| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=ImaginaryBase --lines --scale=10 |
|
20
|
|
|
|
|
|
|
# math-image --path=ImaginaryBase --all --output=numbers_dash --size=80x50 |
|
21
|
|
|
|
|
|
|
# |
|
22
|
|
|
|
|
|
|
# cf A005351 positives as negabinary index |
|
23
|
|
|
|
|
|
|
# A005352 negatives as negabinary index |
|
24
|
|
|
|
|
|
|
# A039724 positives as negabinary index, in binary |
|
25
|
|
|
|
|
|
|
# A027615 negabinary bit count |
|
26
|
|
|
|
|
|
|
# = 3 * A072894(n+1) - 2n - 3 |
|
27
|
|
|
|
|
|
|
# A098725 first diffs of A072894 |
|
28
|
|
|
|
|
|
|
# A000695 same value binary and negabinary, being base 4 digits 0,1 |
|
29
|
|
|
|
|
|
|
# A001045 abs(negabinary) of 0b11111 all ones (2^n-(-1)^n)/3 |
|
30
|
|
|
|
|
|
|
# A185269 negabinary primes |
|
31
|
|
|
|
|
|
|
# |
|
32
|
|
|
|
|
|
|
# A073785 positives as -3 index |
|
33
|
|
|
|
|
|
|
# A007608 positives as -4 index |
|
34
|
|
|
|
|
|
|
# A073786 -5 |
|
35
|
|
|
|
|
|
|
# A073787 -6 |
|
36
|
|
|
|
|
|
|
# A073788 -7 |
|
37
|
|
|
|
|
|
|
# A073789 -8 |
|
38
|
|
|
|
|
|
|
# A073790 -9 |
|
39
|
|
|
|
|
|
|
# A039723 positives as negadecimal index |
|
40
|
|
|
|
|
|
|
# A051022 same value integer and negadecimal, 0s between digits |
|
41
|
|
|
|
|
|
|
# |
|
42
|
|
|
|
|
|
|
# http://mathworld.wolfram.com/Negabinary.html |
|
43
|
|
|
|
|
|
|
# http://mathworld.wolfram.com/Negadecimal.html |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
package Math::PlanePath::ImaginaryBase; |
|
46
|
4
|
|
|
4
|
|
10289
|
use 5.004; |
|
|
4
|
|
|
|
|
20
|
|
|
47
|
4
|
|
|
4
|
|
22
|
use strict; |
|
|
4
|
|
|
|
|
8
|
|
|
|
4
|
|
|
|
|
228
|
|
|
48
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
|
49
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
|
50
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
51
|
|
|
|
|
|
|
|
|
52
|
4
|
|
|
4
|
|
32
|
use vars '$VERSION', '@ISA'; |
|
|
4
|
|
|
|
|
17
|
|
|
|
4
|
|
|
|
|
251
|
|
|
53
|
|
|
|
|
|
|
$VERSION = 129; |
|
54
|
4
|
|
|
4
|
|
789
|
use Math::PlanePath; |
|
|
4
|
|
|
|
|
8
|
|
|
|
4
|
|
|
|
|
266
|
|
|
55
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
56
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
59
|
4
|
|
|
|
|
290
|
'is_infinite', |
|
60
|
4
|
|
|
4
|
|
26
|
'round_nearest'; |
|
|
4
|
|
|
|
|
7
|
|
|
61
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
62
|
4
|
|
|
|
|
262
|
'parameter_info_array', # radix parameter |
|
63
|
|
|
|
|
|
|
'round_down_pow', |
|
64
|
|
|
|
|
|
|
'round_up_pow', |
|
65
|
|
|
|
|
|
|
'digit_split_lowtohigh', |
|
66
|
4
|
|
|
4
|
|
504
|
'digit_join_lowtohigh'; |
|
|
4
|
|
|
|
|
8
|
|
|
67
|
|
|
|
|
|
|
|
|
68
|
4
|
|
|
4
|
|
1606
|
use Math::PlanePath::ZOrderCurve; |
|
|
4
|
|
|
|
|
11
|
|
|
|
4
|
|
|
|
|
176
|
|
|
69
|
|
|
|
|
|
|
*_digit_interleave = \&Math::PlanePath::ZOrderCurve::_digit_interleave; |
|
70
|
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
72
|
|
|
|
|
|
|
#use Smart::Comments; |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
|
|
75
|
4
|
|
|
4
|
|
26
|
use constant n_start => 0; |
|
|
4
|
|
|
|
|
8
|
|
|
|
4
|
|
|
|
