| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::KochelCurve; |
|
20
|
1
|
|
|
1
|
|
9438
|
use 5.004; |
|
|
1
|
|
|
|
|
10
|
|
|
21
|
1
|
|
|
1
|
|
5
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
24
|
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
5
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
65
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 129; |
|
27
|
1
|
|
|
1
|
|
728
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
31
|
|
|
28
|
1
|
|
|
1
|
|
439
|
use Math::PlanePath::Base::NSEW; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
41
|
|
|
29
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
30
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
31
|
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
33
|
1
|
|
|
|
|
47
|
'is_infinite', |
|
34
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
35
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
36
|
1
|
|
|
|
|
71
|
'round_down_pow', |
|
37
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
38
|
1
|
|
|
1
|
|
487
|
'digit_join_lowtohigh'; |
|
|
1
|
|
|
|
|
2
|
|
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
42
|
|
|
|
|
|
|
#use Smart::Comments; |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
|
|
45
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
47
|
|
|
46
|
1
|
|
|
1
|
|
5
|
use constant class_x_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
47
|
1
|
|
|
1
|
|
5
|
use constant class_y_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1524
|
|
|
48
|
|
|
|
|
|
|
*xy_is_visited = \&Math::PlanePath::Base::Generic::xy_is_visited_quad1; |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
# tables generated by tools/kochel-curve-table.pl |
|
54
|
|
|
|
|
|
|
# |
|
55
|
|
|
|
|
|
|
my @next_state = (63,72, 9, 99, 0,90, 36,99, 0, # 0 |
|
56
|
|
|
|
|
|
|
36,81,18, 72, 9,99, 45,72, 9, # 9 |
|
57
|
|
|
|
|
|
|
45,90,27, 81,18,72, 54,81,18, # 18 |
|
58
|
|
|
|
|
|
|
54,99, 0, 90,27,81, 63,90,27, # 27 |
|
59
|
|
|
|
|
|
|
36,81, 0, 72,36,81, 45,90,27, # 36 |
|
60
|
|
|
|
|
|
|
45,90, 9, 81,45,90, 54,99, 0, # 45 |
|
61
|
|
|
|
|
|
|
54,99,18, 90,54,99, 63,72, 9, # 54 |
|
62
|
|
|
|
|
|
|
63,72,27, 99,63,72, 36,81,18, # 63 |
|
63
|
|
|
|
|
|
|
63,72, 9, 99,90,99, 63,72, 9, # 72 |
|
64
|
|
|
|
|
|
|
36,81,18, 72,99,72, 36,81,18, # 81 |
|
65
|
|
|
|
|
|
|
45,90,27, 81,72,81, 45,90,27, # 90 |
|
66
|
|
|
|
|
|
|
54,99, 0, 90,81,90, 54,99, 0); # 99 |
|
67
|
|
|
|
|
|
|
my @digit_to_x = (0,0,0, 1,2,2, 1,1,2, # 0 |
|
68
|
|
|
|
|
|
|
2,1,0, 0,0,1, 1,2,2, # 9 |
