| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
# math-image --path=SierpinskiCurveStair --lines --scale=10 |
|
22
|
|
|
|
|
|
|
# |
|
23
|
|
|
|
|
|
|
# math-image --path=SierpinskiCurveStair,diagonal_length=1 --all --output=numbers_dash --offset=-10,-7 --size=78x30 |
|
24
|
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
package Math::PlanePath::SierpinskiCurveStair; |
|
28
|
1
|
|
|
1
|
|
8950
|
use 5.004; |
|
|
1
|
|
|
|
|
10
|
|
|
29
|
1
|
|
|
1
|
|
6
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
38
|
|
|
30
|
1
|
|
|
1
|
|
7
|
use List::Util 'min','max'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
138
|
|
|
31
|
|
|
|
|
|
|
|
|
32
|
1
|
|
|
1
|
|
7
|
use vars '$VERSION', '@ISA'; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
63
|
|
|
33
|
|
|
|
|
|
|
$VERSION = 128; |
|
34
|
1
|
|
|
1
|
|
690
|
use Math::PlanePath; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
29
|
|
|
35
|
1
|
|
|
1
|
|
395
|
use Math::PlanePath::Base::NSEW; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
41
|
|
|
36
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
37
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
40
|
1
|
|
|
|
|
47
|
'is_infinite', |
|
41
|
1
|
|
|
1
|
|
6
|
'round_nearest'; |
|
|
1
|
|
|
|
|
2
|
|
|
42
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
43
|
1
|
|
|
|
|
70
|
'round_up_pow', |
|
44
|
1
|
|
|
1
|
|
444
|
'round_down_pow'; |
|
|
1
|
|
|
|
|
3
|
|
|
45
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
48
|
|
|
|
|
|
|
#use Smart::Comments; |
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
51
|
1
|
|
|
1
|
|
7
|
use constant n_start => 0; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
149
|
|
|
52
|
|
|
|
|
|
|
sub x_negative { |
|
53
|
6
|
|
|
6
|
1
|
81
|
my ($self) = @_; |
|
54
|
6
|
|
|
|
|
15
|
return ($self->{'arms'} >= 3); |
|
55
|
|
|
|
|
|
|
} |
|
56
|
|
|
|
|
|
|
sub y_negative { |
|
57
|
6
|
|
|
6
|
1
|
314
|
my ($self) = @_; |
|
58
|
6
|
|
|
|
|
19
|
return ($self->{'arms'} >= 5); |
|
59
|
|
|
|
|
|
|
} |
|
60
|
|
|
|
|
|
|
|
|
61
|
1
|
|
|
|
|
67
|
use constant parameter_info_array => |
|
62
|
|
|
|
|
|
|
[ |
|
63
|
|
|
|
|
|
|
{ name => 'diagonal_length', |
|
64
|
|
|
|
|
|
|
display => 'Diagonal Length', |
|
65
|
|
|
|
|
|
|
type => 'integer', |
|
66
|
|
|
|
|
|
|
minimum => 1, |
|
67
|
|
|
|
|
|
|
default => 1, |
|
68
|
|
|
|
|
|
|
width => 1, |
|
69
|
|
|
|
|
|
|
description => 'Length of the diagonal in the base pattern.', |
|
70
|
|
|
|
|
|
|
}, |
|
71
|
|
|
|
|
|
|
{ name => 'arms', |
|
72
|
|
|
|
|
|
|
share_key => 'arms_8', |
|
73
|
|
|
|
|
|
|
display => 'Arms', |