|
222
|
|
|
76
|
4
|
|
|
4
|
|
24
|
use constant xy_is_visited => 1; |
|
|
4
|
|
|
|
|
7
|
|
|
|
4
|
|
|
|
|
173
|
|
|
77
|
4
|
|
|
4
|
|
21
|
use constant absdx_minimum => 1; # X coord always changes |
|
|
4
|
|
|
|
|
8
|
|
|
|
4
|
|
|
|
|
5581
|
|
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
80
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
81
|
0
|
|
|
|
|
0
|
return $self->{'radix'}**2; |
|
82
|
|
|
|
|
|
|
} |
|
83
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
84
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
85
|
0
|
|
|
|
|
0
|
return $self->{'radix'}**3; |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
89
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
90
|
0
|
|
|
|
|
0
|
return ($self->{'radix'}-1, -2); |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
sub turn_any_straight { |
|
94
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
95
|
0
|
|
|
|
|
0
|
return ($self->{'radix'} != 2); # radix=2 never straight |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
|
98
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
99
|
0
|
|
|
|
|
0
|
return $self->{'radix'} - 1; |
|
100
|
|
|
|
|
|
|
} |
|
101
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
102
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
103
|
0
|
|
|
|
|
0
|
return $self->{'radix'}; |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
109
|
|
|
|
|
|
|
sub new { |
|
110
|
9
|
|
|
9
|
1
|
1260
|
my $self = shift->SUPER::new(@_); |
|
111
|
|
|
|
|
|
|
|
|
112
|
9
|
|
|
|
|
31
|
my $radix = $self->{'radix'}; |
|
113
|
9
|
100
|
100
|
|
|
52
|
if (! defined $radix || $radix <= 2) { $radix = 2; } |
|
|
4
|
|
|
|
|
7
|
|
|
114
|
9
|
|
|
|
|
21
|
$self->{'radix'} = $radix; |
|
115
|
|
|
|
|
|
|
|
|
116
|
9
|
|
|
|
|
22
|
return $self; |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub n_to_xy { |
|
120
|
100
|
|
|
100
|
1
|
13750
|
my ($self, $n) = @_; |
|
121
|
|
|
|
|
|
|
### ImaginaryBase n_to_xy(): $n |
|
122
|
|
|
|
|
|
|
|
|
123
|
100
|
50
|
|
|
|
251
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
124
|
100
|
50
|
|
|
|
283
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
# ENHANCE-ME: lowest non-(r-1) digit determines direction to next, or |
|
127
|
|
|
|
|
|
|
# something like that |
|
128
|
|
|
|
|
|
|
{ |
|
129
|
100
|
|
|
|
|
185
|
my $int = int($n); |
|
|
100
|
|
|
|
|
139
|
|
|
130
|
|
|
|
|
|
|
### $int |
|
131
|
|
|
|
|
|
|
### $n |
|
132
|
100
|
50
|
|
|
|
184
|
if ($n != $int) { |
|
133
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
134
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+1); |
|
135
|
0
|
|
|
|
|
0
|
my $frac = $n - $int; # inherit possible BigFloat |
|
136
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
137
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
138
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
139
|
|
|
|
|
|
|
} |
|
140
|
100
|
|
|
|
|
157
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
100
|
|
|
|
|
184
|
my $radix = $self->{'radix'}; |
|
144
|
100
|
|
|
|
|
150
|
my $x = 0; |
|
145
|
100
|
|
|
|
|
132
