| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::KochPeaks; |
|
20
|
1
|
|
|
1
|
|
1345
|
use 5.004; |
|
|
1
|
|
|
|
|
4
|
|
|
21
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
70
|
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
24
|
|
|
|
|
|
|
|
|
25
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
71
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 129; |
|
27
|
1
|
|
|
1
|
|
818
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
41
|
|
|
28
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
31
|
1
|
|
|
|
|
43
|
'is_infinite', |
|
32
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
33
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
34
|
1
|
|
|
1
|
|
615
|
'round_down_pow'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
55
|
|
|
35
|
1
|
|
|
1
|
|
648
|
use Math::PlanePath::KochCurve; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
51
|
|
|
36
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
39
|
|
|
|
|
|
|
#use Devel::Comments; |
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
|
|
42
|
1
|
|
|
1
|
|
8
|
use constant class_y_negative => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
57
|
|
|
43
|
1
|
|
|
1
|
|
6
|
use constant n_frac_discontinuity => .5; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
43
|
|
|
44
|
1
|
|
|
1
|
|
6
|
use constant x_negative_at_n => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
45
|
1
|
|
|
1
|
|
6
|
use constant sumabsxy_minimum => 1; # minimum X=1,Y=0 |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
40
|
|
|
46
|
1
|
|
|
1
|
|
5
|
use constant absdiffxy_minimum => 1; # X=Y never occurs |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
42
|
|
|
47
|
1
|
|
|
1
|
|
5
|
use constant rsquared_minimum => 1; # minimum X=1,Y=0 |
|
|
1
|
|
|
|
|
4
|
|
|
|
1
|
|
|
|
|
39
|
|
|
48
|
|
|
|
|
|
|
|
|
49
|
1
|
|
|
1
|
|
5
|
use constant dx_maximum => 2; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
72
|
|
|
50
|
1
|
|
|
1
|
|
8
|
use constant dy_minimum => -1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
46
|
|
|
51
|
1
|
|
|
1
|
|
6
|
use constant dy_maximum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
49
|
|
|
52
|
1
|
|
|
1
|
|
7
|
use constant absdx_minimum => 1; # never vertical |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
44
|
|
|
53
|
1
|
|
|
1
|
|
5
|
use constant dsumxy_maximum => 2; # diagonal NE |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
57
|
|
|
54
|
1
|
|
|
1
|
|
7
|
use constant ddiffxy_maximum => 2; # diagonal NW |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
90
|
|
|
55
|
1
|
|
|
1
|
|
8
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
50
|
|
|
56
|
1
|
|
|
1
|
|
6
|
use constant turn_any_straight => 0; # never straight |
|
|
1
|
|
|
|
|
12
|
|
|
|
1
|
|
|
|
|
958
|
|
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
# N=1 to 3 3 of, level=0 |
|
62
|
|
|
|
|
|
|
# N=4 to 12 9 of, level=1 |
|
63
|
|
|
|
|
|
|
# N=13 to 45 33 of, level=2 |
|