|
74
|
|
|
|
|
|
|
type => 'integer', |
|
75
|
|
|
|
|
|
|
minimum => 1, |
|
76
|
|
|
|
|
|
|
maximum => 8, |
|
77
|
|
|
|
|
|
|
default => 1, |
|
78
|
|
|
|
|
|
|
width => 1, |
|
79
|
|
|
|
|
|
|
}, |
|
80
|
1
|
|
|
1
|
|
8
|
]; |
|
|
1
|
|
|
|
|
2
|
|
|
81
|
|
|
|
|
|
|
|
|
82
|
1
|
|
|
1
|
|
534
|
use Math::PlanePath::SierpinskiCurve; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
65
|
|
|
83
|
|
|
|
|
|
|
*x_negative_at_n = \&Math::PlanePath::SierpinskiCurve::x_negative_at_n; |
|
84
|
|
|
|
|
|
|
*y_negative_at_n = \&Math::PlanePath::SierpinskiCurve::y_negative_at_n; |
|
85
|
|
|
|
|
|
|
*x_minimum = \&Math::PlanePath::SierpinskiCurve::x_minimum; |
|
86
|
|
|
|
|
|
|
*sumxy_minimum = \&Math::PlanePath::SierpinskiCurve::sumxy_minimum; |
|
87
|
1
|
|
|
1
|
|
7
|
use constant sumabsxy_minimum => 1; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
79
|
|
|
88
|
|
|
|
|
|
|
*diffxy_minimum = \&Math::PlanePath::SierpinskiCurve::diffxy_minimum; |
|
89
|
1
|
|
|
1
|
|
12
|
use constant absdiffxy_minimum => 1; # X=Y never occurs |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
46
|
|
|
90
|
1
|
|
|
1
|
|
5
|
use constant rsquared_minimum => 1; # minimum X=1,Y=0 |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
91
|
1
|
|
|
1
|
|
7
|
use constant turn_any_straight => 0; # never straight |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
1457
|
|
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
sub new { |
|
97
|
41
|
|
|
41
|
1
|
4201
|
my $self = shift->SUPER::new(@_); |
|
98
|
41
|
|
100
|
|
|
248
|
$self->{'arms'} = max(1, min(8, $self->{'arms'} || 1)); |
|
99
|
41
|
|
100
|
|
|
126
|
$self->{'diagonal_length'} ||= 1; |
|
100
|
41
|
|
|
|
|
93
|
return $self; |
|
101
|
|
|
|
|
|
|
} |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
# 20--21 |
|
104
|
|
|
|
|
|
|
# | | |
|
105
|
|
|
|
|
|
|
# 18--19 22--23 |
|
106
|
|
|
|
|
|
|
# | | |
|
107
|
|
|
|
|
|
|
# 16--17 24--25 |
|
108
|
|
|
|
|
|
|
# | | |
|
109
|
|
|
|
|
|
|
# 15--14 27--26 |
|
110
|
|
|
|
|
|
|
# | | |
|
111
|
|
|
|
|
|
|
# 4---5 13--12 29--28 36--37 |
|
112
|
|
|
|
|
|
|
# | | | | | | |
|
113
|
|
|
|
|
|
|
# 2---3 6---7 10--11 30--31 34--35 38--39 42--43 |
|
114
|
|
|
|
|
|
|
# | | | | | | | |
|
115
|
|
|
|
|
|
|
# 0---1 8---9 32--33 40--41 |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
# len=5 |
|
118
|
|
|
|
|
|
|
# N=0 to 9 is 10 |
|
119
|
|
|
|
|
|
|
# next N=0 to 41 is 42=4*10+2 |
|
120
|
|
|
|
|
|
|
# next is 4*42+2=166 |
|
121
|
|
|
|
|
|
|
# points(level) = 4*points(level-1)+2 |
|
122
|
|
|
|
|
|
|
# |
|
123
|
|
|
|
|
|
|
# or side 5 points |
|
124
|
|
|
