| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | # Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021 Kevin Ryde | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | # This file is part of Math-PlanePath. | 
| 4 |  |  |  |  |  |  | # | 
| 5 |  |  |  |  |  |  | # Math-PlanePath is free software; you can redistribute it and/or modify | 
| 6 |  |  |  |  |  |  | # it under the terms of the GNU General Public License as published by the | 
| 7 |  |  |  |  |  |  | # Free Software Foundation; either version 3, or (at your option) any later | 
| 8 |  |  |  |  |  |  | # version. | 
| 9 |  |  |  |  |  |  | # | 
| 10 |  |  |  |  |  |  | # Math-PlanePath is distributed in the hope that it will be useful, but | 
| 11 |  |  |  |  |  |  | # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
| 12 |  |  |  |  |  |  | # or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
| 13 |  |  |  |  |  |  | # for more details. | 
| 14 |  |  |  |  |  |  | # | 
| 15 |  |  |  |  |  |  | # You should have received a copy of the GNU General Public License along | 
| 16 |  |  |  |  |  |  | # with Math-PlanePath.  If not, see . | 
| 17 |  |  |  |  |  |  |  | 
| 18 |  |  |  |  |  |  |  | 
| 19 |  |  |  |  |  |  | package Math::PlanePath::Staircase; | 
| 20 | 1 |  |  | 1 |  | 1180 | use 5.004; | 
|  | 1 |  |  |  |  | 6 |  | 
| 21 | 1 |  |  | 1 |  | 6 | use strict; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 25 |  | 
| 22 |  |  |  |  |  |  |  | 
| 23 | 1 |  |  | 1 |  | 5 | use vars '$VERSION', '@ISA'; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 60 |  | 
| 24 |  |  |  |  |  |  | $VERSION = 129; | 
| 25 | 1 |  |  | 1 |  | 742 | use Math::PlanePath; | 
|  | 1 |  |  |  |  | 3 |  | 
|  | 1 |  |  |  |  | 61 |  | 
| 26 |  |  |  |  |  |  | @ISA = ('Math::PlanePath'); | 
| 27 |  |  |  |  |  |  | *_divrem_mutate = \&Math::PlanePath::_divrem_mutate; | 
| 28 |  |  |  |  |  |  | *_sqrtint = \&Math::PlanePath::_sqrtint; | 
| 29 |  |  |  |  |  |  |  | 
| 30 |  |  |  |  |  |  | use Math::PlanePath::Base::Generic | 
| 31 | 1 |  |  | 1 |  | 7 | 'round_nearest'; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 41 |  | 
| 32 |  |  |  |  |  |  |  | 
| 33 |  |  |  |  |  |  | # uncomment this to run the ### lines | 
| 34 |  |  |  |  |  |  | #use Smart::Comments; | 
| 35 |  |  |  |  |  |  |  | 
| 36 |  |  |  |  |  |  |  | 
| 37 | 1 |  |  | 1 |  | 6 | use constant class_x_negative => 0; | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 48 |  | 
| 38 | 1 |  |  | 1 |  | 6 | use constant class_y_negative => 0; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 42 |  | 
| 39 | 1 |  |  | 1 |  | 6 | use constant n_frac_discontinuity => .5; | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 52 |  | 
| 40 |  |  |  |  |  |  | *xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; | 
| 41 |  |  |  |  |  |  |  | 
| 42 | 1 |  |  | 1 |  | 6 | use constant dx_maximum => 1; | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 64 |  | 
| 43 | 1 |  |  | 1 |  | 7 | use constant dy_minimum => -1; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 49 |  | 
| 44 | 1 |  |  | 1 |  | 5 | use constant dsumxy_minimum => -1; # straight S | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 51 |  | 
