| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# A000328 Number of points of norm <= n^2 in square lattice. |
|
21
|
|
|
|
|
|
|
# 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317, 377, 441, 529, 613, 709, 797 |
|
22
|
|
|
|
|
|
|
# a(n) = 1 + 4 * sum(j=0, n^2 / 4, n^2 / (4*j+1) - n^2 / (4*j+3) ) |
|
23
|
|
|
|
|
|
|
# A014200 num points norm <= n^2, excluding 0, divided by 4 |
|
24
|
|
|
|
|
|
|
# |
|
25
|
|
|
|
|
|
|
# A046109 num points norm == n^2 |
|
26
|
|
|
|
|
|
|
# |
|
27
|
|
|
|
|
|
|
# A057655 num points x^2+y^2 <= n |
|
28
|
|
|
|
|
|
|
# A014198 = A057655 - 1 |
|
29
|
|
|
|
|
|
|
# |
|
30
|
|
|
|
|
|
|
# A004018 num points x^2+y^2 == n |
|
31
|
|
|
|
|
|
|
# |
|
32
|
|
|
|
|
|
|
# A057962 hypot count x-1/2,y-1/2 <= n |
|
33
|
|
|
|
|
|
|
# is last point of each hypot in points=odd |
|
34
|
|
|
|
|
|
|
# |
|
35
|
|
|
|
|
|
|
# A057961 hypot count as radius increases |
|
36
|
|
|
|
|
|
|
# |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# points="square_horiz" |
|
39
|
|
|
|
|
|
|
# points="square_vert" |
|
40
|
|
|
|
|
|
|
# points="square_centre" |
|
41
|
|
|
|
|
|
|
# A199015 square_centred partial sums |
|
42
|
|
|
|
|
|
|
# |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
package Math::PlanePath::Hypot; |
|
46
|
1
|
|
|
1
|
|
1211
|
use 5.004; |
|
|
1
|
|
|
|
|
4
|
|
|
47
|
1
|
|
|
1
|
|
8
|
use strict; |
|
|
1
|
|
|
|
|
7
|
|
|
|
1
|
|
|
|
|
25
|
|
|
48
|
1
|
|
|
1
|
|
5
|
use Carp 'croak'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
68
|
|
|
49
|
|
|
|
|
|
|
|
|
50
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
69
|
|
|
51
|
|
|
|
|
|
|
$VERSION = 129; |
|
52
|
1
|
|
|
1
|
|
796
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
41
|
|
|
53
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
56
|
1
|
|
|
|
|
69
|
'is_infinite', |
|
57
|
1
|
|
|
1
|
|
7
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
60
|
|
|
|
|
|
|
# use Smart::Comments; |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
|
|
63
|
1
|
|
|
|
|
250
|
use constant parameter_info_array => |
|
64
|
|
|
|
|
|
|
[ { name => 'points', |
|
65
|
|
|
|
|
|
|
share_key => 'points_aeo', |
|
66
|
|
|
|
|
|
|
display => 'Points', |
|
67
|
|
|
|
|
|
|
type => 'enum', |
|
68
|
|
|
|
|
|
|
default => 'all', |
|
69
|
|
|
|
|
|
|
choices => ['all','even','odd'], |
|
70
|
|
|
|
|
|
|
choices_display => ['All','Even','Odd'], |
|
71
|
|
|
|
|
|
|
description => 'Which X,Y points visit, either all of them or just X+Y=even or odd.', |
|
72
|
|
|
|
|
|
|
}, |
|
73
|
|
|
|
|
|
|
Math::PlanePath::Base::Generic::parameter_info_nstart1(), |
|
74
|
1
|
|
|
1
|
|
5
