| 258 |  |  |  |  |  |  | #      = (2*4^level - 2) + 2 | 
| 259 |  |  |  |  |  |  | #      = 2*4^level     = 2,8,32 | 
| 260 |  |  |  |  |  |  | # N-1 = 2*4^level | 
| 261 |  |  |  |  |  |  | # 4^(level+1) = 2N-2 | 
| 262 |  |  |  |  |  |  |  | 
| 263 | 6 |  |  |  |  | 17 | my ($len,$level) = round_down_pow(2*$n, 4); | 
| 264 | 6 |  |  |  |  | 62 | my $three_parts = $len/2; | 
| 265 |  |  |  |  |  |  |  | 
| 266 |  |  |  |  |  |  | ### $len | 
| 267 |  |  |  |  |  |  | ### $level | 
| 268 |  |  |  |  |  |  | ### $three_parts | 
| 269 |  |  |  |  |  |  | ### start this level: ($len/2+1) | 
| 270 |  |  |  |  |  |  | ### n reduced: $n-($len/2+1) | 
| 271 |  |  |  |  |  |  |  | 
| 272 | 6 |  |  |  |  | 15 | (my $quadrant, $n) = _divrem ($n-$len/2, $three_parts); | 
| 273 |  |  |  |  |  |  | ### $quadrant | 
| 274 |  |  |  |  |  |  | ### n remainder: $n | 
| 275 |  |  |  |  |  |  | ### assert: $quadrant >= 0 | 
| 276 |  |  |  |  |  |  | ### assert: $quadrant <= 2 | 
| 277 |  |  |  |  |  |  |  | 
| 278 | 6 |  |  |  |  | 12 | $n += ($len/2-2)/3; | 
| 279 |  |  |  |  |  |  | ### n in quarter: $n | 
| 280 |  |  |  |  |  |  |  | 
| 281 | 6 | 100 |  |  |  | 21 | if ($quadrant == 0) { | 
|  |  | 100 |  |  |  |  |  | 
| 282 | 2 |  |  |  |  | 2 | $hdx = 0;  # rotate -90 | 
| 283 | 2 |  |  |  |  | 3 | $hdy = -1; | 
| 284 | 2 |  |  |  |  | 2 | $vdx = 1; | 
| 285 | 2 |  |  |  |  | 33 | $vdy = 0; | 
| 286 | 2 |  |  |  |  | 3 | $x = -1; # offset | 
| 287 |  |  |  |  |  |  | } elsif ($quadrant == 2) { | 
| 288 | 2 |  |  |  |  | 4 | $hdx = -1;  # mirror | 
| 289 |  |  |  |  |  |  | } | 
| 290 |  |  |  |  |  |  |  | 
| 291 |  |  |  |  |  |  | } elsif ($parts == 4) { | 
| 292 | 11 | 100 |  |  |  | 21 | if ($n <= 2) { | 
| 293 | 3 | 100 |  |  |  | 7 | if ($n == 0) { return (0,0); } | 
|  | 1 |  |  |  |  | 3 |  | 
| 294 | 2 | 100 |  |  |  | 5 | if ($n == 1) { return (0,1); } | 
|  | 1 |  |  |  |  | 3 |  | 
| 295 | 1 |  |  |  |  | 3 | return (0,-1);  # N==2 | 
| 296 |  |  |  |  |  |  | } | 
| 297 |  |  |  |  |  |  | # first of a replication level | 
| 298 |  |  |  |  |  |  | # Nlevel = 4*(2*4^level - 2)/3 + 3 | 
| 299 |  |  |  |  |  |  | #        = (8*4^level - 8)/3 + 3 | 
| 300 |  |  |  |  |  |  | #        = (8*4^level - 8 + 9)/3 | 
| 301 |  |  |  |  |  |  | #        = (8*4^level+1)/3           11,43,171 | 
| 302 |  |  |  |  |  |  | # 3N = 8*4^level+1 | 
| 303 |  |  |  |  |  |  | # 8*4^level = 3N-1 | 
| 304 |  |  |  |  |  |  | # 4^(level+2) = 6N-2 | 
| 305 |  |  |  |  |  |  | # | 
| 306 |  |  |  |  |  |  | # first of this level, using level+2 | 
| 307 |  |  |  |  |  |  | # Nlevel = (4^(level+2)/2+1)/3 | 
| 308 |  |  |  |  |  |  | #        = (4^(level+2)+2)/6 | 
| 309 |  |  |  |  |  |  | # | 