|
69
|
|
|
|
|
|
|
2,2,2, 1,0,0, 1,1,0, # 18 |
|
70
|
|
|
|
|
|
|
0,1,2, 2,2,1, 1,0,0, # 27 |
|
71
|
|
|
|
|
|
|
2,1,1, 2,2,1, 0,0,0, # 36 |
|
72
|
|
|
|
|
|
|
2,2,1, 1,0,0, 0,1,2, # 45 |
|
73
|
|
|
|
|
|
|
0,1,1, 0,0,1, 2,2,2, # 54 |
|
74
|
|
|
|
|
|
|
0,0,1, 1,2,2, 2,1,0, # 63 |
|
75
|
|
|
|
|
|
|
0,0,0, 1,1,1, 2,2,2, # 72 |
|
76
|
|
|
|
|
|
|
2,1,0, 0,1,2, 2,1,0, # 81 |
|
77
|
|
|
|
|
|
|
2,2,2, 1,1,1, 0,0,0, # 90 |
|
78
|
|
|
|
|
|
|
0,1,2, 2,1,0, 0,1,2); # 99 |
|
79
|
|
|
|
|
|
|
my @digit_to_y = (0,1,2, 2,2,1, 1,0,0, # 0 |
|
80
|
|
|
|
|
|
|
0,0,0, 1,2,2, 1,1,2, # 9 |
|
81
|
|
|
|
|
|
|
2,1,0, 0,0,1, 1,2,2, # 18 |
|
82
|
|
|
|
|
|
|
2,2,2, 1,0,0, 1,1,0, # 27 |
|
83
|
|
|
|
|
|
|
0,0,1, 1,2,2, 2,1,0, # 36 |
|
84
|
|
|
|
|
|
|
2,1,1, 2,2,1, 0,0,0, # 45 |
|
85
|
|
|
|
|
|
|
2,2,1, 1,0,0, 0,1,2, # 54 |
|
86
|
|
|
|
|
|
|
0,1,1, 0,0,1, 2,2,2, # 63 |
|
87
|
|
|
|
|
|
|
0,1,2, 2,1,0, 0,1,2, # 72 |
|
88
|
|
|
|
|
|
|
0,0,0, 1,1,1, 2,2,2, # 81 |
|
89
|
|
|
|
|
|
|
2,1,0, 0,1,2, 2,1,0, # 90 |
|
90
|
|
|
|
|
|
|
2,2,2, 1,1,1, 0,0,0); # 99 |
|
91
|
|
|
|
|
|
|
my @xy_to_digit = (0,1,2, 7,6,3, 8,5,4, # 0 |
|
92
|
|
|
|
|
|
|
2,3,4, 1,6,5, 0,7,8, # 9 |
|
93
|
|
|
|
|
|
|
4,5,8, 3,6,7, 2,1,0, # 18 |
|
94
|
|
|
|
|
|
|
8,7,0, 5,6,1, 4,3,2, # 27 |
|
95
|
|
|
|
|
|
|
8,7,6, 1,2,5, 0,3,4, # 36 |
|
96
|
|
|
|
|
|
|
6,5,4, 7,2,3, 8,1,0, # 45 |
|
97
|
|
|
|
|
|
|
4,3,0, 5,2,1, 6,7,8, # 54 |
|
98
|
|
|
|
|
|
|
0,1,8, 3,2,7, 4,5,6, # 63 |
|
99
|
|
|
|
|
|
|
0,1,2, 5,4,3, 6,7,8, # 72 |
|
100
|
|
|
|
|
|
|
2,3,8, 1,4,7, 0,5,6, # 81 |
|
101
|
|
|
|
|
|
|
8,7,6, 3,4,5, 2,1,0, # 90 |
|
102
|
|
|
|
|
|
|
6,5,0, 7,4,1, 8,3,2); # 99 |
|
103
|
|
|
|
|
|
|
my @min_digit = (0,0,0,7,8,7, # 0 |
|
104
|
|
|
|
|
|
|
0,0,0,5,5,6, |
|
105
|
|
|
|
|
|
|
0,0,0,3,4,3, |
|
106
|
|
|
|
|
|
|
1,1,1,3,4,3, |
|
107
|
|
|
|
|
|
|
2,2,2,3,4,3, |
|
108
|
|
|
|
|
|
|
1,1,1,5,5,6, |
|
109
|
|
|
|
|
|
|
2,1,0,0,0,1, # 36 |
|
110
|
|
|
|
|
|
|
2,1,0,0,0,1, |
|
111
|
|
|
|
|
|
|
2,1,0,0,0,1, |
|
112
|
|
|
|
|
|
|
3,3,3,5,7,5, |
|
113
|
|
|
|
|
|
|
4,4,4,5,8,5, |
|
114
|
|
|
|
|
|
|
3,3,3,6,7,6, |
|
115
|
|
|
|
|
|
|
4,3,2,2,2,3, # 72 |
|
116
|
|
|
|
|
|
|
4,3,1,1,1,3, |
|
117
|
|
|
|
|
|
|
4,3,0,0,0,3, |
|
118
|
|
|
|
|
|
|
5,5,0,0,0,6, |
|
119
|
|
|
|
|
|
|
8,7,0,0,0,7, |
|
120
|
|
|
|
|
|
|
5,5,1,1,1,6, |
|
121
|
|
|
|
|
|
|
8,5,4,4,4,5, # 108 |
|
122
|
|
|
|
|
|
|
7,5,3,3,3,5, |
|
123
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
124
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
125
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