| 45 | 1 |  |  | 1 |  | 7 | use constant dsumxy_maximum => 2;  # next row | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 43 |  | 
| 46 | 1 |  |  | 1 |  | 5 | use constant ddiffxy_maximum => 1; # straight S,E | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 58 |  | 
| 47 | 1 |  |  | 1 |  | 7 | use constant dir_maximum_dxdy => (0,-1); # South | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 68 |  | 
| 48 |  |  |  |  |  |  |  | 
| 49 | 1 |  |  |  |  | 581 | use constant parameter_info_array => | 
| 50 |  |  |  |  |  |  | [ | 
| 51 |  |  |  |  |  |  | Math::PlanePath::Base::Generic::parameter_info_nstart1(), | 
| 52 | 1 |  |  | 1 |  | 6 | ]; | 
|  | 1 |  |  |  |  | 2 |  | 
| 53 |  |  |  |  |  |  |  | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | #------------------------------------------------------------------------------ | 
| 56 |  |  |  |  |  |  |  | 
| 57 |  |  |  |  |  |  | sub new { | 
| 58 | 3 |  |  | 3 | 1 | 634 | my $self = shift->SUPER::new(@_); | 
| 59 | 3 | 50 |  |  |  | 17 | if (! defined $self->{'n_start'}) { | 
| 60 | 3 |  |  |  |  | 18 | $self->{'n_start'} = $self->default_n_start; | 
| 61 |  |  |  |  |  |  | } | 
| 62 | 3 |  |  |  |  | 7 | return $self; | 
| 63 |  |  |  |  |  |  | } | 
| 64 |  |  |  |  |  |  |  | 
| 65 |  |  |  |  |  |  | # start from 0.5 back | 
| 66 |  |  |  |  |  |  | #     d = [ 0, 1,  2, 3 ] | 
| 67 |  |  |  |  |  |  | #     n = [ 1.5, 6.5, 15.5 ] | 
| 68 |  |  |  |  |  |  | #     n = ((2*$d - 1)*$d + 0.5) | 
| 69 |  |  |  |  |  |  | #     d = 1/4 + sqrt(1/2 * $n + -3/16) | 
| 70 |  |  |  |  |  |  | # | 
| 71 |  |  |  |  |  |  | # start from integer vertical | 
| 72 |  |  |  |  |  |  | #     d = [ 0, 1,  2,  3,  4 ] | 
| 73 |  |  |  |  |  |  | #     n = [ 1, 2,  7, 16, 29 ] | 
| 74 |  |  |  |  |  |  | #     n = ((2*$d - 1)*$d + 1) | 
| 75 |  |  |  |  |  |  | #     d = 1/4 + sqrt(1/2 * $n + -7/16) | 
| 76 |  |  |  |  |  |  | #       = [1 + sqrt(8*$n-7) ] / 4 | 
| 77 |  |  |  |  |  |  | # | 
| 78 |  |  |  |  |  |  | sub n_to_xy { | 
| 79 | 25 |  |  | 25 | 1 | 2763 | my ($self, $n) = @_; | 
| 80 |  |  |  |  |  |  | #### Staircase n_to_xy: $n | 
| 81 |  |  |  |  |  |  |  | 
| 82 |  |  |  |  |  |  | # adjust to N=1 start | 
| 83 | 25 |  |  |  |  | 51 | $n = $n - $self->{'n_start'} + 1; | 
| 84 |  |  |  |  |  |  |  | 
| 85 | 25 |  |  |  |  | 36 | my $d; | 
| 86 |  |  |  |  |  |  | { | 
| 87 | 25 |  |  |  |  | 32 | my $r = 8*$n - 3; | 
|  | 25 |  |  |  |  | 47 |  | 
| 88 | 25 | 50 |  |  |  | 53 | if ($r < 1) { | 
| 89 | 0 |  |  |  |  | 0 | return;   # N < 0.5, so before start of path | 
| 90 |  |  |  |  |  |  | } | 
| 91 | 25 |  |  |  |  | 56 | $d = int( (_sqrtint($r) + 1)/4 ); | 
| 92 |  |  |  |  |  |  | } | 
| 93 |  |  |  |  |  |  | ### $d | 
| 94 |  |  |  |  |  |  | ### base: ((2*$d - 1)*$d + 0.5) | 
| 95 |  |  |  |  |  |  |  | 
| 96 | 25 |  |  |  |  | 40 | $n -= (2*$d - 1)*$d; | 
| 97 |  |  |  |  |  |  | ### fractional: $n | 
| 98 |  |  |  |  |  |  |  | 
| 99 | 25 |  |  |  |  | 40 | my $int = int($n); | 
| 100 | 25 |  |  |  |  | 33 | $n -= $int; | 
| 101 |  |  |  |  |  |  |  | 
| 102 | 25 |  |  |  |  | 51 | my $rem = _divrem_mutate ($int, 2); | 
| 103 | 25 | 100 |  |  |  | 45 | if ($rem) { | 
| 104 |  |  |  |  |  |  | ### down ... | 
