| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
package Math::PlanePath::HexSpiralSkewed; |
|
20
|
2
|
|
|
2
|
|
1671
|
use 5.004; |
|
|
2
|
|
|
|
|
8
|
|
|
21
|
2
|
|
|
2
|
|
10
|
use strict; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
89
|
|
|
22
|
|
|
|
|
|
|
#use List::Util 'max'; |
|
23
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
24
|
|
|
|
|
|
|
|
|
25
|
2
|
|
|
2
|
|
11
|
use vars '$VERSION', '@ISA'; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
123
|
|
|
26
|
|
|
|
|
|
|
$VERSION = 129; |
|
27
|
2
|
|
|
2
|
|
727
|
use Math::PlanePath; |
|
|
2
|
|
|
|
|
6
|
|
|
|
2
|
|
|
|
|
87
|
|
|
28
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
29
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
30
|
|
|
|
|
|
|
|
|
31
|
2
|
|
|
2
|
|
540
|
use Math::PlanePath::HexSpiral; |
|
|
2
|
|
|
|
|
6
|
|
|
|
2
|
|
|
|
|
65
|
|
|
32
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
33
|
2
|
|
|
2
|
|
13
|
'round_nearest'; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
90
|
|
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
36
|
|
|
|
|
|
|
#use Devel::Comments; |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
|
|
39
|
2
|
|
|
2
|
|
12
|
use Math::PlanePath::SquareSpiral; |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
102
|
|
|
40
|
|
|
|
|
|
|
*parameter_info_array = \&Math::PlanePath::SquareSpiral::parameter_info_array; |
|
41
|
2
|
|
|
2
|
|
13
|
use constant xy_is_visited => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
120
|
|
|
42
|
|
|
|
|
|
|
|
|
43
|
2
|
|
|
2
|
|
14
|
use constant dx_minimum => -1; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
84
|
|
|
44
|
2
|
|
|
2
|
|
10
|
use constant dx_maximum => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
109
|
|
|
45
|
2
|
|
|
2
|
|
13
|
use constant dy_minimum => -1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
89
|
|
|
46
|
2
|
|
|
2
|
|
12
|
use constant dy_maximum => 1; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
222
|
|
|
47
|
|
|
|
|
|
|
|
|
48
|
2
|
|
|
|
|
182
|
use constant 1.02 _UNDOCUMENTED__dxdy_list => (1,0, # E four plus |
|
49
|
|
|
|
|
|
|
0,1, # N NW and SE |
|
50
|
|
|
|
|
|
|
-1,1, # NW |
|
51
|
|
|
|
|
|
|
-1,0, # W |
|
52
|
|
|
|
|
|
|
0,-1, # S |
|
53
|
|
|
|
|
|
|
1,-1, # SE |
|
54
|
2
|
|
|
2
|
|
15
|
); |
|
|
2
|
|
|
|
|
26
|
|
|
55
|
|
|
|
|
|
|
*x_negative_at_n = \&Math::PlanePath::HexSpiral::x_negative_at_n; |
|
56
|
|
|
|
|
|
|
*y_negative_at_n |
|
57
|
|
|
|
|
|
|
= \&Math::PlanePath::HexSpiral::y_negative_at_n; |
|
58
|
|
|
|
|
|
|
*_UNDOCUMENTED__dxdy_list_at_n |
|
59
|
|
|
|
|
|
|
= \&Math::PlanePath::HexSpiral::_UNDOCUMENTED__dxdy_list_at_n; |
|
60
|
|
|
|
|
|
|
|
|
61
|
2
|
|
|
2
|
|
13
|
use constant dsumxy_minimum => -1; # W,S straight |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