64
|
|
|
|
|
|
|
# |
|
65
|
|
|
|
|
|
|
# N=0.5 to 3.49 diff=3 |
|
66
|
|
|
|
|
|
|
# N=3.39 to 12.49 diff=9 |
|
67
|
|
|
|
|
|
|
# N=12.5 to 45.5 diff=33 |
|
68
|
|
|
|
|
|
|
# |
|
69
|
|
|
|
|
|
|
# each length = 2*4^level + 1 |
|
70
|
|
|
|
|
|
|
# |
|
71
|
|
|
|
|
|
|
# Nstart = 1 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1 |
|
72
|
|
|
|
|
|
|
# = 1 + level + 2*[ 4^0 + 4^1 + ... + 4^(level-1) ] |
|
73
|
|
|
|
|
|
|
# = level+1 + 2*[ (4^level - 1)/3 ] |
|
74
|
|
|
|
|
|
|
# = level+1 + (2*4^level - 2)/3 |
|
75
|
|
|
|
|
|
|
# = level + (2*4^level - 2 + 3)/3 |
|
76
|
|
|
|
|
|
|
# = level + (2*4^level + 1)/3 |
|
77
|
|
|
|
|
|
|
# |
|
78
|
|
|
|
|
|
|
# 3*n = 2*4^level + 1 |
|
79
|
|
|
|
|
|
|
# 3*n-1 = 2*4^level |
|
80
|
|
|
|
|
|
|
# (3*n-1)/2 = 4^level |
|
81
|
|
|
|
|
|
|
# |
|
82
|
|
|
|
|
|
|
# Nbase = 0.5 + 2*4^0 + 1 + 2*4^1 + 1 + ... + 2*4^(level-1) + 1 |
|
83
|
|
|
|
|
|
|
# = level + (2*4^level + 1)/3 - 1/2 |
|
84
|
|
|
|
|
|
|
# = level + 2/3*4^level + 1/3 - 1/2 |
|
85
|
|
|
|
|
|
|
# = level + 2/3*4^level - 1/6 |
|
86
|
|
|
|
|
|
|
# = level + 4/6*4^level - 1/6 |
|
87
|
|
|
|
|
|
|
# = level + (4*4^level - 1)/6 |
|
88
|
|
|
|
|
|
|
# = level + (4^(level+1) - 1)/6 |
|
89
|
|
|
|
|
|
|
# |
|
90
|
|
|
|
|
|
|
# 6*N = 4^(level+1) - 1 |
|
91
|
|
|
|
|
|
|
# 6*N + 1 = 4^(level+1) |
|
92
|
|
|
|
|
|
|
# level+1 = log4(6*N + 1) |
|
93
|
|
|
|
|
|
|
# level = log4(6*N + 1) - 1 |
|
94
|
|
|
|
|
|
|
# |
|
95
|
|
|
|
|
|
|
### loop 1: (2*4**1 + 1)/3 |
|
96
|
|
|
|
|
|
|
### loop 2: (2*4**2 + 1)/3 |
|
97
|
|
|
|
|
|
|
### loop 3: (2*4**3 + 1)/3 |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
# sub _n_to_level { |
|
100
|
|
|
|
|
|
|
# my ($n) = @_; |
|
101
|
|
|
|
|
|
|
# my ($side, $level) = round_down_pow(6*$n + 1, 4); |
|
102
|
|
|
|
|
|
|
# my $base = $level + (2*$side + 1)/3 - .5; |
|
103
|
|
|
|
|
|
|
# ### $level |
|
104
|
|
|
|
|
|
|
# ### $base |
|
105
|
|
|
|
|
|
|
# if ($base > $n) { |
|
106
|
|
|
|
|
|
|
# $level--; |
|
107
|
|
|
|
|
|
|
# $side /= 4; |
|
108
|
|
|
|
|
|
|
# $base = $level + (2*$side + 1)/3 - .5; |
|
109
|
|
|
|
|
|
|
# ### $level |
|
110
|
|
|
|
|
|
|
# ### $base |
|
111
|
|
|
|
|
|
|
# } |
|
112
|
|
|
|
|
|
|
# return ($level, $base, $side + .5); |
|
113
|
|
|
|
|
|
|
# } |
|
114
|
|
|
|
|
|
|
# sub _level_to_base { |
|
115
|
|
|
|
|
|
|
# my ($level) = @_; |
|
116
|
|
|
|
|
|
|
# return $level + (2*$side + 1)/3 - .5; |
|
117
|
|
|
|
|
|
|
# } |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub _n_to_side_level_base { |
|
120
|
381
|
|
|
381
|
|
602
|
my ($n) = @_; |
|
121
|
381
|
|
|
|
|
884
|
my ($side, $level) = round_down_pow((3*$n-1)/2, 4); |
|
122
|
381
|
|
|
|
|
712
|
my $base = $level + (2*$side + 1)/3; |
|
123
|
|
|
|
|
|
|
### $level |
|
124
|
|
|
|
|
|
|
### $base |
|
125
|
381
|
100
|
|
|
|
796
|
if (2*$n+1 < 2*$base) { |
|
126
|
11
|
|
|
|
|
20
|
$level--; |
|
127
|
11
|
|
|
|
|
28
|
$side /= 4; |
|
128
|
11
|
|
|
|
|
26
|