| 310 |  |  |  |  |  |  | # three count = 3*(2*4^level - 2)/3 + 2 | 
| 311 |  |  |  |  |  |  | #             = 2*4^level | 
| 312 |  |  |  |  |  |  | # 43-11 = 32 | 
| 313 |  |  |  |  |  |  | # 172-44 = 128 | 
| 314 |  |  |  |  |  |  |  | 
| 315 |  |  |  |  |  |  | # getting level+2 and len = 4^(level+2) | 
| 316 | 8 |  |  |  |  | 25 | my ($len,$level) = round_down_pow(6*$n-2, 4); | 
| 317 | 8 |  |  |  |  | 77 | my $three_parts = $len/8; | 
| 318 |  |  |  |  |  |  |  | 
| 319 |  |  |  |  |  |  | ### all breakdown ... | 
| 320 |  |  |  |  |  |  | ### $level | 
| 321 |  |  |  |  |  |  | ### $len | 
| 322 |  |  |  |  |  |  | ### $three_parts | 
| 323 |  |  |  |  |  |  | ### Nlevel base: ($len+2)/6 | 
| 324 |  |  |  |  |  |  |  | 
| 325 | 8 |  |  |  |  | 21 | (my $quadrant, $n) = _divrem ($n-($len+2)/6, $three_parts); | 
| 326 |  |  |  |  |  |  | ### $quadrant | 
| 327 |  |  |  |  |  |  | ### n remainder: $n | 
| 328 |  |  |  |  |  |  | ### assert: $quadrant >= 0 | 
| 329 |  |  |  |  |  |  | ### assert: $quadrant <= 3 | 
| 330 |  |  |  |  |  |  |  | 
| 331 |  |  |  |  |  |  | # quarter middle | 
| 332 |  |  |  |  |  |  | # Nquarter = (2*4^level - 2)/3  = 2,10,42 | 
| 333 | 8 |  |  |  |  | 13 | $n += ($len/8-2)/3; | 
| 334 | 8 |  |  |  |  | 11 | $hdx = $quadrant_to_hdx[$quadrant]; | 
| 335 | 8 |  |  |  |  | 13 | $vdy = $quadrant_to_vdy[$quadrant]; | 
| 336 |  |  |  |  |  |  | ### n in quarter: $n | 
| 337 |  |  |  |  |  |  | } | 
| 338 |  |  |  |  |  |  |  | 
| 339 |  |  |  |  |  |  | # quarter first of a replication level | 
| 340 |  |  |  |  |  |  | # Nlevel = 4*(2*4^level - 2)/3 + 2 | 
| 341 |  |  |  |  |  |  | #        = (8*4^level - 8)/3 + 2 | 
| 342 |  |  |  |  |  |  | #        = (8*4^level - 8 + 6)/3 | 
| 343 |  |  |  |  |  |  | #        = (8*4^level - 2)/3           2,10,42 | 
| 344 |  |  |  |  |  |  | # 3N = 8*4^level-2 | 
| 345 |  |  |  |  |  |  | # 8*4^level = 3N+2 | 
| 346 |  |  |  |  |  |  | # 4^(level+2) = 6N+4 | 
| 347 |  |  |  |  |  |  | # | 
| 348 |  |  |  |  |  |  | # using level+1 | 
| 349 |  |  |  |  |  |  | # Nlevel = (8*4^level - 2)/3 | 
| 350 |  |  |  |  |  |  | #        = (2*4^(level+1) - 2)/3 | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  |  | 
| 353 |  |  |  |  |  |  | # getting level+2 and 16*len | 
| 354 | 49 |  |  |  |  | 142 | my ($len,$level) = round_down_pow(6*$n+4, 4); | 
| 355 | 49 |  |  |  |  | 458 | my $part_n = (2*$len-2)/3; | 
| 356 |  |  |  |  |  |  | ### $level | 
| 357 |  |  |  |  |  |  | ### $part_n | 
| 358 |  |  |  |  |  |  |  | 
| 359 | 49 |  |  |  |  | 54 | $len = 2**$level; | 
| 360 | 49 |  |  |  |  | 106 | for ( ; | 
| 361 |  |  |  |  |  |  | $level-- >= 0; | 
| 362 |  |  |  |  |  |  | $len /= 2,  $part_n = ($part_n-2)/4) { | 
| 363 |  |  |  |  |  |  |  | 