99
|
|
|
62
|
2
|
|
|
2
|
|
13
|
use constant dsumxy_maximum => 1; # N,E straight |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
174
|
|
|
63
|
2
|
|
|
2
|
|
14
|
use constant ddiffxy_minimum => -2; # NW diagonal |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
85
|
|
|
64
|
2
|
|
|
2
|
|
11
|
use constant ddiffxy_maximum => 2; # SE diagonal |
|
|
2
|
|
|
|
|
15
|
|
|
|
2
|
|
|
|
|
111
|
|
|
65
|
2
|
|
|
2
|
|
14
|
use constant dir_maximum_dxdy => (1,-1); # South-East |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
117
|
|
|
66
|
|
|
|
|
|
|
|
|
67
|
2
|
|
|
2
|
|
13
|
use constant turn_any_right => 0; # only left or straight |
|
|
2
|
|
|
|
|
13
|
|
|
|
2
|
|
|
|
|
1649
|
|
|
68
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_left_at_n { |
|
69
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
70
|
0
|
|
|
|
|
0
|
return $self->n_start + $self->{'wider'} + 1; |
|
71
|
|
|
|
|
|
|
} |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
sub new { |
|
77
|
5
|
|
|
5
|
1
|
648
|
my $self = shift->SUPER::new (@_); |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# parameters |
|
80
|
5
|
|
50
|
|
|
33
|
$self->{'wider'} ||= 0; # default |
|
81
|
5
|
100
|
|
|
|
14
|
if (! defined $self->{'n_start'}) { |
|
82
|
3
|
|
|
|
|
18
|
$self->{'n_start'} = $self->default_n_start; |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
|
|
85
|
5
|
|
|
|
|
12
|
return $self; |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
# Same as HexSpiral, but diagonal down and to the left is the downwards |
|
89
|
|
|
|
|
|
|
# vertical at x=-$w_left. |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
sub n_to_xy { |
|
92
|
46
|
|
|
46
|
1
|
497
|
my ($self, $n) = @_; |
|
93
|
|
|
|
|
|
|
### HexSpiralSkewed n_to_xy(): $n |
|
94
|
|
|
|
|
|
|
|
|
95
|
46
|
|
|
|
|
78
|
$n = $n - $self->{'n_start'}; # N=0 basis |
|
96
|
46
|
50
|
|
|
|
84
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
97
|
|
|
|
|
|
|
|
|
98
|
46
|
|
|
|
|
74
|
my $w = $self->{'wider'}; |
|
99
|
46
|
|
|
|
|
71
|
my $w_right = int($w/2); |
|
100
|
46
|
|
|
|
|
73
|
my $w_left = $w - $w_right; |
|
101
|
|
|
|
|
|
|
#### $w |
|
102
|
|
|
|
|
|
|
#### $w_left |
|
103
|
|
|
|
|
|
|
#### $w_right |
|
104
|
|
|
|
|
|
|
|
|
105
|
46
|
|
|
|
|
117
|
my $d = int((_sqrtint(3*$n + ($w+2)*$w + 1) - 1 - $w) / 3); |
|
106
|
|
|
|
|
|
|
#### d frac: (_sqrtint(3*$n + ($w+2)*$w + 1) - 1 - $w) / 3 |
|
107
|
|
|
|
|
|
|
#### $d |
|
108
|
46
|
|
|
|
|
86
|
$n -= (3*$d + 2 + 2*$w)*$d + 1; |
|
109
|
|
|
|
|
|
|
#### remainder: $n |
|
110
|
|
|
|
|
|
|
|
|
111
|
46
|
|
|
|
|
63
|
$n += 1; # N=1 basis |
|
112
|
|
|
|
|
|
|
|
|
113
|
46
|
100
|
|
|
|
89
|
if ($n <= $d+1+$w) { |
|
114
|
|
|
|
|
|
|
#### bottom horizontal |
|
115
|
22
|
|
|
|
|
71
|