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
{ |
|
77
|
|
|
|
|
|
|
my %x_negative_at_n = (all => 3, |
|
78
|
|
|
|
|
|
|
even => 2, |
|
79
|
|
|
|
|
|
|
odd => 2); |
|
80
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
81
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
82
|
0
|
|
|
|
|
0
|
return $self->n_start + $x_negative_at_n{$self->{'points'}}; |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
} |
|
85
|
|
|
|
|
|
|
{ |
|
86
|
|
|
|
|
|
|
my %y_negative_at_n = (all => 4, |
|
87
|
|
|
|
|
|
|
even => 3, |
|
88
|
|
|
|
|
|
|
odd => 3); |
|
89
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
90
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
91
|
0
|
|
|
|
|
0
|
return $self->n_start + $y_negative_at_n{$self->{'points'}}; |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
} |
|
94
|
|
|
|
|
|
|
sub rsquared_minimum { |
|
95
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
96
|
0
|
0
|
|
|
|
0
|
return ($self->{'points'} eq 'odd' |
|
97
|
|
|
|
|
|
|
? 1 # odd at X=1,Y=0 |
|
98
|
|
|
|
|
|
|
: 0); # even,all at X=0,Y=0 |
|
99
|
|
|
|
|
|
|
} |
|
100
|
|
|
|
|
|
|
# points=even includes X=Y so abs(X-Y)>=0 |
|
101
|
|
|
|
|
|
|
# points=odd doesn't include X=Y so abs(X-Y)>=1 |
|
102
|
|
|
|
|
|
|
*absdiffxy_minimum = \&rsquared_minimum; |
|
103
|
|
|
|
|
|
|
*sumabsxy_minimum = \&rsquared_minimum; |
|
104
|
|
|
|
|
|
|
|
|
105
|
1
|
|
|
1
|
|
8
|
use constant turn_any_right => 0; # always left or straight |
|
|
1
|
|
|
|
|
11
|
|
|
|
1
|
|
|
|
|
1491
|
|
|
106
|
|
|
|
|
|
|
sub turn_any_straight { |
|
107
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
108
|
0
|
|
|
|
|
0
|
return ($self->{'points'} ne 'all'); # points=all is left always |
|
109
|
|
|
|
|
|
|
} |
|
110
|
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
113
|
|
|
|
|
|
|
|
|
114
|
|
|
|
|
|
|
sub new { |
|
115
|
10
|
|
|
10
|
1
|
567
|
my $self = shift->SUPER::new(@_); |
|
116
|
|
|
|
|
|
|
|
|
117
|
10
|
100
|
|
|
|
43
|
if (! defined $self->{'n_start'}) { |
|
118
|
1
|
|
|
|
|
10
|
$self->{'n_start'} = $self->default_n_start; |
|
119
|
|
|
|
|
|
|
} |
|
120
|
|
|
|
|
|
|
|
|
121
|
10
|
|
100
|
|
|
40
|
my $points = ($self->{'points'} ||= 'all'); |
|
122
|
10
|
100
|
|
|
|
43
|
if ($points eq 'all') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
123
|
4
|
|
|
|
|
14
|
$self->{'n_to_x'} = [0]; |
|
124
|
4
|
|
|
|
|
9
|
$self->{'n_to_y'} = [0]; |
|
125
|
4
|
|
|
|
|
9
|
$self->{'hypot_to_n'} = [0]; |
|
126
|
4
|
|
|
|
|
8
|
$self->{'y_next_x'} = [1, 1]; |
|
127
|
4
|
|
|
|
|
9
|
$self->{'y_next_hypot'} = [1, 2]; |
|
128
|
4
|
|
|
|
|
11
|
$self->{'x_inc'} = 1; |
|