126
|
|
|
|
|
|
|
7,6,3,3,3,6, |
|
127
|
|
|
|
|
|
|
8,1,0,0,0,1, # 144 |
|
128
|
|
|
|
|
|
|
7,1,0,0,0,1, |
|
129
|
|
|
|
|
|
|
6,1,0,0,0,1, |
|
130
|
|
|
|
|
|
|
6,2,2,2,3,2, |
|
131
|
|
|
|
|
|
|
6,5,4,4,4,5, |
|
132
|
|
|
|
|
|
|
7,2,2,2,3,2, |
|
133
|
|
|
|
|
|
|
6,6,6,7,8,7, # 180 |
|
134
|
|
|
|
|
|
|
5,2,1,1,1,2, |
|
135
|
|
|
|
|
|
|
4,2,0,0,0,2, |
|
136
|
|
|
|
|
|
|
4,2,0,0,0,2, |
|
137
|
|
|
|
|
|
|
4,3,0,0,0,3, |
|
138
|
|
|
|
|
|
|
5,2,1,1,1,2, |
|
139
|
|
|
|
|
|
|
4,4,4,5,6,5, # 216 |
|
140
|
|
|
|
|
|
|
3,2,2,2,6,2, |
|
141
|
|
|
|
|
|
|
0,0,0,1,6,1, |
|
142
|
|
|
|
|
|
|
0,0,0,1,7,1, |
|
143
|
|
|
|
|
|
|
0,0,0,1,8,1, |
|
144
|
|
|
|
|
|
|
3,2,2,2,7,2, |
|
145
|
|
|
|
|
|
|
0,0,0,3,4,3, # 252 |
|
146
|
|
|
|
|
|
|
0,0,0,2,4,2, |
|
147
|
|
|
|
|
|
|
0,0,0,2,4,2, |
|
148
|
|
|
|
|
|
|
1,1,1,2,5,2, |
|
149
|
|
|
|
|
|
|
8,7,6,6,6,7, |
|
150
|
|
|
|
|
|
|
1,1,1,2,5,2, |
|
151
|
|
|
|
|
|
|
0,0,0,5,6,5, # 288 |
|
152
|
|
|
|
|
|
|
0,0,0,4,6,4, |
|
153
|
|
|
|
|
|
|
0,0,0,3,6,3, |
|
154
|
|
|
|
|
|
|
1,1,1,3,7,3, |
|
155
|
|
|
|
|
|
|
2,2,2,3,8,3, |
|
156
|
|
|
|
|
|
|
1,1,1,4,7,4, |
|
157
|
|
|
|
|
|
|
2,1,0,0,0,1, # 324 |
|
158
|
|
|
|
|
|
|
2,1,0,0,0,1, |
|
159
|
|
|
|
|
|
|
2,1,0,0,0,1, |
|
160
|
|
|
|
|
|
|
3,3,3,4,5,4, |
|
161
|
|
|
|
|
|
|
8,7,6,6,6,7, |
|
162
|
|
|
|
|
|
|
3,3,3,4,5,4, |
|
163
|
|
|
|
|
|
|
8,3,2,2,2,3, # 360 |
|
164
|
|
|
|
|
|
|
7,3,1,1,1,3, |
|
165
|
|
|
|
|
|
|
6,3,0,0,0,3, |
|
166
|
|
|
|
|
|
|
6,4,0,0,0,4, |
|
167
|
|
|
|
|
|
|
6,5,0,0,0,5, |
|
168
|
|
|
|
|
|
|
7,4,1,1,1,4, |
|
169
|
|
|
|
|
|
|
6,6,6,7,8,7, # 396 |
|
170
|
|
|
|
|
|
|
5,4,3,3,3,4, |
|
171
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
172
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
173
|
|
|
|
|
|
|
0,0,0,1,2,1, |
|
174
|
|
|
|
|
|
|
5,4,3,3,3,4); |
|
175
|
|
|
|
|
|
|
my @max_digit = (0,7,8,8,8,7, # 0 |
|
176
|
|
|
|
|
|
|
1,7,8,8,8,7, |
|
177
|
|
|
|
|
|
|
2,7,8,8,8,7, |
|
178
|
|
|
|
|
|
|
2,6,6,6,5,6, |
|
179
|
|
|
|
|
|
|
2,3,4,4,4,3, |
|
180
|
|
|
|
|
|
|
1,6,6,6,5,6, |
|
181
|
|
|
|
|
|
|
2,2,2,1,0,1, # 36 |
|
182
|
|
|
|
|
|
|
3,6,7,7,7,6, |
|
183
|
|
|
|
|
|
|
4,6,8,8,8,6, |
|
184
|
|
|
|
|
|
|
4,6,8,8,8,6, |
|
185
|
|
|
|
|
|
|
4,5,8,8,8,5, |
|
186
|
|
|
|
|
|
|
3,6,7,7,7,6, |
|
187
|
|
|
|
|
|
|
4,4,4,3,2,3, # 72 |
|
188
|
|
|
|
|
|
|
5,6,6,6,2,6, |
|
189
|
|
|
|
|
|
|
8,8,8,7,2,7, |
|
190
|
|
|
|
|
|
|
8,8,8,7,1,7, |
|
191
|
|
|
|
|
|
|
8,8,8,7,0,7, |
|
192
|
|
|
|
|
|
|
5,6,6,6,1,6, |
|
193
|
|
|
|
|
|
|
8,8,8,5,4,5, # 108 |
|
194
|
|
|
|
|