| 364 |  |  |  |  |  |  | ### at: "x=$x,y=$y level=$level hxy=$hdx,$hdy vxy=$vdx,$vdy   n=$n" | 
| 365 |  |  |  |  |  |  | ### $len | 
| 366 |  |  |  |  |  |  | ### $part_n | 
| 367 |  |  |  |  |  |  | ### assert: $len == 2 ** ($level+1) | 
| 368 |  |  |  |  |  |  | ### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 | 
| 369 |  |  |  |  |  |  |  | 
| 370 | 145 | 100 |  |  |  | 263 | if ($n < $part_n) { | 
| 371 |  |  |  |  |  |  | ### part 0, no change ... | 
| 372 | 55 |  |  |  |  | 136 | next; | 
| 373 |  |  |  |  |  |  | } | 
| 374 |  |  |  |  |  |  |  | 
| 375 | 90 |  |  |  |  | 100 | $n -= $part_n; | 
| 376 | 90 |  |  |  |  | 117 | $x += $len * ($hdx + $vdx);  # diagonal | 
| 377 | 90 |  |  |  |  | 104 | $y += $len * ($hdy + $vdy); | 
| 378 |  |  |  |  |  |  |  | 
| 379 | 90 | 100 |  |  |  | 155 | if ($n == 0) { | 
| 380 |  |  |  |  |  |  | ### toothpick A ... | 
| 381 | 25 |  |  |  |  | 32 | last; | 
| 382 |  |  |  |  |  |  | } | 
| 383 | 65 | 100 |  |  |  | 114 | if ($n == 1) { | 
| 384 |  |  |  |  |  |  | ### toothpick B ... | 
| 385 | 24 |  |  |  |  | 25 | $x += $vdx; | 
| 386 | 24 |  |  |  |  | 27 | $y += $vdy; | 
| 387 | 24 |  |  |  |  | 26 | last; | 
| 388 |  |  |  |  |  |  | } | 
| 389 | 41 |  |  |  |  | 49 | $n -= 2; | 
| 390 |  |  |  |  |  |  |  | 
| 391 | 41 | 100 |  |  |  | 73 | if ($n < $part_n) { | 
| 392 |  |  |  |  |  |  | ### part 1, rotate ... | 
| 393 | 16 |  |  |  |  | 18 | $x -= $hdx; # offset | 
| 394 | 16 |  |  |  |  | 17 | $y -= $hdy; | 
| 395 | 16 |  |  |  |  | 29 | ($hdx,$hdy, $vdx,$vdy)    # rotate 90 in direction v toward h | 
| 396 |  |  |  |  |  |  | = (-$vdx,-$vdy, $hdx,$hdy); | 
| 397 | 16 |  |  |  |  | 41 | next; | 
| 398 |  |  |  |  |  |  | } | 
| 399 | 25 |  |  |  |  | 26 | $n -= $part_n; | 
| 400 |  |  |  |  |  |  |  | 
| 401 | 25 | 100 |  |  |  | 47 | if ($n < $part_n) { | 
| 402 |  |  |  |  |  |  | ### part 2 ... | 
| 403 | 9 |  |  |  |  | 22 | next; | 
| 404 |  |  |  |  |  |  | } | 
| 405 | 16 |  |  |  |  | 16 | $n -= $part_n; | 
| 406 |  |  |  |  |  |  |  | 
| 407 |  |  |  |  |  |  | ### part 3, mirror ... | 
| 408 | 16 |  |  |  |  | 18 | $hdx = -$hdx; | 
| 409 | 16 |  |  |  |  | 54 | $hdy = -$hdy; | 
| 410 |  |  |  |  |  |  | } | 
| 411 |  |  |  |  |  |  |  | 
| 412 |  |  |  |  |  |  | ### assert: $n == 0 || $n == 1 | 
| 413 |  |  |  |  |  |  |  | 
| 414 |  |  |  |  |  |  | ### final: "x=$x y=$y" | 
| 415 | 49 |  |  |  |  | 111 | return ($x,$y); | 
| 416 |  |  |  |  |  |  | } | 
| 417 |  |  |  |  |  |  |  | 
| 418 |  |  |  |  |  |  | sub xy_to_n { | 
| 419 | 0 |  |  | 0 | 1 | 0 | my ($self, $x, $y) = @_; | 
| 420 |  |  |  |  |  |  | ### ToothpickReplicate xy_to_n(): "$x, $y" | 
| 421 |  |  |  |  |  |  |  | 
| 422 | 0 |  |  |  |  | 0 | $x = round_nearest ($x); | 