129
|
4
|
|
|
|
|
7
|
$self->{'x_inc_factor'} = 2; |
|
130
|
4
|
|
|
|
|
9
|
$self->{'x_inc_squared'} = 1; |
|
131
|
4
|
|
|
|
|
7
|
$self->{'y_factor'} = 2; |
|
132
|
4
|
|
|
|
|
8
|
$self->{'opposite_parity'} = -1; |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
} elsif ($points eq 'even') { |
|
135
|
3
|
|
|
|
|
11
|
$self->{'n_to_x'} = [0]; |
|
136
|
3
|
|
|
|
|
7
|
$self->{'n_to_y'} = [0]; |
|
137
|
3
|
|
|
|
|
8
|
$self->{'hypot_to_n'} = [0]; |
|
138
|
3
|
|
|
|
|
7
|
$self->{'y_next_x'} = [2, 1]; |
|
139
|
3
|
|
|
|
|
5
|
$self->{'y_next_hypot'} = [4, 2]; |
|
140
|
3
|
|
|
|
|
10
|
$self->{'x_inc'} = 2; |
|
141
|
3
|
|
|
|
|
6
|
$self->{'x_inc_factor'} = 4; |
|
142
|
3
|
|
|
|
|
7
|
$self->{'x_inc_squared'} = 4; |
|
143
|
3
|
|
|
|
|
4
|
$self->{'y_factor'} = 2; |
|
144
|
3
|
|
|
|
|
7
|
$self->{'opposite_parity'} = 1; |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
} elsif ($points eq 'odd') { |
|
147
|
3
|
|
|
|
|
10
|
$self->{'n_to_x'} = []; |
|
148
|
3
|
|
|
|
|
8
|
$self->{'n_to_y'} = []; |
|
149
|
3
|
|
|
|
|
8
|
$self->{'hypot_to_n'} = []; |
|
150
|
3
|
|
|
|
|
10
|
$self->{'y_next_x'} = [1]; |
|
151
|
3
|
|
|
|
|
7
|
$self->{'y_next_hypot'} = [1]; |
|
152
|
3
|
|
|
|
|
13
|
$self->{'x_inc'} = 2; |
|
153
|
3
|
|
|
|
|
6
|
$self->{'x_inc_factor'} = 4; |
|
154
|
3
|
|
|
|
|
5
|
$self->{'x_inc_squared'} = 4; |
|
155
|
3
|
|
|
|
|
6
|
$self->{'y_factor'} = 2; |
|
156
|
3
|
|
|
|
|
7
|
$self->{'opposite_parity'} = 0; |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
} elsif ($points eq 'square_centred') { |
|
159
|
0
|
|
|
|
|
0
|
$self->{'n_to_x'} = []; |
|
160
|
0
|
|
|
|
|
0
|
$self->{'n_to_y'} = []; |
|
161
|
0
|
|
|
|
|
0
|
$self->{'hypot_to_n'} = []; |
|
162
|
0
|
|
|
|
|
0
|
$self->{'y_next_x'} = [undef,1]; |
|
163
|
0
|
|
|
|
|
0
|
$self->{'y_next_hypot'} = [undef,2]; |
|
164
|
0
|
|
|
|
|
0
|
$self->{'x_inc'} = 2; |
|
165
|
0
|
|
|
|
|
0
|
$self->{'x_inc_factor'} = 4; # ((x+2)^2 - x^2) = 4*x+4 |
|
166
|
0
|
|
|
|
|
0
|
$self->{'x_inc_squared'} = 4; |
|
167
|
0
|
|
|
|
|
0
|
$self->{'y_start'} = 1; |
|
168
|
0
|
|
|
|
|
0
|
$self->{'y_inc'} = 2; |
|
169
|
0
|
|
|
|
|
0
|
$self->{'opposite_parity'} = -1; |
|
170
|
|
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
} else { |
|
172
|
0
|
|
|
|
|
0
|
croak "Unrecognised points option: ", $points; |
|
173
|
|
|
|
|
|
|
} |
|
174
|
10
|
|
|
|
|
27
|
return $self; |
|
175
|
|
|
|
|
|
|
} |
|
176
|
|
|
|
|
|
|
|
|
177
|
|
|
|
|
|
|
sub _extend { |
|
178
|
1017
|
|
|
1017
|
|
1575
|
my ($self) = @_; |
|
179
|
|
|
|
|
|
|
### _extend() n: scalar(@{$self->{'n_to_x'}}) |
|
180
|
|
|
|
|
|
|