| 105 | 14 |  |  |  |  | 48 | return ($int, | 
| 106 |  |  |  |  |  |  | -$n + 2*$d - $int); | 
| 107 |  |  |  |  |  |  | } else { | 
| 108 |  |  |  |  |  |  | ### across ... | 
| 109 | 11 |  |  |  |  | 38 | return ($n + $int-1, | 
| 110 |  |  |  |  |  |  | 2*$d - $int); | 
| 111 |  |  |  |  |  |  | } | 
| 112 |  |  |  |  |  |  | } | 
| 113 |  |  |  |  |  |  |  | 
| 114 |  |  |  |  |  |  | # d = [ 1  2, 3, 4 ] | 
| 115 |  |  |  |  |  |  | # N = [ 2, 7, 16, 29 ] | 
| 116 |  |  |  |  |  |  | # N = (2 d^2 - d + 1) | 
| 117 |  |  |  |  |  |  | # and add 2*$d | 
| 118 |  |  |  |  |  |  | # base = 2*d^2 - d + 1 + 2*d | 
| 119 |  |  |  |  |  |  | #      = 2*d^2 + d + 1 | 
| 120 |  |  |  |  |  |  | #      = (2*$d + 1)*$d + 1 | 
| 121 |  |  |  |  |  |  | # | 
| 122 |  |  |  |  |  |  | sub xy_to_n { | 
| 123 | 15 |  |  | 15 | 1 | 945 | my ($self, $x, $y) = @_; | 
| 124 |  |  |  |  |  |  |  | 
| 125 | 15 |  |  |  |  | 32 | $x = round_nearest ($x); | 
| 126 | 15 |  |  |  |  | 26 | $y = round_nearest ($y); | 
| 127 | 15 | 50 | 33 |  |  | 57 | if ($x < 0 || $y < 0) { | 
| 128 | 0 |  |  |  |  | 0 | return undef; | 
| 129 |  |  |  |  |  |  | } | 
| 130 | 15 |  |  |  |  | 32 | my $d = int(($x + $y + 1) / 2); | 
| 131 | 15 |  |  |  |  | 39 | return (2*$d + 1)*$d - $y + $x + $self->{'n_start'}; | 
| 132 |  |  |  |  |  |  | } | 
| 133 |  |  |  |  |  |  |  | 
| 134 |  |  |  |  |  |  | # exact | 
| 135 |  |  |  |  |  |  | sub rect_to_n_range { | 
| 136 | 0 |  |  | 0 | 1 |  | my ($self, $x1,$y1, $x2,$y2) = @_; | 
| 137 |  |  |  |  |  |  | ### Staircase rect_to_n_range(): "$x1,$y1  $x2,$y2" | 
| 138 |  |  |  |  |  |  |  | 
| 139 | 0 |  |  |  |  |  | $x1 = round_nearest ($x1); | 
| 140 | 0 |  |  |  |  |  | $y1 = round_nearest ($y1); | 
| 141 | 0 |  |  |  |  |  | $x2 = round_nearest ($x2); | 
| 142 | 0 |  |  |  |  |  | $y2 = round_nearest ($y2); | 
| 143 |  |  |  |  |  |  |  | 
| 144 | 0 | 0 |  |  |  |  | if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); }  # x2 > x1 | 
|  | 0 |  |  |  |  |  |  | 
| 145 | 0 | 0 |  |  |  |  | if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); }  # y2 > y1 | 
|  | 0 |  |  |  |  |  |  | 
| 146 | 0 | 0 | 0 |  |  |  | if ($x2 < 0 || $y2 < 0) { | 
| 147 | 0 |  |  |  |  |  | return (1, 0);   # nothing outside first quadrant | 
| 148 |  |  |  |  |  |  | } | 
| 149 |  |  |  |  |  |  |  | 
| 150 | 0 | 0 |  |  |  |  | if ($x1 < 0) { $x1 *= 0; } | 
|  | 0 |  |  |  |  |  |  | 
| 151 | 0 | 0 |  |  |  |  | if ($y1 < 0) { $y1 *= 0; } | 
|  | 0 |  |  |  |  |  |  | 
| 152 | 0 |  |  |  |  |  | my $y_min = $y1; | 
| 153 |  |  |  |  |  |  |  | 
| 154 | 0 | 0 | 0 |  |  |  | if ((($x1 ^ $y1) & 1) && $y1 < $y2) {  # y2==y_max | 
| 155 | 0 |  |  |  |  |  | $y1 += 1; | 
| 156 |  |  |  |  |  |  | ### y1 inc: $y1 | 
| 157 |  |  |  |  |  |  | } | 
| 158 | 0 | 0 | 0 |  |  |  | if (! (($x2 ^ $y2) & 1) && $y2 > $y_min) { | 
| 159 | 0 |  |  |  |  |  | $y2 -= 1; | 
| 160 |  |  |  |  |  |  | ### y2 dec: $y2 | 
| 161 |  |  |  |  |  |  | } | 
| 162 | 0 |  |  |  |  |  | return ($self->xy_to_n($x1,$y1), | 
| 163 |  |  |  |  |  |  | $self->xy_to_n($x2,$y2)); | 
| 164 |  |  |  |  |  |  | } | 
| 165 |  |  |  |  |  |  |  | 
| 166 |  |  |  |  |  |  | 1; | 
| 167 |  |  |  |  |  |  | __END__ |