|
my $y = 0; |
|
146
|
100
|
|
|
|
|
196
|
my $len = ($n*0)+1; # inherit bignum 1 |
|
147
|
|
|
|
|
|
|
|
|
148
|
100
|
50
|
|
|
|
254
|
if (my @digits = digit_split_lowtohigh($n, $radix)) { |
|
149
|
100
|
|
|
|
|
172
|
$radix = -$radix; |
|
150
|
100
|
|
|
|
|
133
|
for (;;) { |
|
151
|
296
|
|
|
|
|
444
|
$x += (shift @digits) * $len; # digits low to high |
|
152
|
296
|
100
|
|
|
|
539
|
@digits || last; |
|
153
|
|
|
|
|
|
|
|
|
154
|
231
|
|
|
|
|
307
|
$y += (shift @digits) * $len; # digits low to high |
|
155
|
231
|
100
|
|
|
|
467
|
@digits || last; |
|
156
|
|
|
|
|
|
|
|
|
157
|
196
|
|
|
|
|
271
|
$len *= $radix; # $radix negative negates each time |
|
158
|
|
|
|
|
|
|
} |
|
159
|
|
|
|
|
|
|
} |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
### final: "$x,$y" |
|
162
|
100
|
|
|
|
|
242
|
return ($x,$y); |
|
163
|
|
|
|
|
|
|
} |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
# ($x-$digit) and ($y-$digit) are multiples of $radix, but apply int() in |
|
166
|
|
|
|
|
|
|
# case floating point rounding |
|
167
|
|
|
|
|
|
|
# |
|
168
|
|
|
|
|
|
|
sub xy_to_n { |
|
169
|
1385
|
|
|
1385
|
1
|
34069
|
my ($self, $x, $y) = @_; |
|
170
|
|
|
|
|
|
|
### ImaginaryBase xy_to_n(): "$x, $y" |
|
171
|
|
|
|
|
|
|
|
|
172
|
1385
|
|
|
|
|
2799
|
$x = round_nearest ($x); |
|
173
|
1385
|
50
|
|
|
|
2910
|
if (is_infinite($x)) { return ($x); } |
|
|
0
|
|
|
|
|
0
|
|
|
174
|
|
|
|
|
|
|
|
|
175
|
1385
|
|
|
|
|
3097
|
$y = round_nearest ($y); |
|
176
|
1385
|
50
|
|
|
|
2863
|
if (is_infinite($y)) { return ($y); } |
|
|
0
|
|
|
|
|
0
|
|
|
177
|
|
|
|
|
|
|
|
|
178
|
1385
|
|
|
|
|
2525
|
my $radix = $self->{'radix'}; |
|
179
|
1385
|
|
|
|
|
2011
|
my $zero = ($x * 0 * $y); # inherit bignum 0 |
|
180
|
1385
|
|
|
|
|
1859
|
my @n; # digits low to high |
|
181
|
|
|
|
|
|
|
|
|
182
|
1385
|
|
100
|
|
|
2790
|
while ($x || $y) { |
|
183
|
|
|
|
|
|
|
### at: "x=$x,y=$y n=".join(',',@n) |
|
184
|
|
|
|
|
|
|
|
|
185
|
3078
|
|
|
|
|
5828
|
push @n, _divrem_mutate ($x, $radix); |
|
186
|
3078
|
|
|
|
|
4791
|
$x = -$x; |
|
187
|
3078
|
|
|
|
|
5487
|
push @n, _divrem_mutate ($y, $radix); |
|
188
|
3078
|
|
|
|
|
7861
|
$y = -$y; |
|
189
|
|
|
|
|
|
|
} |
|
190
|
1385
|
|
|
|
|
3099
|
return digit_join_lowtohigh (\@n,$radix, $zero); |
|
191
|
|
|
|
|
|
|
} |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
# left xmax = (r-1) + (r^2 -r) + (r^3-r^2) + ... + (r^k - r^(k-1)) |
|
194
|
|
|
|
|
|
|
# = r^(k-1) - 1 |
|
195
|
|
|
|
|
|
|
# |
|
196
|
|
|
|
|
|
|
# right xmin = - (r + r^3 + ... + r^(2k+1)) |
|
197
|
|
|
|
|
|
|
# = -r * (1 + r^2 + ... + r^2k) |
|
198
|
|
|
|
|
|
|
# = -r * ((r^2)^(k+1) -1) / (r^2 - 1) |
|
199
|
|
|
|
|
|
|
# |
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
# exact |
|
202
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
203
|
104
|
|
|
104
|
1
|
7561
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
204
|
|
|
|
|
|
|
### ImaginaryBase rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
205
|
|
|
|
|
|
|
|
|
206
|
104
|
|
|
|
|
653
|
$x1 = round_nearest($x1); |
|
207
|
104