|
|
|
|
# points(level) = 4*points(level-1)+1 |
|
125
|
|
|
|
|
|
|
# = 4*(4*points(level-2)+1)+1 |
|
126
|
|
|
|
|
|
|
# = 16*points(level-2) + 4 + 1 |
|
127
|
|
|
|
|
|
|
# = 64*points(level-3) + 16 + 4 + 1 |
|
128
|
|
|
|
|
|
|
# = 5 * 4^level + 1+...+4^(level-1) |
|
129
|
|
|
|
|
|
|
# = 5 * 4^level + (4^level - 1) / 3 |
|
130
|
|
|
|
|
|
|
# = (15 * 4^level + 4^level - 1) / 3 |
|
131
|
|
|
|
|
|
|
# = (16 * 4^level - 1) / 3 |
|
132
|
|
|
|
|
|
|
# = (4^(level+2) - 1) / 3 |
|
133
|
|
|
|
|
|
|
# level=0 (16*1-1)/3=5 |
|
134
|
|
|
|
|
|
|
# level=1 (16*4-1)/3=21 |
|
135
|
|
|
|
|
|
|
# level=2 (16*16-1)/3=85 |
|
136
|
|
|
|
|
|
|
# |
|
137
|
|
|
|
|
|
|
# n = (16 * 4^level - 1) / 3 |
|
138
|
|
|
|
|
|
|
# 3n+1 = 16 * 4^level |
|
139
|
|
|
|
|
|
|
# 4^level = (3n+1)/16 |
|
140
|
|
|
|
|
|
|
# level = log4 ( (3n+1)/16) |
|
141
|
|
|
|
|
|
|
# = log4(3n+1) - 2 |
|
142
|
|
|
|
|
|
|
# N=21 log4(64)-2=3-2=1 |
|
143
|
|
|
|
|
|
|
# |
|
144
|
|
|
|
|
|
|
# nlen=4^(level+2) |
|
145
|
|
|
|
|
|
|
# n = (nlen-1)/3 |
|
146
|
|
|
|
|
|
|
# next_n = (nlen/4-1)/3 |
|
147
|
|
|
|
|
|
|
# = (nlen-4)/3 /4 |
|
148
|
|
|
|
|
|
|
# = ((nlen-1)/3 -1) /4 |
|
149
|
|
|
|
|
|
|
# |
|
150
|
|
|
|
|
|
|
# len=2,6,14 |
|
151
|
|
|
|
|
|
|
# len(k)=2*len(k-1) + 2 |
|
152
|
|
|
|
|
|
|
# = 2^k + 2*(2^(k-1)-1) |
|
153
|
|
|
|
|
|
|
# = 2^k + 2^k - 2 |
|
154
|
|
|
|
|
|
|
# = 2*(2^k - 1) |
|
155
|
|
|
|
|
|
|
# k=1 len=2*(2-1) = 2 |
|
156
|
|
|
|
|
|
|
# k=2 len=2*(4-1) = 6 |
|
157
|
|
|
|
|
|
|
# k=3 len=2*(8-1) = 14 |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
# len(k)-2=2*len(k-1) |
|
160
|
|
|
|
|
|
|
# (len(k)-2)/2=len(k-1) |
|
161
|
|
|
|
|
|
|
# len(k-1) = (len(k)-2)/2 |
|
162
|
|
|
|
|
|
|
# = len(k)/2-1 |
|
163
|
|
|
|
|
|
|
# |
|
164
|
|
|
|
|
|
|
# --------- |
|
165
|
|
|
|
|
|
|
# with P=2*L+1 points per side |
|
166
|
|
|
|
|
|
|
# points(level) = 64*points(level-3) + 16 + 4 + 1 |
|
167
|
|
|
|
|
|
|
# = P*4^level + 1+...+4^(level-1) |
|
168
|
|
|
|
|
|
|
# = P*4^level + (4^level - 1) / 3 |
|
169
|
|
|
|
|
|
|
# = (3P*4^level + 4^level - 1) / 3 |
|
170
|
|
|
|
|
|
|
# = ((3P+1)*4^level - 1) / 3 |
|
171
|
|
|
|
|
|
|
# = ((3*(2L+1)+1)*4^level - 1) / 3 |
|
172
|
|
|
|
|
|
|
# = ((6L+3+1)*4^level - 1) / 3 |
|
173
|
|
|
|
|
|
|
# = ((6L+4)*4^level - 1) / 3 |
|
174
|
|
|
|
|
|
|
# n = ((6L+4)*4^level - 1) / 3 |
|
175
|
|
|
|
|
|
|
# 3n+1 = (6L+4)*4^level |
|
176
|
|
|
|
|
|
|
# |
|
177
|
|
|
|
|
|
|
# len(k) = 2*len(k-1) + 2 |
|
178
|
|
|
|
|
|
|
# = 2*len(k-2) + 2 + 4 |
|
179
|
|
|
|
|
|
|
# = 2*len(k-3) + 2 + 4 + 8 |
|
180
|
|
|
|
|
|
|
# = 2^(k-1)*L + 2^k - 2 |
|
181
|
|
|