### y_next_x: $self->{'y_next_x'} |
|
181
|
|
|
|
|
|
|
|
|
182
|
1017
|
|
|
|
|
1356
|
my $n_to_x = $self->{'n_to_x'}; |
|
183
|
1017
|
|
|
|
|
1400
|
my $n_to_y = $self->{'n_to_y'}; |
|
184
|
1017
|
|
|
|
|
1375
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
|
185
|
1017
|
|
|
|
|
1376
|
my $y_next_x = $self->{'y_next_x'}; |
|
186
|
1017
|
|
|
|
|
1356
|
my $y_next_hypot = $self->{'y_next_hypot'}; |
|
187
|
1017
|
|
50
|
|
|
2361
|
my $y_start = $self->{'y_start'} || 0; |
|
188
|
1017
|
|
50
|
|
|
2245
|
my $y_inc = $self->{'y_inc'} || 1; |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
# set @y to the Y with the smallest $y_next_hypot[$y], and if there's some |
|
191
|
|
|
|
|
|
|
# Y's with equal smallest hypot then all those Y's |
|
192
|
1017
|
|
|
|
|
1512
|
my @y = ($y_start); |
|
193
|
1017
|
|
50
|
|
|
1825
|
my $hypot = $y_next_hypot->[$y_start] || 99; |
|
194
|
1017
|
|
|
|
|
1916
|
for (my $y = $y_start+$y_inc; $y < @$y_next_x; $y += $y_inc) { |
|
195
|
10749
|
100
|
|
|
|
24531
|
if ($hypot == $y_next_hypot->[$y]) { |
|
|
|
100
|
|
|
|
|
|
|
196
|
324
|
|
|
|
|
613
|
push @y, $y; |
|
197
|
|
|
|
|
|
|
} elsif ($hypot > $y_next_hypot->[$y]) { |
|
198
|
1512
|
|
|
|
|
2240
|
@y = ($y); |
|
199
|
1512
|
|
|
|
|
2743
|
$hypot = $y_next_hypot->[$y]; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
### chosen y list: @y |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
# if the endmost of the @$y_next_x, @$y_next_hypot arrays are used then |
|
206
|
|
|
|
|
|
|
# extend them by one |
|
207
|
1017
|
100
|
|
|
|
1892
|
if ($y[-1] == $#$y_next_x) { |
|
208
|
|
|
|
|
|
|
### grow y_next_x ... |
|
209
|
141
|
|
|
|
|
209
|
my $y = $#$y_next_x + $y_inc; |
|
210
|
141
|
|
|
|
|
224
|
my $x = $y + ($self->{'points'} eq 'odd'); |
|
211
|
141
|
|
|
|
|
245
|
$y_next_x->[$y] = $x; |
|
212
|
141
|
|
|
|
|
246
|
$y_next_hypot->[$y] = $x*$x+$y*$y; |
|
213
|
|
|
|
|
|
|
### $y_next_x |
|
214
|
|
|
|
|
|
|
### $y_next_hypot |
|
215
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == $y**2 + $x*$x |
|
216
|
|
|
|
|
|
|
} |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
# @x is the $y_next_x[$y] for each of the @y smallests, and step those |
|
219
|
|
|
|
|
|
|
# selected elements next X and hypot for that new X,Y |
|
220
|
|
|
|
|
|
|
my @x = map { |
|
221
|
1017
|
|
|
|
|
1644
|
my $y = $_; |
|
|
1236
|
|
|
|
|
1575
|
|
|
222
|
1236
|
|
|
|
|
1626
|
my $x = $y_next_x->[$y]; |
|
223
|
1236
|
|
|
|
|
1645
|
$y_next_x->[$y] += $self->{'x_inc'}; |
|
224
|
|
|
|
|
|
|
$y_next_hypot->[$y] |
|
225
|
1236
|
|
|
|
|
1853
|
+= $self->{'x_inc_factor'} * $x + $self->{'x_inc_squared'}; |