| 423 | 0 |  |  |  |  | 0 | $y = round_nearest ($y); | 
| 424 |  |  |  |  |  |  |  | 
| 425 | 0 |  |  |  |  | 0 | my $parts = $self->{'parts'}; | 
| 426 | 0 |  | 0 |  |  | 0 | my $rotated = ($parts == 3 && $x >= 0 && $y < 0); | 
| 427 | 0 | 0 |  |  |  | 0 | if ($rotated) { | 
| 428 | 0 |  |  |  |  | 0 | ($x,$y) = (-$y,$x+1);  # rotate +90 and shift up | 
| 429 |  |  |  |  |  |  | ### rotated: "x=$x y=$y" | 
| 430 |  |  |  |  |  |  | } | 
| 431 |  |  |  |  |  |  |  | 
| 432 | 0 |  |  |  |  | 0 | my ($len,$level) = round_down_pow (max(abs($x), abs($y)-1), | 
| 433 |  |  |  |  |  |  | 2); | 
| 434 | 0 | 0 |  |  |  | 0 | if (is_infinite($level)) { | 
| 435 | 0 |  |  |  |  | 0 | return $level; | 
| 436 |  |  |  |  |  |  | } | 
| 437 |  |  |  |  |  |  | ### $level | 
| 438 |  |  |  |  |  |  | ### $len | 
| 439 |  |  |  |  |  |  |  | 
| 440 | 0 |  |  |  |  | 0 | my $zero = $x * 0 * $y; | 
| 441 | 0 |  |  |  |  | 0 | my $n = $zero; | 
| 442 |  |  |  |  |  |  |  | 
| 443 | 0 | 0 |  |  |  | 0 | if ($parts == 2) { | 
|  |  | 0 |  |  |  |  |  | 
|  |  | 0 |  |  |  |  |  | 
| 444 | 0 | 0 |  |  |  | 0 | if ($x == 0) { | 
| 445 | 0 | 0 |  |  |  | 0 | if ($y == 1) { return 0; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 446 |  |  |  |  |  |  | } | 
| 447 | 0 |  |  |  |  | 0 | $n += (2*$len*$len+1)/3;   # +1,+3,+11,+43 | 
| 448 | 0 | 0 |  |  |  | 0 | if ($x < 0) { | 
| 449 | 0 |  |  |  |  | 0 | $x = -$x; | 
| 450 | 0 |  |  |  |  | 0 | $n += 2*$len*$len;  # second quad, +2,+8,+32 | 
| 451 |  |  |  |  |  |  | } | 
| 452 |  |  |  |  |  |  |  | 
| 453 |  |  |  |  |  |  | } elsif ($parts == 3) { | 
| 454 |  |  |  |  |  |  | ### 3/4 ... | 
| 455 | 0 | 0 |  |  |  | 0 | if ($x == 0) { | 
| 456 | 0 | 0 |  |  |  | 0 | if ($y == 0) { return 0; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 457 | 0 | 0 |  |  |  | 0 | if ($y == 1) { return 1; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 458 |  |  |  |  |  |  | } | 
| 459 | 0 |  |  |  |  | 0 | $n += (10*$len*$len+2)/3;   # +4,+14,+54,+214,+854,+3414 | 
| 460 | 0 | 0 |  |  |  | 0 | if ($rotated) { | 
|  |  | 0 |  |  |  |  |  | 
| 461 | 0 |  |  |  |  | 0 | $n -= 2*$len*$len;  # fourth quad, -2, -8, -32 | 
| 462 |  |  |  |  |  |  | } elsif ($x < 0) { | 
| 463 | 0 |  |  |  |  | 0 | $x = -$x; | 
| 464 | 0 | 0 |  |  |  | 0 | if ($y > 0) { | 
| 465 | 0 |  |  |  |  | 0 | $n += 2*$len*$len;  # second quad, +2, +8, +32 | 
| 466 |  |  |  |  |  |  | } else { | 
| 467 | 0 |  |  |  |  | 0 | return undef;  # third quad, empty | 
| 468 |  |  |  |  |  |  | } | 
| 469 |  |  |  |  |  |  | } | 
| 470 |  |  |  |  |  |  | } elsif ($parts == 4) { | 
| 471 | 0 | 0 |  |  |  | 0 | if ($x == 0) { | 