return ($n - $w_left, |
|
116
|
|
|
|
|
|
|
-$d); |
|
117
|
|
|
|
|
|
|
} |
|
118
|
24
|
|
|
|
|
38
|
$n -= $d+1+$w; |
|
119
|
24
|
100
|
|
|
|
42
|
if ($n <= $d) { |
|
120
|
|
|
|
|
|
|
#### right lower vertical, being 1 shorter: $n |
|
121
|
4
|
|
|
|
|
12
|
return ($d + 1 + $w_right, |
|
122
|
|
|
|
|
|
|
$n - $d); |
|
123
|
|
|
|
|
|
|
} |
|
124
|
20
|
|
|
|
|
25
|
$n -= $d; |
|
125
|
20
|
100
|
|
|
|
41
|
if ($n <= $d+1) { |
|
126
|
|
|
|
|
|
|
#### right upper diagonal: $n |
|
127
|
6
|
|
|
|
|
14
|
return (-$n + $d + 1 + $w_right, |
|
128
|
|
|
|
|
|
|
$n); |
|
129
|
|
|
|
|
|
|
} |
|
130
|
14
|
|
|
|
|
17
|
$d = $d + 1; # no warnings if $d==infinity |
|
131
|
14
|
|
|
|
|
21
|
$n -= $d; |
|
132
|
14
|
100
|
|
|
|
27
|
if ($n <= $d+$w) { |
|
133
|
|
|
|
|
|
|
#### top horizontal |
|
134
|
6
|
|
|
|
|
15
|
return (-$n + $w_right, |
|
135
|
|
|
|
|
|
|
$d); |
|
136
|
|
|
|
|
|
|
} |
|
137
|
8
|
|
|
|
|
96
|
$n -= $d+$w; |
|
138
|
8
|
100
|
|
|
|
18
|
if ($n <= $d) { |
|
139
|
|
|
|
|
|
|
#### left upper vertical |
|
140
|
6
|
|
|
|
|
16
|
return (-$d - $w_left, |
|
141
|
|
|
|
|
|
|
-$n + $d); |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
#### left lower diagonal |
|
144
|
2
|
|
|
|
|
6
|
$n -= $d; |
|
145
|
2
|
|
|
|
|
6
|
return ($n - $d - $w_left, |
|
146
|
|
|
|
|
|
|
-$n); |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
sub xy_to_n { |
|
150
|
4
|
|
|
4
|
1
|
299
|
my ($self, $x, $y) = @_; |
|
151
|
|
|
|
|
|
|
### xy_to_n(): "$x, $y" |
|
152
|
|
|
|
|
|
|
|
|
153
|
4
|
|
|
|
|
13
|
$x = round_nearest ($x); |
|
154
|
4
|
|
|
|
|
11
|
$y = round_nearest ($y); |
|
155
|
|
|
|
|
|
|
|
|
156
|
4
|
|
|
|
|
9
|
my $w = $self->{'wider'}; |
|
157
|
4
|
|
|
|
|
7
|
my $w_right = int($w/2); |
|
158
|
4
|
|
|
|
|
6
|
my $w_left = $w - $w_right; |
|
159
|
|
|
|
|
|
|
|
|
160
|
4
|
50
|
|
|
|
9
|
if ($y > 0) { |
|
161
|
0
|
|
|
|
|
0
|
$x -= $w_right; |
|
162
|
0
|
0
|
|
|
|
0
|
if ($x < -$y-$w) { |
|
163
|
|
|
|
|
|
|
### left upper vertical |
|
164
|
0
|
|
|
|
|
0
|
my $d = -$x - $w; |
|
165
|
|
|
|
|
|
|
### $d |
|
166
|
|
|
|
|
|
|
### base: (3*$d + 1 + 2*$w)*$d |
|
167
|
|
|
|
|
|
|
return ((3*$d + 1 + 2*$w)*$d |
|
168
|
|
|
|
|
|
|
- $y |
|
169
|
0
|
|
|
|
|
0
|
+ $self->{'n_start'}); |
|
170
|
|
|
|
|
|
|
} else { |
|
171
|
0
|
|
|
|
|
0
|
my $d = $y + max($x,0); |
|
172
|
|
|
|
|
|
|
### right upper diagonal and top horizontal |
|
173
|
|
|
|
|
|
|
### $d |
|
174
|
|
|
|
|
|
|
### base: (3*$d - 1 + 2*$w)*$d - $w |
|
175
|
|
|
|
|
|
|
return ((3*$d - 1 + 2*$w)*$d - $w |
|
176
|
|
|
|
|
|
|
- $x |
|
177
|
0
|
|
|
|
|
0
|
+ $self->{'n_start'}); |
|
178
|
|
|
|
|
|
|
} |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
} else { |
|
181
|
|
|
|
|
|
|
# $y < 0 |
|
182
|
4
|
|
|
|
|
7
|
$x += $w_left; |
|
183
|
4
|
100
|
|
|
|
9
|
if ($x-$w <= -$y) { |