|
226
|
|
|
|
|
|
|
### assert: $y_next_hypot->[$y] == ($x+$self->{'x_inc'})**2 + $y**2 |
|
227
|
1236
|
|
|
|
|
2451
|
$x |
|
228
|
|
|
|
|
|
|
} @y; |
|
229
|
|
|
|
|
|
|
### $hypot |
|
230
|
|
|
|
|
|
|
### base octant: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# transpose X,Y to Y,X |
|
233
|
|
|
|
|
|
|
{ |
|
234
|
1017
|
|
|
|
|
1438
|
my @base_x = @x; |
|
235
|
1017
|
|
|
|
|
1412
|
my @base_y = @y; |
|
236
|
1017
|
100
|
|
|
|
1822
|
unless ($y[0]) { # no transpose of x,0 |
|
237
|
126
|
|
|
|
|
172
|
shift @base_x; |
|
238
|
126
|
|
|
|
|
169
|
shift @base_y; |
|
239
|
|
|
|
|
|
|
} |
|
240
|
1017
|
100
|
|
|
|
1762
|
if ($x[-1] == $y[-1]) { # no transpose of x,x |
|
241
|
87
|
|
|
|
|
118
|
pop @base_x; |
|
242
|
87
|
|
|
|
|
109
|
pop @base_y; |
|
243
|
|
|
|
|
|
|
} |
|
244
|
1017
|
|
|
|
|
1527
|
push @x, reverse @base_y; |
|
245
|
1017
|
|
|
|
|
1613
|
push @y, reverse @base_x; |
|
246
|
|
|
|
|
|
|
} |
|
247
|
|
|
|
|
|
|
### with transpose q1: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
# rotate +90 quadrant 1 into quadrant 2 |
|
250
|
|
|
|
|
|
|
{ |
|
251
|
1017
|
|
|
|
|
1347
|
my @base_y = @y; |
|
|
1017
|
|
|
|
|
1327
|
|
|
|
1017
|
|
|
|
|
1442
|
|
|
252
|
1017
|
|
|
|
|
1469
|
push @y, @x; |
|
253
|
1017
|
|
|
|
|
1438
|
push @x, map {-$_} @base_y; |
|
|
2259
|
|
|
|
|
3716
|
|
|
254
|
|
|
|
|
|
|
} |
|
255
|
|
|
|
|
|
|
### with rotate q2: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
# rotate +180 quadrants 1+2 into quadrants 2+3 |
|
258
|
1017
|
|
|
|
|
1564
|
push @x, map {-$_} @x; |
|
|
4518
|
|
|
|
|
6183
|
|
|
259
|
1017
|
|
|
|
|
1540
|
push @y, map {-$_} @y; |
|
|
4518
|
|
|
|
|
6167
|
|
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
### store: join(' ',map{"$x[$_],$y[$_]"} 0 .. $#x) |
|
262
|
|
|
|
|
|
|
### at n: scalar(@$n_to_x) |
|
263
|
|
|
|
|
|
|
### hypot_to_n: "h=$hypot n=".scalar(@$n_to_x) |
|
264
|
1017
|
|
|
|
|
1844
|
$hypot_to_n->[$hypot] = scalar(@$n_to_x); |
|
265
|
1017
|
|
|
|
|
2374
|
push @$n_to_x, @x; |
|
266
|
1017
|
|
|
|
|
3766
|
push @$n_to_y, @y; |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
# ### hypot_to_n now: join(' ',map {defined($hypot_to_n->[$_]) && "h=$_,n=$hypot_to_n->[$_]"} 0 .. $#$hypot_to_n) |
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
# my $x = $y_next_x->[0]; |
|
272
|
|
|
|
|
|
|
# |
|
273
|
|
|
|
|
|
|
# $x = $y_next_x->[$y]; |
|
274
|
|
|
|
|
|
|
# $n_to_x->[$next_n] = $x; |
|
275
|
|
|
|
|
|
|
# $n_to_y->[$next_n] = $y; |
|
276
|
|
|
|
|
|
|
# $xy_to_n{"$x,$y"} = $next_n++; |
|
277
|
|
|
|
|
|
|
# |
|
278
|
|
|
|
|
|
|
# $y_next_x->[$y]++; |
|
279
|
|
|