|
|
|
|
# = (L+2)*2^(k-1) - 2 |
|
182
|
|
|
|
|
|
|
# L=2 k=3 len=(2+2)*2^2-2=14 |
|
183
|
|
|
|
|
|
|
# |
|
184
|
|
|
|
|
|
|
# ---------- |
|
185
|
|
|
|
|
|
|
# Nlevel = ((6L+4)*4^level - 1) / 3 - 1 |
|
186
|
|
|
|
|
|
|
# = ((6L+4)*4^level - 4) / 3 |
|
187
|
|
|
|
|
|
|
# Xlevel = (L+2)*2^level - 2 + 1 |
|
188
|
|
|
|
|
|
|
# = (L+2)*2^level - 1 |
|
189
|
|
|
|
|
|
|
# |
|
190
|
|
|
|
|
|
|
# fill = Nlevel / (Xlevel*(Xlevel-1)/2) |
|
191
|
|
|
|
|
|
|
# = (((6L+4)*4^level - 1) / 3 - 1) / (((L+2)*2^level - 1)*((L+2)*2^level - 2)) |
|
192
|
|
|
|
|
|
|
# -> (((6L+4)*4^level) / 3) / ((L+2)*2^level)^2 |
|
193
|
|
|
|
|
|
|
# = ((6L+4)*4^level) / ((L+2)^2*4^level) *2/3 |
|
194
|
|
|
|
|
|
|
# = ((6L+4)) / ((L+2)^2) * 2/3 |
|
195
|
|
|
|
|
|
|
# = 2*(3L+2) / ((L+2)^2) * 2/3 |
|
196
|
|
|
|
|
|
|
# = 4/3 * (3L+2)/(L+2)^2 |
|
197
|
|
|
|
|
|
|
# = (12L+8) / (3*L^2+12L+12) |
|
198
|
|
|
|
|
|
|
# L=1 (12+8)/(3+12+12) = 20/27 |
|
199
|
|
|
|
|
|
|
|
|
200
|
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
sub n_to_xy { |
|
202
|
19
|
|
|
19
|
1
|
959
|
my ($self, $n) = @_; |
|
203
|
|
|
|
|
|
|
### SierpinskiCurveStair n_to_xy(): $n |
|
204
|
|
|
|
|
|
|
|
|
205
|
19
|
50
|
|
|
|
54
|
if ($n < 0) { |
|
206
|
0
|
|
|
|
|
0
|
return; |
|
207
|
|
|
|
|
|
|
} |
|
208
|
19
|
50
|
|
|
|
57
|
if (is_infinite($n)) { |
|
209
|
0
|
|
|
|
|
0
|
return ($n,$n); |
|
210
|
|
|
|
|
|
|
} |
|
211
|
|
|
|
|
|
|
|
|
212
|
19
|
|
|
|
|
34
|
my $frac; |
|
213
|
|
|
|
|
|
|
{ |
|
214
|
19
|
|
|
|
|
38
|
my $int = int($n); |
|
|
19
|
|
|
|
|
31
|
|
|
215
|
19
|
|
|
|
|
27
|
$frac = $n - $int; # inherit possible BigFloat |
|
216
|
19
|
50
|
|
|
|
39
|
if ($frac) { |
|
217
|
0
|
|
|
|
|
0
|
my ($x1,$y1) = $self->n_to_xy($int); |
|
218
|
0
|
|
|
|
|
0
|
my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
|
219
|
|
|
|
|
|
|
|
|
220
|
0
|
|
|
|
|
0
|
my $dx = $x2-$x1; |
|
221
|
0
|
|
|
|
|
0
|
my $dy = $y2-$y1; |
|
222
|
0
|
|
|
|
|
0
|
return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
223
|
|
|
|
|
|
|
} |
|
224
|
19
|
|
|
|
|
30
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
### $frac |
|
227
|
19
|
|
|
|
|
29
|
my $zero = ($n * 0); # inherit bignum 0 |
|
228
|
|
|
|
|
|
|
|
|
229
|
19
|
|
|
|
|
45
|
my $arm = _divrem_mutate ($n, $self->{'arms'}); |
|
230
|
|
|
|
|
|
|
|
|
231
|
19
|
|
|
|
|
31
|
my $diagonal_length = $self->{'diagonal_length'}; |
|
232
|
19
|
|
|
|
|
31
|
my $diagonal_div = 6*$diagonal_length + 4; |
|
233
|
|
|
|
|
|
|
|
|
234
|
19
|
|
|
|
|
53
|
my ($nlen,$level) = round_down_pow ((3*$n+1)/$diagonal_div, 4); |
|
235
|
|
|
|
|
|
|
### $nlen |
|
236
|
|