|
|
|
|
|
227
|
$y1 = round_nearest($y1); |
|
208
|
104
|
|
|
|
|
237
|
$x2 = round_nearest($x2); |
|
209
|
104
|
|
|
|
|
212
|
$y2 = round_nearest($y2); |
|
210
|
|
|
|
|
|
|
|
|
211
|
104
|
|
|
|
|
209
|
my $zero = $x1 * 0 * $y1 * $x2 * $y2; |
|
212
|
104
|
|
|
|
|
2001
|
my $radix = $self->{'radix'}; |
|
213
|
|
|
|
|
|
|
|
|
214
|
104
|
|
|
|
|
200
|
my ($min_xdigits, $max_xdigits) |
|
215
|
|
|
|
|
|
|
= _negaradix_range_digits_lowtohigh($x1,$x2, $radix); |
|
216
|
104
|
100
|
|
|
|
214
|
unless (defined $min_xdigits) { |
|
217
|
2
|
|
|
|
|
9
|
return (0, $max_xdigits); # infinity |
|
218
|
|
|
|
|
|
|
} |
|
219
|
|
|
|
|
|
|
|
|
220
|
102
|
|
|
|
|
182
|
my ($min_ydigits, $max_ydigits) |
|
221
|
|
|
|
|
|
|
= _negaradix_range_digits_lowtohigh($y1,$y2, $radix); |
|
222
|
102
|
100
|
|
|
|
208
|
unless (defined $min_ydigits) { |
|
223
|
2
|
|
|
|
|
11
|
return (0, $max_ydigits); # infinity |
|
224
|
|
|
|
|
|
|
} |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
### $min_xdigits |
|
227
|
|
|
|
|
|
|
### $max_xdigits |
|
228
|
|
|
|
|
|
|
### min_x: digit_join_lowtohigh ($min_xdigits, $radix, $zero) |
|
229
|
|
|
|
|
|
|
### max_x: digit_join_lowtohigh ($max_xdigits, $radix, $zero) |
|
230
|
|
|
|
|
|
|
### $min_ydigits |
|
231
|
|
|
|
|
|
|
### $max_ydigits |
|
232
|
|
|
|
|
|
|
### min_y: digit_join_lowtohigh ($min_ydigits, $radix, $zero) |
|
233
|
|
|
|
|
|
|
### max_y: digit_join_lowtohigh ($max_ydigits, $radix, $zero) |
|
234
|
|
|
|
|
|
|
|
|
235
|
100
|
|
|
|
|
283
|
my @min_digits = _digit_interleave ($min_xdigits, $min_ydigits); |
|
236
|
100
|
|
|
|
|
214
|
my @max_digits = _digit_interleave ($max_xdigits, $max_ydigits); |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
### final ... |
|
239
|
|
|
|
|
|
|
### @min_digits |
|
240
|
|
|
|
|
|
|
### @max_digits |
|
241
|
|
|
|
|
|
|
|
|
242
|
100
|
|
|
|
|
338
|
return (digit_join_lowtohigh (\@min_digits, $radix, $zero), |
|
243
|
|
|
|
|
|
|
digit_join_lowtohigh (\@max_digits, $radix, $zero)); |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# Return arrayrefs ($min_digits, $max_digits) which are the digits making |
|
249
|
|
|
|
|
|
|
# up the index range for negaradix values $x1 to $x2 inclusive. |
|
250
|
|
|
|
|
|
|
# The arrays are lowtohigh, so $min_digits->[0] is the least significant digit. |
|
251
|
|
|
|
|
|
|
# |
|
252
|
|
|
|
|
|
|
sub _negaradix_range_digits_lowtohigh { |
|
253
|
302
|
|
|
302
|
|
578
|
my ($x1,$x2, $radix) = @_; |
|
254
|
|
|
|
|
|
|
### _negaradix_range_digits(): "$x1,$x2 radix=$radix" |
|
255
|
|
|
|
|
|
|
|
|
256
|
302
|
100
|
|
|
|
569
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } # make x1 <= x2 |
|
|
26
|
|
|
|
|
354
|
|
|
257
|
|
|
|
|
|
|
|
|
258
|
302
|
|
|
|
|
684
|
my $radix_minus_1 = $radix - 1; |
|
259
|
|
|
|
|
|
|
### $radix |
|
260
|
|
|
|
|
|
|
### $radix_minus_1 |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
|
|
263
|
302
|
|
|
|
|
568
|
my ($len, $level, $min_base) = _negaradix_range_level ($x1,$x2, $radix); |
|
264
|
|
|
|
|
|
|
### $len |
|
265
|
|
|
|
|
|
|
### $level |
|
266
|
302
|