|
184
|
2
|
|
|
|
|
7
|
my $d = -$y + max(-$x,0); |
|
185
|
|
|
|
|
|
|
### left lower diagonal and bottom horizontal |
|
186
|
|
|
|
|
|
|
### $d |
|
187
|
|
|
|
|
|
|
### base: (3*$d + 2 + 2*$w)*$d + 1 |
|
188
|
|
|
|
|
|
|
return ((3*$d + 2 + 2*$w)*$d |
|
189
|
|
|
|
|
|
|
+ $x |
|
190
|
2
|
|
|
|
|
7
|
+ $self->{'n_start'}); |
|
191
|
|
|
|
|
|
|
} else { |
|
192
|
|
|
|
|
|
|
### right lower vertical |
|
193
|
2
|
|
|
|
|
76
|
my $d = $x - $w; |
|
194
|
|
|
|
|
|
|
### $d |
|
195
|
|
|
|
|
|
|
### base: (3*$d - 2 + 2*$w)*$d + 1 - $w |
|
196
|
|
|
|
|
|
|
return ((3*$d - 2 + 2*$w)*$d - $w |
|
197
|
|
|
|
|
|
|
+ $y |
|
198
|
2
|
|
|
|
|
9
|
+ $self->{'n_start'}); |
|
199
|
|
|
|
|
|
|
} |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
# not exact |
|
204
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
205
|
0
|
|
|
0
|
1
|
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
206
|
|
|
|
|
|
|
### HexSpiralSkewed rect_to_n_range(): $x1,$y1, $x2,$y2 |
|
207
|
|
|
|
|
|
|
|
|
208
|
0
|
|
|
|
|
|
$x1 = round_nearest ($x1); |
|
209
|
0
|
|
|
|
|
|
$y1 = round_nearest ($y1); |
|
210
|
0
|
|
|
|
|
|
$x2 = round_nearest ($x2); |
|
211
|
0
|
|
|
|
|
|
$y2 = round_nearest ($y2); |
|
212
|
|
|
|
|
|
|
|
|
213
|
0
|
|
|
|
|
|
my $w = $self->{'wider'}; |
|
214
|
0
|
|
|
|
|
|
my $w_right = int($w/2); |
|
215
|
0
|
|
|
|
|
|
my $w_left = $w - $w_right; |
|
216
|
|
|
|
|
|
|
|
|
217
|
0
|
|
|
|
|
|
my $d = 0; |
|
218
|
0
|
|
|
|
|
|
foreach my $x ($x1, $x2) { |
|
219
|
0
|
|
|
|
|
|
$x += $w_left; |
|
220
|
0
|
0
|
|
|
|
|
if ($x >= $w) { |
|
221
|
0
|
|
|
|
|
|
$x -= $w; |
|
222
|
|
|
|
|
|
|
} |
|
223
|
0
|
|
|
|
|
|
foreach my $y ($y1, $y2) { |
|
224
|
0
|
0
|
|
|
|
|
$d = max ($d, |
|
225
|
|
|
|
|
|
|
(($y > 0) == ($x > 0) |
|
226
|
|
|
|
|
|
|
? abs($x) + abs($y) # top right or bottom left diagonals |
|
227
|
|
|
|
|
|
|
: max(abs($x),abs($y)))); # top left or bottom right squares |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
} |
|
230
|
0
|
|
|
|
|
|
$d += 1; |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
# diagonal downwards bottom right being the end of a revolution |
|
233
|
|
|
|
|
|
|
# s=0 |
|
234
|
|
|
|
|
|
|
# s=1 n=7 |
|
235
|
|
|
|
|
|
|
# s=2 n=19 |
|
236
|
|
|
|
|
|
|
# s=3 n=37 |
|
237
|
|
|
|
|
|
|
# s=4 n=61 |
|
238
|
|
|
|
|
|
|
# n = 3*$d*$d + 3*$d + 1 |
|
239
|
|
|
|
|
|
|
# |
|
240
|
|
|
|
|
|
|
### gives: "sum $d is " . (3*$d*$d + 3*$d + 1) |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
# ENHANCE-ME: find actual minimum if rect doesn't cover 0,0 |
|
243
|
|
|
|
|
|
|
return ($self->{'n_start'}, |
|
244
|
0
|
|
|
|
|
|
(3*$d + 3 + 2*$self->{'wider'})*$d + $self->{'n_start'}); |
|
245
|
|
|
|
|
|
|
} |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
1; |
|
248
|
|
|
|
|
|
|
__END__ |