|
|
|
|
# $y_next_hypot->[$y] = $y*$y + $y_next_x->[$y]**2; |
|
280
|
|
|
|
|
|
|
} |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
sub n_to_xy { |
|
283
|
9009
|
|
|
9009
|
1
|
106381
|
my ($self, $n) = @_; |
|
284
|
|
|
|
|
|
|
### Hypot n_to_xy(): $n |
|
285
|
|
|
|
|
|
|
|
|
286
|
9009
|
|
|
|
|
12569
|
$n = $n - $self->{'n_start'}; # starting $n==0, warn if $n==undef |
|
287
|
9009
|
50
|
|
|
|
15353
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
288
|
9009
|
50
|
|
|
|
15207
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
289
|
|
|
|
|
|
|
|
|
290
|
9009
|
|
|
|
|
14432
|
my $int = int($n); |
|
291
|
9009
|
|
|
|
|
11185
|
$n -= $int; # fraction part |
|
292
|
|
|
|
|
|
|
|
|
293
|
9009
|
|
|
|
|
12520
|
my $n_to_x = $self->{'n_to_x'}; |
|
294
|
9009
|
|
|
|
|
11649
|
my $n_to_y = $self->{'n_to_y'}; |
|
295
|
|
|
|
|
|
|
|
|
296
|
9009
|
|
|
|
|
16011
|
while ($int >= $#$n_to_x) { |
|
297
|
1017
|
|
|
|
|
1585
|
_extend($self); |
|
298
|
|
|
|
|
|
|
} |
|
299
|
|
|
|
|
|
|
|
|
300
|
9009
|
|
|
|
|
12289
|
my $x = $n_to_x->[$int]; |
|
301
|
9009
|
|
|
|
|
11344
|
my $y = $n_to_y->[$int]; |
|
302
|
9009
|
|
|
|
|
21480
|
return ($x + $n * ($n_to_x->[$int+1] - $x), |
|
303
|
|
|
|
|
|
|
$y + $n * ($n_to_y->[$int+1] - $y)); |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
sub xy_is_visited { |
|
307
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
308
|
|
|
|
|
|
|
|
|
309
|
0
|
0
|
|
|
|
|
if ($self->{'opposite_parity'} >= 0) { |
|
310
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
311
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
312
|
0
|
0
|
|
|
|
|
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) { |
|
313
|
0
|
|
|
|
|
|
return 0; |
|
314
|
|
|
|
|
|
|
} |
|
315
|
|
|
|
|
|
|
} |
|
316
|
0
|
0
|
|
|
|
|
if ($self->{'points'} eq 'square_centred') { |
|
317
|
0
|
0
|
0
|
|
|
|
unless (($y%2) && ($x%2)) { |
|
318
|
0
|
|
|
|
|
|
return 0; |
|
319
|
|
|
|
|
|
|
} |
|
320
|
|
|
|
|
|
|
} |
|
321
|
0
|
|
|
|
|
|
return 1; |
|
322
|
|
|
|
|
|
|
} |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
sub xy_to_n { |
|
325
|
0
|
|
|
0
|
1
|
|
my ($self, $x, $y) = @_; |
|
326
|
|
|
|
|
|
|
### Hypot xy_to_n(): "$x, $y" |
|
327
|
|
|
|
|
|
|
### hypot_to_n last: $#{$self->{'hypot_to_n'}} |
|
328
|
|
|
|
|
|
|
|
|
329
|
0
|
|
|
|
|
|
$x = round_nearest ($x); |
|
330
|
0
|
|
|
|
|
|
$y = round_nearest ($y); |
|
331
|
|
|
|
|
|
|
|
|
332
|
0
|
0
|
|
|
|
|
if ((($x%2) ^ ($y%2)) == $self->{'opposite_parity'}) { |
|
333
|
0
|
|
|
|
|
|
return undef; |
|
334
|
|
|
|
|
|
|
} |
|
335
|
0
|
0
|
|
|
|
|
if ($self->{'points'} eq 'square_centred') { |