|
|
8,8,8,6,4,6, |
|
195
|
|
|
|
|
|
|
8,8,8,6,4,6, |
|
196
|
|
|
|
|
|
|
7,7,7,6,3,6, |
|
197
|
|
|
|
|
|
|
0,1,2,2,2,1, |
|
198
|
|
|
|
|
|
|
7,7,7,6,3,6, |
|
199
|
|
|
|
|
|
|
8,8,8,1,0,1, # 144 |
|
200
|
|
|
|
|
|
|
8,8,8,3,3,2, |
|
201
|
|
|
|
|
|
|
8,8,8,5,4,5, |
|
202
|
|
|
|
|
|
|
7,7,7,5,4,5, |
|
203
|
|
|
|
|
|
|
6,6,6,5,4,5, |
|
204
|
|
|
|
|
|
|
7,7,7,3,3,2, |
|
205
|
|
|
|
|
|
|
6,7,8,8,8,7, # 180 |
|
206
|
|
|
|
|
|
|
6,7,8,8,8,7, |
|
207
|
|
|
|
|
|
|
6,7,8,8,8,7, |
|
208
|
|
|
|
|
|
|
5,5,5,3,1,3, |
|
209
|
|
|
|
|
|
|
4,4,4,3,0,3, |
|
210
|
|
|
|
|
|
|
5,5,5,2,1,2, |
|
211
|
|
|
|
|
|
|
4,5,6,6,6,5, # 216 |
|
212
|
|
|
|
|
|
|
4,5,7,7,7,5, |
|
213
|
|
|
|
|
|
|
4,5,8,8,8,5, |
|
214
|
|
|
|
|
|
|
3,3,8,8,8,2, |
|
215
|
|
|
|
|
|
|
0,1,8,8,8,1, |
|
216
|
|
|
|
|
|
|
3,3,7,7,7,2, |
|
217
|
|
|
|
|
|
|
0,3,4,4,4,3, # 252 |
|
218
|
|
|
|
|
|
|
1,3,5,5,5,3, |
|
219
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
220
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
221
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
222
|
|
|
|
|
|
|
1,2,5,5,5,2, |
|
223
|
|
|
|
|
|
|
0,5,6,6,6,5, # 288 |
|
224
|
|
|
|
|
|
|
1,5,7,7,7,5, |
|
225
|
|
|
|
|
|
|
2,5,8,8,8,5, |
|
226
|
|
|
|
|
|
|
2,4,8,8,8,4, |
|
227
|
|
|
|
|
|
|
2,3,8,8,8,3, |
|
228
|
|
|
|
|
|
|
1,4,7,7,7,4, |
|
229
|
|
|
|
|
|
|
2,2,2,1,0,1, # 324 |
|
230
|
|
|
|
|
|
|
3,4,5,5,5,4, |
|
231
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
232
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
233
|
|
|
|
|
|
|
8,8,8,7,6,7, |
|
234
|
|
|
|
|
|
|
3,4,5,5,5,4, |
|
235
|
|
|
|
|
|
|
8,8,8,3,2,3, # 360 |
|
236
|
|
|
|
|
|
|
8,8,8,4,2,4, |
|
237
|
|
|
|
|
|
|
8,8,8,5,2,5, |
|
238
|
|
|
|
|
|
|
7,7,7,5,1,5, |
|
239
|
|
|
|
|
|
|
6,6,6,5,0,5, |
|
240
|
|
|
|
|
|
|
7,7,7,4,1,4, |
|
241
|
|
|
|
|
|
|
6,7,8,8,8,7, # 396 |
|
242
|
|
|
|
|
|
|
6,7,8,8,8,7, |
|
243
|
|
|
|
|
|
|
6,7,8,8,8,7, |
|
244
|
|
|
|
|
|
|
5,5,5,4,3,4, |
|
245
|
|
|
|
|
|
|
0,1,2,2,2,1, |
|
246
|
|
|
|
|
|
|
5,5,5,4,3,4); |
|
247
|
|
|
|
|
|
|
# state length 108 in each of 4 tables |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
sub n_to_xy { |
|
250
|
2161
|
|
|
2161
|
1
|
21272
|
my ($self, $n) = @_; |
|
251
|
|
|
|
|
|
|
### KochelCurve n_to_xy(): $n |
|
252
|
|
|
|
|
|
|
|
|
253
|
2161
|
50
|
|
|
|
3937
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
254
|
2161
|
50
|
|
|
|
3894
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
255
|
|
|
|
|
|
|
|
|
256
|
2161
|
|
|
|
|
3901
|
my $int = int($n); |
|
257
|
2161
|
|
|
|
|
3080
|