$base = $level + (2*$side + 1)/3; |
|
129
|
|
|
|
|
|
|
### $level |
|
130
|
|
|
|
|
|
|
### $base |
|
131
|
|
|
|
|
|
|
} |
|
132
|
381
|
|
|
|
|
736
|
return ($side, $level, $base); |
|
133
|
|
|
|
|
|
|
} |
|
134
|
|
|
|
|
|
|
|
|
135
|
|
|
|
|
|
|
sub n_to_xy { |
|
136
|
381
|
|
|
381
|
1
|
4496
|
my ($self, $n) = @_; |
|
137
|
|
|
|
|
|
|
### KochPeaks n_to_xy(): $n |
|
138
|
|
|
|
|
|
|
|
|
139
|
|
|
|
|
|
|
# $n<0.5 no good for Math::BigInt circa Perl 5.12, compare in integers |
|
140
|
381
|
50
|
|
|
|
735
|
return if 2*$n < 1; |
|
141
|
|
|
|
|
|
|
|
|
142
|
381
|
50
|
|
|
|
719
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
143
|
|
|
|
|
|
|
|
|
144
|
381
|
|
|
|
|
720
|
my ($side, $level, $base) = _n_to_side_level_base($n); |
|
145
|
|
|
|
|
|
|
|
|
146
|
381
|
|
|
|
|
593
|
my $rem = $n - $base; |
|
147
|
381
|
|
|
|
|
482
|
my $frac; |
|
148
|
381
|
100
|
|
|
|
719
|
if ($rem < 0) { |
|
|
|
100
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
### neg frac |
|
150
|
2
|
|
|
|
|
4
|
$frac = $rem; |
|
151
|
2
|
|
|
|
|
12
|
$rem = 0; |
|
152
|
|
|
|
|
|
|
} elsif ($rem > 2*$side) { |
|
153
|
|
|
|
|
|
|
### excess frac |
|
154
|
1
|
|
|
|
|
5
|
$frac = $rem - 2*$side; |
|
155
|
1
|
|
|
|
|
2
|
$rem -= $frac; |
|
156
|
|
|
|
|
|
|
} else { |
|
157
|
|
|
|
|
|
|
### no frac |
|
158
|
378
|
|
|
|
|
518
|
$frac = 0; |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
### $frac |
|
161
|
|
|
|
|
|
|
### $rem |
|
162
|
|
|
|
|
|
|
### $n |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
### next base would be: ($level+1) + (2*4**($level+1) + 1)/3 |
|
165
|
|
|
|
|
|
|
### assert: $n-$frac >= $base |
|
166
|
|
|
|
|
|
|
### assert: $n-$frac < ($level+1) + (2*4**($level+1) + 1)/3 |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
### assert: $rem>=0 |
|
169
|
|
|
|
|
|
|
### assert: $rem < 2 * 4 ** $level + 1 |
|
170
|
|
|
|
|
|
|
### assert: $rem <= 2*$side+1 |
|
171
|
|
|
|
|
|
|
|
|
172
|
381
|
|
|
|
|
535
|
my $pos = 3**$level; |
|
173
|
381
|
100
|
|
|
|
601
|
if ($rem < $side) { |
|
174
|
361
|
|
|
|
|
801
|
my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem); |
|
175
|
|
|
|
|
|
|
### left side: $rem |
|
176
|
|
|
|
|
|
|
### flat: "$x,$y" |
|
177
|
361
|
|
|
|
|
594
|
$x += 2*$frac; |
|
178
|
361
|
|
|
|
|
1084
|
return (($x-3*$y)/2 - $pos, # rotate +60 |
|
179
|
|
|
|
|
|
|
($x+$y)/2); |
|
180
|
|
|
|
|
|
|
} else { |
|
181
|
20
|
|
|
|
|
57
|
my ($x, $y) = Math::PlanePath::KochCurve->n_to_xy($rem-$side); |
|
182
|
|
|
|
|
|
|
### right side: $rem-$side |
|
183
|
|
|
|
|
|
|
### flat: "$x,$y" |
|
184
|
20
|
|
|
|
|
39
|
$x += 2*$frac; |
|
185
|
20
|
|
|
|
|
85
|
return (($x+3*$y)/2, # rotate -60 |
|
186
|
|
|
|
|
|
|
($y-$x)/2 + $pos); |
|
187
|
|
|
|
|
|
|
} |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
sub xy_to_n { |
|
191
|
5631
|
|
|
5631
|
1
|
42502
|
my ($self, $x, $y) = @_; |
|
192
|
|
|
|
|
|
|
### KochPeaks xy_to_n(): "$x, $y" |
|
193
|
|
|
|
|
|
|
|
|
194
|
5631
|
|
|
|
|
10351