| 472 | 0 | 0 |  |  |  | 0 | if ($y == 0)  { return 0; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 473 | 0 | 0 |  |  |  | 0 | if ($y == 1)  { return 1; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 474 | 0 | 0 |  |  |  | 0 | if ($y == -1) { return 2; } | 
|  | 0 |  |  |  |  | 0 |  | 
| 475 |  |  |  |  |  |  | } | 
| 476 | 0 |  |  |  |  | 0 | $n += (2*$len*$len+1); | 
| 477 | 0 | 0 |  |  |  | 0 | if ($x < 0) { | 
| 478 | 0 |  |  |  |  | 0 | $x = -$x; | 
| 479 | 0 | 0 |  |  |  | 0 | if ($y > 0) { | 
| 480 | 0 |  |  |  |  | 0 | $n += 2*$len*$len;  # second quad, +2, +8, +32 | 
| 481 |  |  |  |  |  |  | } else { | 
| 482 | 0 |  |  |  |  | 0 | $n += 4*$len*$len;  # third quad, +4,+16 | 
| 483 | 0 |  |  |  |  | 0 | $y = -$y; | 
| 484 |  |  |  |  |  |  | } | 
| 485 |  |  |  |  |  |  | } else { | 
| 486 | 0 | 0 |  |  |  | 0 | if ($y < 0) { | 
| 487 | 0 |  |  |  |  | 0 | $n += 6*$len*$len;  # fourth quad | 
| 488 | 0 |  |  |  |  | 0 | $y = -$y; | 
| 489 |  |  |  |  |  |  | } | 
| 490 |  |  |  |  |  |  | } | 
| 491 |  |  |  |  |  |  | } | 
| 492 |  |  |  |  |  |  |  | 
| 493 |  |  |  |  |  |  | #                              2^(level+1)-1 | 
| 494 |  |  |  |  |  |  | #                              v | 
| 495 |  |  |  |  |  |  | #          +-----------+---------+ | 
| 496 |  |  |  |  |  |  | #          |           |         | <- 2^(level+1) | 
| 497 |  |  |  |  |  |  | #          |   3             2   | | 
| 498 |  |  |  |  |  |  | #          | mirror        same  | | 
| 499 |  |  |  |  |  |  | #          |         --B--       | <- 2^level + 1 | 
| 500 |  |  |  |  |  |  | #          |           |         | | 
| 501 |  |  |  |  |  |  | #          +--         A       --+ <- 2^level | 
| 502 |  |  |  |  |  |  | #                      |         | | 
| 503 |  |  |  |  |  |  | #                          1     | | 
| 504 |  |  |  |  |  |  | #                         rot    | | 
| 505 |  |  |  |  |  |  | #             0           +90    | | 
| 506 |  |  |  |  |  |  | #                    |           | | 
| 507 |  |  |  |  |  |  | #                    +-----------+ | 
| 508 |  |  |  |  |  |  | #                      ^ | 
| 509 |  |  |  |  |  |  | #                     2^level | 
| 510 |  |  |  |  |  |  |  | 
| 511 | 0 |  |  |  |  | 0 | my $part_n = (2*$len*$len - 2) / 3; | 
| 512 |  |  |  |  |  |  | ### $part_n | 
| 513 |  |  |  |  |  |  |  | 
| 514 | 0 |  |  |  |  | 0 | while ($level-- > 0) { | 
| 515 |  |  |  |  |  |  | ### at: "x=$x,y=$y  len=$len part_n=$part_n   n=$n" | 
| 516 |  |  |  |  |  |  | ### assert: $len == 2 ** ($level+1) | 
| 517 |  |  |  |  |  |  | ### assert: $part_n == (2 * 4 ** ($level+1) - 2)/3 | 
| 518 |  |  |  |  |  |  |  | 
| 519 | 0 | 0 |  |  |  | 0 | if ($x == $len) { | 
| 520 | 0 | 0 |  |  |  | 0 | if ($y == $len) { | 
| 521 |  |  |  |  |  |  | ### toothpick A ... | 