$n -= $int; # remaining fraction, preserve possible BigFloat/BigRat |
|
258
|
|
|
|
|
|
|
|
|
259
|
2161
|
|
|
|
|
4001
|
my @digits = digit_split_lowtohigh($int,9); |
|
260
|
2161
|
|
|
|
|
3623
|
my $len = ($int*0 + 3) ** scalar(@digits); # inherit bignum |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
### digits: join(', ',@digits)." count ".scalar(@digits) |
|
263
|
|
|
|
|
|
|
### $len |
|
264
|
|
|
|
|
|
|
|
|
265
|
2161
|
|
|
|
|
3016
|
my $state = 63; |
|
266
|
2161
|
|
|
|
|
2726
|
my $dir = 1; # default if all $digit==8 |
|
267
|
2161
|
|
|
|
|
2637
|
my $x = 0; |
|
268
|
2161
|
|
|
|
|
2639
|
my $y = 0; |
|
269
|
|
|
|
|
|
|
|
|
270
|
2161
|
|
|
|
|
3958
|
while (@digits) { |
|
271
|
6904
|
|
|
|
|
9581
|
$len /= 3; |
|
272
|
6904
|
|
|
|
|
9278
|
$state += (my $digit = pop @digits); |
|
273
|
6904
|
100
|
|
|
|
11305
|
if ($digit != 8) { |
|
274
|
6285
|
|
|
|
|
7877
|
$dir = $state; # lowest non-8 digit |
|
275
|
|
|
|
|
|
|
} |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
### $len |
|
278
|
|
|
|
|
|
|
### $state |
|
279
|
|
|
|
|
|
|
### digit_to_x: $digit_to_x[$state] |
|
280
|
|
|
|
|
|
|
### digit_to_y: $digit_to_y[$state] |
|
281
|
|
|
|
|
|
|
### next_state: $next_state[$state] |
|
282
|
|
|
|
|
|
|
|
|
283
|
6904
|
|
|
|
|
10093
|
$x += $len * $digit_to_x[$state]; |
|
284
|
6904
|
|
|
|
|
9437
|
$y += $len * $digit_to_y[$state]; |
|
285
|
6904
|
|
|
|
|
12877
|
$state = $next_state[$state]; |
|
286
|
|
|
|
|
|
|
} |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
### $dir |
|
289
|
|
|
|
|
|
|
### frac: $n |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
# with $n fractional part |
|
292
|
2161
|
|
|
|
|
6796
|
return ($n * ($digit_to_x[$dir+1] - $digit_to_x[$dir]) + $x, |
|
293
|
|
|
|
|
|
|
$n * ($digit_to_y[$dir+1] - $digit_to_y[$dir]) + $y); |
|
294
|
|
|
|
|
|
|
} |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
sub xy_to_n { |
|
297
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
298
|
|
|
|
|
|
|
### KochelCurve xy_to_n(): "$x, $y" |
|
299
|
|
|
|
|
|
|
|
|
300
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
301
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
302
|
0
|
0
|
0
|
|
|
|
if ($x < 0 || $y < 0) { |
|
303
|
0
|
|
|
|
|
|
return undef; |
|
304
|
|
|
|
|
|
|
} |
|
305
|
0
|
0
|
|
|
|
|
if (is_infinite($x)) { |
|
306
|
0
|
|
|
|
|
|
return $x; |
|
307
|
|
|
|
|
|
|
} |
|
308
|
0
|
0
|
|
|
|
|
if (is_infinite($y)) { |
|
309
|
0
|
|
|
|
|
|
return $y; |
|
310
|
|
|
|
|
|
|
} |
|
311
|
|
|
|
|
|
|
|
|
312
|
0
|
|
|
|