|
$x = round_nearest ($x); |
|
195
|
5631
|
|
|
|
|
10432
|
$y = round_nearest ($y); |
|
196
|
|
|
|
|
|
|
|
|
197
|
5631
|
100
|
66
|
|
|
17406
|
if ($y < 0 || ! (($x ^ $y) & 1)) { |
|
198
|
|
|
|
|
|
|
### neg y or parity... |
|
199
|
265
|
|
|
|
|
458
|
return undef; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
5366
|
|
|
|
|
11422
|
my ($len,$level) = round_down_pow ($y+abs($x), 3); |
|
202
|
|
|
|
|
|
|
### $level |
|
203
|
|
|
|
|
|
|
### $len |
|
204
|
5366
|
50
|
|
|
|
10947
|
if (is_infinite($level)) { |
|
205
|
0
|
|
|
|
|
0
|
return $level; |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
|
|
208
|
5366
|
|
|
|
|
8594
|
my $n; |
|
209
|
5366
|
100
|
|
|
|
8658
|
if ($x < 0) { |
|
210
|
259
|
|
|
|
|
327
|
$x += $len; |
|
211
|
259
|
|
|
|
|
528
|
($x,$y) = (($x+3*$y)/2, # rotate -60 |
|
212
|
|
|
|
|
|
|
($y-$x)/2); |
|
213
|
259
|
|
|
|
|
347
|
$n = 0; |
|
214
|
|
|
|
|
|
|
### left rotate -60 to: "x=$x,y=$y n=$n" |
|
215
|
|
|
|
|
|
|
} else { |
|
216
|
5107
|
|
|
|
|
6377
|
$y -= $len; |
|
217
|
5107
|
|
|
|
|
10110
|
($x,$y) = (($x-3*$y)/2, # rotate +60 |
|
218
|
|
|
|
|
|
|
($x+$y)/2); |
|
219
|
5107
|
|
|
|
|
6709
|
$n = 1; |
|
220
|
|
|
|
|
|
|
### right rotate +60 to: "x=$x,y=$y n=$n" |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
5366
|
|
|
|
|
8981
|
foreach (1 .. $level) { |
|
224
|
19311
|
|
|
|
|
24159
|
$n *= 4; |
|
225
|
|
|
|
|
|
|
### at: "level=$level len=$len x=$x,y=$y n=$n" |
|
226
|
19311
|
100
|
|
|
|
28866
|
if ($x < $len) { |
|
227
|
11429
|
|
|
|
|
14376
|
$len /= 3; |
|
228
|
11429
|
|
|
|
|
15484
|
my $rel = 2*$len; |
|
229
|
11429
|
100
|
|
|
|
19446
|
if ($x < $rel) { |
|
230
|
|
|
|
|
|
|
### digit 0 |
|
231
|
|
|
|
|
|
|
} else { |
|
232
|
|
|
|
|
|
|
### digit 1 sub: "$rel to x=".($x-$rel) |
|
233
|
1967
|
|
|
|
|
2493
|
$x -= $rel; |
|
234
|
1967
|
|
|
|
|
3550
|
($x,$y) = (($x+3*$y)/2, # rotate -60 |
|
235
|
|
|
|
|
|
|
($y-$x)/2); |
|
236
|
1967
|
|
|
|
|
2978
|
$n += 1; |
|
237
|
|
|
|
|
|
|
} |
|
238
|
|
|
|
|
|
|
} else { |
|
239
|
7882
|
|
|
|
|
9929
|
$len /= 3; |
|
240
|
7882
|
|
|
|
|
10507
|
$x -= 4*$len; |
|
241
|
7882
|
100
|
|
|
|
12725
|
if ($x < $y) { # before diagonal |
|
242
|
|
|
|
|
|
|
### digit 2... |
|
243
|
3548
|
|
|
|
|
7172
|
($x,$y) = (($x-3*$y)/2 + 2*$len, # rotate +60 |
|
244
|
|
|
|
|
|
|
($x+$y)/2); |
|
245
|
3548
|
|
|
|
|
5824
|
$n += 2; |
|
246
|
|
|
|
|
|
|
} else { |
|
247
|
|
|
|
|
|
|
#### digit 3... |
|
248
|
4334
|
|
|
|
|
6226
|
$n += 3; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
} |
|
251
|
|
|
|
|
|
|
} |
|
252
|
|
|
|
|
|
|
### end at: "x=$x,y=$y n=$n" |
|
253
|
5366
|
100
|
|
|
|
9181
|
if ($x) { |
|
254
|
|
|
|
|
|
|
### endmost point |
|
255
|
4814
|
|
|
|
|
6042
|
$n += 1; |
|
256
|
4814
|
|
|
|
|
6169
|
$x -= 2; |
|
257
|
|
|
|
|
|
|
} |
|
258
|
5366
|
100
|
100
|
|
|
10414
|
if ($x != 0 || $y != 0) { |
|
259
|
4987
|
|
|
|
|
10008
|
return undef; |
|
260
|
|
|
|
|
|
|
} |
|
261
|
379
|
|
|
|
|