100
|
|
|
|
2282
|
if (is_infinite($level)) { |
|
267
|
4
|
|
|
|
|
1399
|
return (undef, $level); |
|
268
|
|
|
|
|
|
|
} |
|
269
|
298
|
|
|
|
|
583
|
my $max_base = $min_base; |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
### assert: $min_base <= $x1 |
|
272
|
|
|
|
|
|
|
### assert: $min_base + $len > $x2 |
|
273
|
|
|
|
|
|
|
|
|
274
|
298
|
|
|
|
|
461
|
my @min_digits; # digits formed high to low, stored low to high |
|
275
|
|
|
|
|
|
|
my @max_digits; |
|
276
|
298
|
|
|
|
|
595
|
while (--$level > 0) { |
|
277
|
445
|
|
|
|
|
633
|
$len /= $radix; |
|
278
|
|
|
|
|
|
|
### at: "len=$len reverse" |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
# reversed digits, x1 low end for max, x2 high end for min |
|
281
|
|
|
|
|
|
|
{ |
|
282
|
445
|
|
|
|
|
1060
|
my $digit = max (0, |
|
283
|
|
|
|
|
|
|
min ($radix_minus_1, |
|
284
|
|
|
|
|
|
|
int (($x2 - $min_base) / $len))); |
|
285
|
|
|
|
|
|
|
### min base: $min_base |
|
286
|
|
|
|
|
|
|
### min diff: $x2-$min_base |
|
287
|
|
|
|
|
|
|
### min digit raw: $digit |
|
288
|
|
|
|
|
|
|
### min digit reversed: $radix_minus_1 - $digit |
|
289
|
445
|
|
|
|
|
735
|
$min_base += $digit * $len; |
|
290
|
445
|
|
|
|
|
771
|
$min_digits[$level] = $radix_minus_1 - $digit; |
|
291
|
|
|
|
|
|
|
} |
|
292
|
|
|
|
|
|
|
{ |
|
293
|
445
|
|
|
|
|
593
|
my $digit = max (0, |
|
|
445
|
|
|
|
|
599
|
|
|
|
445
|
|
|
|
|
900
|
|
|
294
|
|
|
|
|
|
|
min ($radix_minus_1, |
|
295
|
|
|
|
|
|
|
int (($x1 - $max_base) / $len))); |
|
296
|
|
|
|
|
|
|
### max base: $max_base |
|
297
|
|
|
|
|
|
|
### max diff: $x1-$max_base |
|
298
|
|
|
|
|
|
|
### max digit raw: $digit |
|
299
|
|
|
|
|
|
|
### max digit reversed: $radix_minus_1 - $digit |
|
300
|
445
|
|
|
|
|
679
|
$max_base += $digit * $len; |
|
301
|
445
|
|
|
|
|
796
|
$max_digits[$level--] = $radix_minus_1 - $digit; |
|
302
|
|
|
|
|
|
|
} |
|
303
|
|
|
|
|
|
|
|
|
304
|
445
|
|
|
|
|
629
|
$len /= $radix; |
|
305
|
|
|
|
|
|
|
### at: "len=$len plain" |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
# plain digits, x1 low end for min, x2 high end for max |
|
308
|
|
|
|
|
|
|
{ |
|
309
|
445
|
|
|
|
|
915
|
my $digit = max (0, |
|
310
|
|
|
|
|
|
|
min ($radix_minus_1, |
|
311
|
|
|
|
|
|
|
int (($x1 - $min_base) / $len))); |
|
312
|
|
|
|
|
|
|
### min base: $min_base |
|
313
|
|
|
|
|
|
|
### min diff: $x1-$min_base |
|
314
|
|
|
|
|
|
|
### min digit: $digit |
|
315
|
445
|
|
|
|
|
685
|
$min_base += $digit * $len; |
|
316
|
445
|
|
|
|
|
645
|
$min_digits[$level] = $digit; |
|
317
|
|
|
|
|
|
|
} |
|
318
|
|
|
|
|
|
|
{ |
|
319
|
445
|
|
|
|
|
614
|
my $digit = max (0, |
|
|
445
|
|
|
|
|
585
|
|
|
|
445
|
|
|
|
|
981
|
|
|
320
|
|
|
|
|
|
|
min ($radix_minus_1, |
|
321
|
|
|
|
|
|
|
int (($x2 - $max_base) / $len))); |
|
322
|
|
|
|
|
|
|
### max base: $max_base |
|
323
|
|
|
|
|
|
|
### max diff: $x2-$max_base |
|
324
|
|
|
|
|
|
|
### max digit: $digit |
|
325
|
445
|
|
|
|
|
683
|
$max_base += $digit * $len; |
|
326
|
445
|
|
|
|
|
879
|
$max_digits[$level] = $digit; |
|
327
|
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