|
|
my @xdigits = digit_split_lowtohigh ($x, 3); |
|
313
|
0
|
|
|
|
|
|
my @ydigits = digit_split_lowtohigh ($y, 3); |
|
314
|
0
|
|
|
|
|
|
my $state = 63; |
|
315
|
0
|
|
|
|
|
|
my @ndigits; |
|
316
|
0
|
|
|
|
|
|
foreach my $i (reverse 0 .. max($#xdigits,$#ydigits)) { # high to low |
|
317
|
0
|
|
0
|
|
|
|
my $ndigit = $xy_to_digit[$state |
|
|
|
|
0
|
|
|
|
|
|
318
|
|
|
|
|
|
|
+ 3*($xdigits[$i]||0) |
|
319
|
|
|
|
|
|
|
+ ($ydigits[$i]||0)]; |
|
320
|
0
|
|
|
|
|
|
$ndigits[$i] = $ndigit; |
|
321
|
0
|
|
|
|
|
|
$state = $next_state[$state+$ndigit]; |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
|
|
324
|
0
|
|
|
|
|
|
return digit_join_lowtohigh (\@ndigits, 9, |
|
325
|
|
|
|
|
|
|
$x * 0 * $y); # bignum zero |
|
326
|
|
|
|
|
|
|
} |
|
327
|
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
# exact |
|
329
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
330
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
331
|
|
|
|
|
|
|
### KochelCurve rect_to_n_range(): "$x1,$y1, $x2,$y2" |
|
332
|
|
|
|
|
|
|
|
|
333
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
|
334
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
|
335
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
|
336
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
|
337
|
0
|
0
|
|
|
|
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
338
|
0
|
0
|
|
|
|
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
339
|
|
|
|
|
|
|
|
|
340
|
0
|
0
|
0
|
|
|
|
if ($x2 < 0 || $y2 < 0) { |
|
341
|
0
|
|
|
|
|
|
return (1, 0); |
|
342
|
|
|
|
|
|
|
} |
|
343
|
|
|
|
|
|
|
|
|
344
|
0
|
|
|
|
|
|
my ($len, $level) = round_down_pow (max($x2,$y2), 3); |
|
345
|
|
|
|
|
|
|
### $len |
|
346
|
|
|
|
|
|
|
### $level |
|
347
|
0
|
0
|
|
|
|
|
if (is_infinite($level)) { |
|
348
|
0
|
|
|
|
|
|
return (0, $level); |
|
349
|
|
|
|
|
|
|
} |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
# At this point an easy round-up range here would be: |
|
352
|
|
|
|
|
|
|
# return (0, 9*$len*$len-1); |
|
353
|
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
|
|
355
|
0
|
|
|
|
|
|
my $n_min = my $n_max |
|
356
|
|
|
|
|
|
|
= my $x_min = my $y_min |
|
357
|
|
|
|
|
|
|
= my $x_max = my $y_max |
|
358
|
|
|
|
|
|
|
= ($x1 * 0 * $x2 * $y1 * $y2); # inherit bignum 0 |
|
359
|
|
|
|
|
|
|
|
|
360
|
0
|
|
|
|
|
|
my $min_state = my $max_state = 63; |
|
361
|
|
|
|
|
|
|
|
|
362
|
|
|
|
|
|
|
# x__ 0 |
|
363
|
|
|
|
|
|
|
# xx_ 1 |
|
364
|
|
|
|
|
|
|
# xxx 2 |
|
365
|
|
|
|
|
|
|
# _xx 3 |
|
366
|
|
|
|
|
|
|