|
336
|
0
|
0
|
0
|
|
|
|
unless (($y%2) && ($x%2)) { |
|
337
|
0
|
|
|
|
|
|
return undef; |
|
338
|
|
|
|
|
|
|
} |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
|
|
341
|
0
|
|
|
|
|
|
my $hypot = $x*$x + $y*$y; |
|
342
|
0
|
0
|
|
|
|
|
if (is_infinite($hypot)) { |
|
343
|
|
|
|
|
|
|
### infinity |
|
344
|
0
|
|
|
|
|
|
return undef; |
|
345
|
|
|
|
|
|
|
} |
|
346
|
|
|
|
|
|
|
|
|
347
|
0
|
|
|
|
|
|
my $n_to_x = $self->{'n_to_x'}; |
|
348
|
0
|
|
|
|
|
|
my $n_to_y = $self->{'n_to_y'}; |
|
349
|
|
|
|
|
|
|
|
|
350
|
0
|
|
|
|
|
|
my $hypot_to_n = $self->{'hypot_to_n'}; |
|
351
|
0
|
|
|
|
|
|
while ($hypot > $#$hypot_to_n) { |
|
352
|
0
|
|
|
|
|
|
_extend($self); |
|
353
|
|
|
|
|
|
|
} |
|
354
|
|
|
|
|
|
|
|
|
355
|
0
|
|
|
|
|
|
my $n = $hypot_to_n->[$hypot]; |
|
356
|
0
|
|
|
|
|
|
for (;;) { |
|
357
|
0
|
0
|
0
|
|
|
|
if ($x == $n_to_x->[$n] && $y == $n_to_y->[$n]) { |
|
358
|
0
|
|
|
|
|
|
return $n + $self->{'n_start'}; |
|
359
|
|
|
|
|
|
|
} |
|
360
|
0
|
|
|
|
|
|
$n += 1; |
|
361
|
|
|
|
|
|
|
|
|
362
|
0
|
0
|
|
|
|
|
if ($n_to_x->[$n]**2 + $n_to_y->[$n]**2 != $hypot) { |
|
363
|
|
|
|
|
|
|
### oops, hypot_to_n no good ... |
|
364
|
0
|
|
|
|
|
|
return undef; |
|
365
|
|
|
|
|
|
|
} |
|
366
|
|
|
|
|
|
|
} |
|
367
|
|
|
|
|
|
|
|
|
368
|
|
|
|
|
|
|
# if ($x < 0 || $y < 0) { |
|
369
|
|
|
|
|
|
|
# return undef; |
|
370
|
|
|
|
|
|
|
# } |
|
371
|
|
|
|
|
|
|
# my $h = $x*$x + $y*$y; |
|
372
|
|
|
|
|
|
|
# |
|
373
|
|
|
|
|
|
|
# while ($y_next_x[$y] <= $x) { |
|
374
|
|
|
|
|
|
|
# _extend($self); |
|
375
|
|
|
|
|
|
|
# } |
|
376
|
|
|
|
|
|
|
# return $xy_to_n{"$x,$y"}; |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
# not exact |
|
380
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
381
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
382
|
|
|
|
|
|
|
|
|
383
|
0
|
|
|
|
|
|
$x1 = abs (round_nearest ($x1)); |
|
384
|
0
|
|
|
|
|
|
$y1 = abs (round_nearest ($y1)); |
|
385
|
0
|
|
|
|
|
|
$x2 = abs (round_nearest ($x2)); |
|
386
|
0
|
|
|
|
|
|
$y2 = abs (round_nearest ($y2)); |
|
387
|
|
|
|
|
|
|
|
|
388
|
0
|
0
|
|
|
|
|
if ($x1 > $x2) { ($x1,$x2) = ($x2,$x1); } |
|
|
0
|
|
|
|
|
|
|
|
389
|
0
|
0
|
|
|
|
|
if ($y1 > $y2) { ($y1,$y2) = ($y2,$y1); } |
|
|
0
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
|
|
391
|
|
|
|
|
|
|
# circle area pi*r^2, with r^2 = $x2**2 + $y2**2 |
|
392
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
|
393
|
0
|
|
|
|
|
|
$self->{'n_start'} + int (3.2 * (($x2+1)**2 + ($y2+1)**2))); |
|
394
|
|
|
|
|
|
|
} |
|
395
|
|
|
|
|
|
|
|
|
396
|
|
|
|
|
|
|
1; |
|
397
|
|
|
|
|
|
|
__END__ |