| 522 | 0 |  |  |  |  | 0 | return $n + $part_n; | 
| 523 |  |  |  |  |  |  | } | 
| 524 | 0 | 0 |  |  |  | 0 | if ($y == $len+1) { | 
| 525 |  |  |  |  |  |  | ### toothpick B ... | 
| 526 | 0 |  |  |  |  | 0 | return $n + $part_n + 1; | 
| 527 |  |  |  |  |  |  | } | 
| 528 |  |  |  |  |  |  | } | 
| 529 |  |  |  |  |  |  |  | 
| 530 | 0 | 0 |  |  |  | 0 | if ($y <= $len) { | 
| 531 | 0 | 0 |  |  |  | 0 | if ($x < $len) { | 
| 532 |  |  |  |  |  |  | ### part 0 ... | 
| 533 |  |  |  |  |  |  | } else { | 
| 534 |  |  |  |  |  |  | ### part 1, rotate ... | 
| 535 | 0 |  |  |  |  | 0 | $n += $part_n + 2; | 
| 536 | 0 |  |  |  |  | 0 | ($x,$y) = ($len-$y,$x-$len+1); # shift, rotate +90 | 
| 537 |  |  |  |  |  |  | } | 
| 538 |  |  |  |  |  |  | } else { | 
| 539 | 0 |  |  |  |  | 0 | $y -= $len; | 
| 540 | 0 | 0 |  |  |  | 0 | if ($x > $len) { | 
| 541 |  |  |  |  |  |  | ### part 2 ... | 
| 542 | 0 |  |  |  |  | 0 | $n += 2*$part_n + 2; | 
| 543 | 0 |  |  |  |  | 0 | $x -= $len; | 
| 544 |  |  |  |  |  |  | } else { | 
| 545 |  |  |  |  |  |  | ### part 3 ... | 
| 546 | 0 |  |  |  |  | 0 | $n += 3*$part_n + 2; | 
| 547 | 0 |  |  |  |  | 0 | $x = $len-$x; # mirror | 
| 548 |  |  |  |  |  |  | } | 
| 549 |  |  |  |  |  |  | } | 
| 550 |  |  |  |  |  |  |  | 
| 551 | 0 |  |  |  |  | 0 | $len /= 2; | 
| 552 | 0 |  |  |  |  | 0 | $part_n = ($part_n-2)/4; | 
| 553 |  |  |  |  |  |  | } | 
| 554 |  |  |  |  |  |  |  | 
| 555 |  |  |  |  |  |  | ### end loop: "x=$x y=$y   n=$n" | 
| 556 |  |  |  |  |  |  |  | 
| 557 | 0 | 0 |  |  |  | 0 | if ($x == 1) { | 
| 558 | 0 | 0 |  |  |  | 0 | if ($y == 1) { | 
|  |  | 0 |  |  |  |  |  | 
| 559 | 0 |  |  |  |  | 0 | return $n; | 
| 560 |  |  |  |  |  |  | } elsif ($y == 2) { | 
| 561 | 0 |  |  |  |  | 0 | return $n + 1; | 
| 562 |  |  |  |  |  |  | } | 
| 563 |  |  |  |  |  |  | } | 
| 564 |  |  |  |  |  |  |  | 
| 565 | 0 |  |  |  |  | 0 | return undef; | 
| 566 |  |  |  |  |  |  | } | 
| 567 |  |  |  |  |  |  |  | 
| 568 |  |  |  |  |  |  | #------------------------------------------------------------------------------ | 
| 569 |  |  |  |  |  |  | # levels | 
| 570 |  |  |  |  |  |  |  | 
| 571 |  |  |  |  |  |  | # parts=1 | 
| 572 |  |  |  |  |  |  | # LevelPoints[k] = 4*LevelPoints[k] + 2  starting LevelPoints[0] = 2 | 
| 573 |  |  |  |  |  |  | # LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 4^k*LevelPoints[0] | 
| 574 |  |  |  |  |  |  | # LevelPoints[k] = 2 + 2*4 + 2*4^2 + ... + 2*4^(k-1) + 2*4^k | 
| 575 |  |  |  |  |  |  | # LevelPoints[k] = 2*(4^(k+1) - 1)/3 | 
| 576 |  |  |  |  |  |  |  | 
| 577 |  |  |  |  |  |  | { | 
| 578 |  |  |  |  |  |  | my %level_to_n_range = (4 => -2, | 
| 579 |  |  |  |  |  |  | 3 => -3, | 