# __x 4 |
|
367
|
|
|
|
|
|
|
# _x_ 5 |
|
368
|
|
|
|
|
|
|
# |
|
369
|
0
|
|
|
|
|
|
while ($level >= 0) { |
|
370
|
0
|
|
|
|
|
|
my $l2 = 2*$len; |
|
371
|
|
|
|
|
|
|
{ |
|
372
|
0
|
|
|
|
|
|
my $x_cmp1 = $x_min + $len; |
|
373
|
0
|
|
|
|
|
|
my $y_cmp1 = $y_min + $len; |
|
374
|
0
|
|
|
|
|
|
my $x_cmp2 = $x_min + $l2; |
|
375
|
0
|
|
|
|
|
|
my $y_cmp2 = $y_min + $l2; |
|
376
|
0
|
0
|
|
|
|
|
my $digit = $min_digit[4*$min_state # 4*9=36 apart |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp2 ? 4 |
|
378
|
|
|
|
|
|
|
: $x1 >= $x_cmp1 ? ($x2 < $x_cmp2 ? 5 : 3) |
|
379
|
|
|
|
|
|
|
: ($x2 < $x_cmp1 ? 0 |
|
380
|
|
|
|
|
|
|
: $x2 < $x_cmp2 ? 1 : 2)) |
|
381
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp2 ? 6*4 |
|
382
|
|
|
|
|
|
|
: $y1 >= $y_cmp1 ? ($y2 < $y_cmp2 ? 6*5 : 6*3) |
|
383
|
|
|
|
|
|
|
: ($y2 < $y_cmp1 ? 6*0 |
|
384
|
|
|
|
|
|
|
: $y2 < $y_cmp2 ? 6*1 : 6*2))]; |
|
385
|
|
|
|
|
|
|
|
|
386
|
|
|
|
|
|
|
# my $key = 4*$min_state # 4*9=36 apart |
|
387
|
|
|
|
|
|
|
# + ($x1 >= $x_cmp2 ? 4 |
|
388
|
|
|
|
|
|
|
# : $x1 >= $x_cmp1 ? ($x2 < $x_cmp2 ? 5 : 3) |
|
389
|
|
|
|
|
|
|
# : ($x2 < $x_cmp1 ? 0 |
|
390
|
|
|
|
|
|
|
# : $x2 < $x_cmp2 ? 1 : 2)) |
|
391
|
|
|
|
|
|
|
# + ($y1 >= $y_cmp2 ? 6*4 |
|
392
|
|
|
|
|
|
|
# : $y1 >= $y_cmp1 ? ($y2 < $y_cmp2 ? 6*5 : 6*3) |
|
393
|
|
|
|
|
|
|
# : ($y2 < $y_cmp1 ? 6*0 |
|
394
|
|
|
|
|
|
|
# : $y2 < $y_cmp2 ? 6*1 : 6*2)); |
|
395
|
|
|
|
|
|
|
# ### $min_state |
|
396
|
|
|
|
|
|
|
# ### $len |
|
397
|
|
|
|
|
|
|
# ### $l2 |
|
398
|
|
|
|
|
|
|
# ### $key |
|
399
|
|
|
|
|
|
|
# ### $x_cmp1 |
|
400
|
|
|
|
|
|
|
# ### $x_cmp2 |
|
401
|
|
|
|
|
|
|
# ### $digit |
|
402
|
|
|
|
|
|
|
|
|
403
|
|
|
|
|
|
|
|
|
404
|
0
|
|
|
|
|
|
$n_min = 9*$n_min + $digit; |
|
405
|
0
|
|
|
|
|
|
$min_state += $digit; |
|
406
|
0
|
|
|
|
|
|
$x_min += $len * $digit_to_x[$min_state]; |
|
407
|
0
|
|
|
|
|
|
$y_min += $len * $digit_to_y[$min_state]; |
|
408
|
0
|
|
|
|
|
|
$min_state = $next_state[$min_state]; |
|
409
|
|
|
|
|
|
|
} |
|
410
|
|
|
|
|
|
|
{ |
|
411
|
0
|
|
|
|
|
|
my $x_cmp1 = $x_max + $len; |
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
412
|
0
|
|
|
|
|
|
my $y_cmp1 = $y_max + $len; |
|
413
|
0
|
|
|
|
|
|
my $x_cmp2 = $x_max + $l2; |
|
414
|
0
|
|
|
|
|
|
my $y_cmp2 = $y_max + $l2; |
|
415
|
0
|
0
|
|
|
|
|
my $digit = $max_digit[4*$max_state # 4*9=36 apart |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
416
|
|
|
|
|
|
|
+ ($x1 >= $x_cmp2 ? 4 |
|
417
|
|
|
|
|
|
|
: $x1 >= $x_cmp1 ? ($x2 < $x_cmp2 ? 5 : 3) |