1108
|
return $n + $level + (2*4**$level + 1)/3 + ($x == 2); |
|
262
|
|
|
|
|
|
|
} |
|
263
|
|
|
|
|
|
|
|
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
# level extends to x= +/- 3^level |
|
266
|
|
|
|
|
|
|
# y= 0 to 3^level |
|
267
|
|
|
|
|
|
|
# |
|
268
|
|
|
|
|
|
|
# diagonal X=Y or Y=-X is lowest in a level, so round down abs(X)+Y to pow 3 |
|
269
|
|
|
|
|
|
|
# |
|
270
|
|
|
|
|
|
|
# end of level is 1 before base of level+1 |
|
271
|
|
|
|
|
|
|
# basenext = (level+1) + (2*4^(level+1) + 1)/3 |
|
272
|
|
|
|
|
|
|
# basenext-1 = level + (2*4^(level+1) + 1)/3 |
|
273
|
|
|
|
|
|
|
# = level + (8*4^level + 1)/3 |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
# not exact |
|
276
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
277
|
17
|
|
|
17
|
1
|
1731
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
278
|
|
|
|
|
|
|
### KochPeaks rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
279
|
|
|
|
|
|
|
|
|
280
|
17
|
|
|
|
|
41
|
$x1 = round_nearest ($x1); |
|
281
|
17
|
|
|
|
|
35
|
$y1 = round_nearest ($y1); |
|
282
|
17
|
|
|
|
|
32
|
$x2 = round_nearest ($x2); |
|
283
|
17
|
|
|
|
|
29
|
$y2 = round_nearest ($y2); |
|
284
|
|
|
|
|
|
|
### rounded: "$x1,$y1 $x2,$y2" |
|
285
|
|
|
|
|
|
|
|
|
286
|
17
|
50
|
66
|
|
|
42
|
if ($y1 < 0 && $y2 < 0) { |
|
287
|
0
|
|
|
|
|
0
|
return (1,0); |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
# can't make use of the len=3**$level returned by round_down_pow() |
|
291
|
17
|
|
|
|
|
52
|
my ($len, $level) = round_down_pow (max(abs($x1),abs($x2)) |
|
292
|
|
|
|
|
|
|
+ max($y1, $y2), |
|
293
|
|
|
|
|
|
|
3); |
|
294
|
|
|
|
|
|
|
### $level |
|
295
|
17
|
|
|
|
|
53
|
return (1, $level + (8 * 4**$level + 1)/3); |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
# peak Y is at N = Nstart + (count-1)/2 |
|
299
|
|
|
|
|
|
|
# = level + (2*4^level + 1)/3 + (2*4^level + 1 - 1)/2 |
|
300
|
|
|
|
|
|
|
# = level + (2*4^level + 1)/3 + (2*4^level)/2 |
|
301
|
|
|
|
|
|
|
# = level + (2*4^level + 1)/3 + 4^level |
|
302
|
|
|
|
|
|
|
# = level + (2*4^level + 1 + 3*4^level)/3 |
|
303
|
|
|
|
|
|
|
# = level + (5*4^level + 1)/3 |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
sub level_to_n_range { |
|
308
|
10
|
|
|
10
|
1
|
739
|
my ($self, $level) = @_; |
|
309
|
10
|
|
|
|
|
20
|
my $pow = 4**$level; |
|
310
|
10
|
|
|
|
|
38
|
return ((2*$pow + 1)/3 + $level, |
|
311
|
|
|
|
|
|
|
(8*$pow + 1)/3 + $level); |
|
312
|
|
|
|
|
|
|
} |
|
313
|
|
|
|
|
|
|
sub n_to_level { |
|
314
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
315
|
0
|
0
|
|
|
|
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
316
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
317
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
318
|
0
|
|
|
|
|
|
my ($side, $level, $base) = _n_to_side_level_base($n); |
|
319
|
0
|
|
|
|
|
|
return $level; |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
323
|
|
|
|
|
|
|
1; |
|
324
|
|
|
|
|
|
|
__END__ |