| 580 |  |  |  |  |  |  | 2 => -4, | 
| 581 |  |  |  |  |  |  | 1 => -5, | 
| 582 |  |  |  |  |  |  | ); | 
| 583 |  |  |  |  |  |  | sub level_to_n_range { | 
| 584 | 9 |  |  | 9 | 1 | 402 | my ($self, $level) = @_; | 
| 585 |  |  |  |  |  |  | return (0, | 
| 586 |  |  |  |  |  |  | (4**($level+1) * (2*$self->{'parts'}) | 
| 587 | 9 |  |  |  |  | 37 | + $level_to_n_range{$self->{'parts'}}) / 3); | 
| 588 |  |  |  |  |  |  | } | 
| 589 |  |  |  |  |  |  | } | 
| 590 |  |  |  |  |  |  | { | 
| 591 |  |  |  |  |  |  | # $level_to_n_range{} and _divrem_mutate() rounded up | 
| 592 |  |  |  |  |  |  | my %n_to_level = (4 => 2 + 2*4-1, | 
| 593 |  |  |  |  |  |  | 3 => 3 + 2*3-1, | 
| 594 |  |  |  |  |  |  | 2 => 4 + 2*2-1, | 
| 595 |  |  |  |  |  |  | 1 => 5 + 2-1, | 
| 596 |  |  |  |  |  |  | ); | 
| 597 |  |  |  |  |  |  | sub n_to_level { | 
| 598 | 0 |  |  | 0 | 1 |  | my ($self, $n) = @_; | 
| 599 | 0 | 0 |  |  |  |  | if ($n < 0) { return undef; } | 
|  | 0 |  |  |  |  |  |  | 
| 600 | 0 | 0 |  |  |  |  | if (is_infinite($n)) { return $n; } | 
|  | 0 |  |  |  |  |  |  | 
| 601 | 0 |  |  |  |  |  | $n = round_nearest($n); | 
| 602 | 0 |  |  |  |  |  | $n *= 3; | 
| 603 | 0 |  |  |  |  |  | $n += $n_to_level{$self->{'parts'}}; | 
| 604 | 0 |  |  |  |  |  | _divrem_mutate ($n, 2*$self->{'parts'}); | 
| 605 | 0 |  |  |  |  |  | my ($pow, $exp) = round_down_pow ($n-1, 4); | 
| 606 | 0 |  |  |  |  |  | return $exp; | 
| 607 |  |  |  |  |  |  | } | 
| 608 |  |  |  |  |  |  | } | 
| 609 |  |  |  |  |  |  |  | 
| 610 |  |  |  |  |  |  | # return $remainder, modify $n | 
| 611 |  |  |  |  |  |  | # the scalar $_[0] is modified, but if it's a BigInt then a new BigInt is made | 
| 612 |  |  |  |  |  |  | # and stored there, the bigint value is not changed | 
| 613 |  |  |  |  |  |  | sub _divrem_mutate { | 
| 614 | 0 |  |  | 0 |  |  | my $d = $_[1]; | 
| 615 | 0 |  |  |  |  |  | my $rem; | 
| 616 | 0 | 0 | 0 |  |  |  | if (ref $_[0] && $_[0]->isa('Math::BigInt')) { | 
| 617 | 0 |  |  |  |  |  | ($_[0], $rem) = $_[0]->copy->bdiv($d);  # quot,rem in array context | 
| 618 | 0 | 0 | 0 |  |  |  | if (! ref $d || $d < 1_000_000) { | 
| 619 | 0 |  |  |  |  |  | return $rem->numify;  # plain remainder if fits | 
| 620 |  |  |  |  |  |  | } | 
| 621 |  |  |  |  |  |  | } else { | 
| 622 | 0 |  |  |  |  |  | $rem = $_[0] % $d; | 
| 623 | 0 |  |  |  |  |  | $_[0] = int(($_[0]-$rem)/$d); # exact division stays in UV | 
| 624 |  |  |  |  |  |  | } | 
| 625 | 0 |  |  |  |  |  | return $rem; | 
| 626 |  |  |  |  |  |  | } | 
| 627 |  |  |  |  |  |  |  | 
| 628 |  |  |  |  |  |  | #------------------------------------------------------------------------------ | 
| 629 |  |  |  |  |  |  | 1; | 
| 630 |  |  |  |  |  |  | __END__ |