|
418
|
|
|
|
|
|
|
: ($x2 < $x_cmp1 ? 0 |
|
419
|
|
|
|
|
|
|
: $x2 < $x_cmp2 ? 1 : 2)) |
|
420
|
|
|
|
|
|
|
+ ($y1 >= $y_cmp2 ? 6*4 |
|
421
|
|
|
|
|
|
|
: $y1 >= $y_cmp1 ? ($y2 < $y_cmp2 ? 6*5 : 6*3) |
|
422
|
|
|
|
|
|
|
: ($y2 < $y_cmp1 ? 6*0 |
|
423
|
|
|
|
|
|
|
: $y2 < $y_cmp2 ? 6*1 : 6*2))]; |
|
424
|
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
# my $key = 4*$max_state # 4*9=36 apart |
|
426
|
|
|
|
|
|
|
# + ($x1 >= $x_cmp2 ? 4 |
|
427
|
|
|
|
|
|
|
# : $x1 >= $x_cmp1 ? ($x2 < $x_cmp2 ? 5 : 3) |
|
428
|
|
|
|
|
|
|
# : ($x2 < $x_cmp1 ? 0 |
|
429
|
|
|
|
|
|
|
# : $x2 < $x_cmp2 ? 1 : 2)) |
|
430
|
|
|
|
|
|
|
# + ($y1 >= $y_cmp2 ? 4 |
|
431
|
|
|
|
|
|
|
# : $y1 >= $y_cmp1 ? ($y2 < $y_cmp2 ? 5 : 3) |
|
432
|
|
|
|
|
|
|
# : ($y2 < $y_cmp1 ? 0 |
|
433
|
|
|
|
|
|
|
# : $y2 < $y_cmp2 ? 1 : 2)); |
|
434
|
|
|
|
|
|
|
# ### $max_state |
|
435
|
|
|
|
|
|
|
# ### $len |
|
436
|
|
|
|
|
|
|
# ### $l2 |
|
437
|
|
|
|
|
|
|
# ### $x_key |
|
438
|
|
|
|
|
|
|
# ### $key |
|
439
|
|
|
|
|
|
|
# ### $x_max |
|
440
|
|
|
|
|
|
|
# ### $y_max |
|
441
|
|
|
|
|
|
|
# ### $x_cmp1 |
|
442
|
|
|
|
|
|
|
# ### $x_cmp2 |
|
443
|
|
|
|
|
|
|
# ### $y_cmp1 |
|
444
|
|
|
|
|
|
|
# ### $y_cmp2 |
|
445
|
|
|
|
|
|
|
# ### $digit |
|
446
|
|
|
|
|
|
|
# ### max digit: $max_digit[$key] |
|
447
|
|
|
|
|
|
|
|
|
448
|
0
|
|
|
|
|
|
$n_max = 9*$n_max + $digit; |
|
449
|
0
|
|
|
|
|
|
$max_state += $digit; |
|
450
|
0
|
|
|
|
|
|
$x_max += $len * $digit_to_x[$max_state]; |
|
451
|
0
|
|
|
|
|
|
$y_max += $len * $digit_to_y[$max_state]; |
|
452
|
0
|
|
|
|
|
|
$max_state = $next_state[$max_state]; |
|
453
|
|
|
|
|
|
|
} |
|
454
|
|
|
|
|
|
|
|
|
455
|
0
|
|
|
|
|
|
$len = int($len/3); |
|
456
|
0
|
|
|
|
|
|
$level--; |
|
457
|
|
|
|
|
|
|
} |
|
458
|
0
|
|
|
|
|
|
return ($n_min, $n_max); |
|
459
|
|
|
|
|
|
|
} |
|
460
|
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
#----------------------------------------------------------------------------- |
|
462
|
|
|
|
|
|
|
# level_to_n_range() |
|
463
|
|
|
|
|
|
|
|
|
464
|
1
|
|
|
1
|
|
516
|
use Math::PlanePath::SquareReplicate; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
114
|
|
|
465
|
|
|
|
|
|
|
*level_to_n_range = \&Math::PlanePath::SquareReplicate::level_to_n_range; |
|
466
|
|
|
|
|
|
|
*n_to_level = \&Math::PlanePath::SquareReplicate::n_to_level; |
|
467
|
|
|
|
|
|
|
|
|
468
|
|
|
|
|
|
|
#----------------------------------------------------------------------------- |
|
469
|
|
|
|
|
|
|
1; |
|
470
|
|
|
|
|
|
|
__END__ |