} |
|
329
|
|
|
|
|
|
|
### @min_digits |
|
330
|
|
|
|
|
|
|
### @max_digits |
|
331
|
298
|
|
|
|
|
756
|
return (\@min_digits, \@max_digits); |
|
332
|
|
|
|
|
|
|
} |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
# return ($len,$level,$base) |
|
335
|
|
|
|
|
|
|
# $level = number of digits in the bigest integer in negaradix $x1..$x2, |
|
336
|
|
|
|
|
|
|
# rounded up to be $level even |
|
337
|
|
|
|
|
|
|
# $len = $radix**$level |
|
338
|
|
|
|
|
|
|
# $base = lowest negaradix reached by indexes from 0 to $len-1 |
|
339
|
|
|
|
|
|
|
# |
|
340
|
|
|
|
|
|
|
# have $base <= $x1, $x2 < $base+$len |
|
341
|
|
|
|
|
|
|
# and $level is the smallest even number with that coverage |
|
342
|
|
|
|
|
|
|
# |
|
343
|
|
|
|
|
|
|
# negabinary |
|
344
|
|
|
|
|
|
|
# 0,1,5,21 |
|
345
|
|
|
|
|
|
|
# |
|
346
|
|
|
|
|
|
|
# negaternary |
|
347
|
|
|
|
|
|
|
# 1 3 9 27 81 243 |
|
348
|
|
|
|
|
|
|
# 0,2, 20 182 |
|
349
|
|
|
|
|
|
|
# -6 -60 -546 |
|
350
|
|
|
|
|
|
|
# |
|
351
|
|
|
|
|
|
|
sub _negaradix_range_level { |
|
352
|
302
|
|
|
302
|
|
525
|
my ($x1,$x2, $radix) = @_; |
|
353
|
|
|
|
|
|
|
### _negaradix_range_level(): "$x1,$x2 radix=$radix" |
|
354
|
|
|
|
|
|
|
### assert: $x1 <= $x2 |
|
355
|
|
|
|
|
|
|
|
|
356
|
302
|
|
|
|
|
841
|
my ($len, $level) |
|
357
|
|
|
|
|
|
|
= round_down_pow (max($radix - $x1*($radix + 1), |
|
358
|
|
|
|
|
|
|
(($radix+1)*$x2 - 1) * $radix), |
|
359
|
|
|
|
|
|
|
$radix); |
|
360
|
302
|
100
|
|
|
|
989
|
if ($level & 1) { |
|
361
|
|
|
|
|
|
|
### increase level to even ... |
|
362
|
106
|
|
|
|
|
702
|
$len *= $radix; |
|
363
|
106
|
|
|
|
|
555
|
$level += 1; |
|
364
|
|
|
|
|
|
|
} |
|
365
|
|
|
|
|
|
|
### $len |
|
366
|
|
|
|
|
|
|
### $level |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
# because level is even r^2k-1 is a multiple of r^2-1 and therefore of r+1 |
|
369
|
|
|
|
|
|
|
### assert: ($len-1) % ($radix+1) == 0 |
|
370
|
|
|
|
|
|
|
|
|
371
|
302
|
|
|
|
|
1117
|
return ($len, |
|
372
|
|
|
|
|
|
|
$level, |
|
373
|
|
|
|
|
|
|
((1-$len) / ($radix+1)) * $radix); # base |
|
374
|
|
|
|
|
|
|
} |
|
375
|
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
|
|
377
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
378
|
|
|
|
|
|
|
# levels |
|
379
|
|
|
|
|
|
|
|
|
380
|
|
|
|
|
|
|
# shared by ImaginaryHalf and CubicBase |
|
381
|
|
|
|
|
|
|
sub level_to_n_range { |
|
382
|
8
|
|
|
8
|
1
|
605
|
my ($self, $level) = @_; |
|
383
|
8
|
|
|
|
|
27
|
return (0, $self->{'radix'}**$level - 1); |
|
384
|
|
|
|
|
|
|
} |
|
385
|
|
|
|
|
|
|
sub n_to_level { |
|
386
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
387
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
388
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
389
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
390
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, $self->{'radix'}); |
|
391
|
0
|
|
|
|
|
|
return $exp; |
|
392
|
|
|
|
|
|
|
} |
|
393
|
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
395
|
|
|
|
|
|
|
1; |
|
396
|
|
|
|
|
|
|
__END__ |