|
|
|
|
|
### $level |
|
237
|
19
|
50
|
|
|
|
42
|
if (is_infinite($level)) { |
|
238
|
0
|
|
|
|
|
0
|
return $level; |
|
239
|
|
|
|
|
|
|
} |
|
240
|
|
|
|
|
|
|
|
|
241
|
19
|
|
|
|
|
31
|
my $x = $zero; |
|
242
|
19
|
|
|
|
|
28
|
my $y = $zero; |
|
243
|
19
|
|
|
|
|
24
|
my $dx = 1; |
|
244
|
19
|
|
|
|
|
27
|
my $dy = 0; |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
# (L+2)*2^(level-1) - 2 |
|
247
|
19
|
|
|
|
|
34
|
my $len = ($diagonal_length+2)*2**$level - 2; |
|
248
|
19
|
|
|
|
|
34
|
$nlen = ($diagonal_div*$nlen-1)/3; |
|
249
|
|
|
|
|
|
|
|
|
250
|
19
|
|
|
|
|
43
|
while ($level-- >= 0) { |
|
251
|
|
|
|
|
|
|
### at: "n=$n xy=$x,$y nlen=$nlen len=$len" |
|
252
|
|
|
|
|
|
|
|
|
253
|
52
|
100
|
|
|
|
127
|
if ($n < 2*$nlen+1) { |
|
254
|
19
|
100
|
|
|
|
32
|
if ($n < $nlen) { |
|
255
|
|
|
|
|
|
|
### part 0 ... |
|
256
|
|
|
|
|
|
|
} else { |
|
257
|
|
|
|
|
|
|
### part 1 ... |
|
258
|
18
|
|
|
|
|
31
|
$x += ($len+1)*$dx - $len*$dy; |
|
259
|
18
|
|
|
|
|
36
|
$y += ($len+1)*$dy + $len*$dx; |
|
260
|
18
|
|
|
|
|
37
|
($dx,$dy) = ($dy,-$dx); # rotate -90 |
|
261
|
18
|
|
|
|
|
29
|
$n -= $nlen; |
|
262
|
|
|
|
|
|
|
} |
|
263
|
|
|
|
|
|
|
} else { |
|
264
|
33
|
|
|
|
|
49
|
$n -= 2*$nlen+1; |
|
265
|
33
|
50
|
|
|
|
51
|
if ($n < $nlen) { |
|
266
|
|
|
|
|
|
|
### part 2 ... |
|
267
|
0
|
|
|
|
|
0
|
$x += (2*$len+2)*$dx - $dy; |
|
268
|
0
|
|
|
|
|
0
|
$y += (2*$len+2)*$dy + $dx; |
|
269
|
0
|
|
|
|
|
0
|
($dx,$dy) = (-$dy,$dx); # rotate +90 |
|
270
|
|
|
|
|
|
|
} else { |
|
271
|
|
|
|
|
|
|
### part 3 ... |
|
272
|
33
|
|
|
|
|
54
|
$x += ($len+2)*$dx - ($len+2)*$dy; |
|
273
|
33
|
|
|
|
|
46
|
$y += ($len+2)*$dy + ($len+2)*$dx; |
|
274
|
33
|
|
|
|
|
49
|
$n -= $nlen; |
|
275
|
|
|
|
|
|
|
} |
|
276
|
|
|
|
|
|
|
} |
|
277
|
|
|
|
|
|
|
|
|
278
|
52
|
|
|
|
|
79
|
$nlen = ($nlen-1)/4; |
|
279
|
52
|
|
|
|
|
105
|
$len = $len/2-1; |
|
280
|
|
|
|
|
|
|
} |
|
281
|
|
|
|
|
|
|
|
|
282
|
19
|
|
|
|
|
34
|
my $lowdigit_x = int(($n+1)/2); |
|
283
|
19
|
100
|
|
|
|
38
|
if ($n == 2*$diagonal_length+1) { $lowdigit_x -= 2; } |
|
|
5
|
|
|
|
|
8
|
|
|
284
|
19
|
|
|
|
|
28
|
my $lowdigit_y = int($n/2); |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
### final: "n=$n xy=$x,$y dxdy=$dx,$dy" |
|
287
|
|
|
|
|
|
|
### $lowdigit_x |
|
288
|
|
|
|
|
|
|
### $lowdigit_y |
|
289
|
|
|
|
|
|
|
|
|
290
|
19
|
|
|
|
|
32
|
$x += $lowdigit_x*$dx - $lowdigit_y*$dy + 1; # +1 start at x=1,y=0 |
|
291
|
19
|
|
|
|
|
25
|
$y += $lowdigit_x*$dy + $lowdigit_y*$dx; |
|
292
|
|
|
|
|
|
|
|
|
293
|
19
|
50
|
|
|
|
39
|
if ($arm & 1) { |
|
294
|
0
|
|
|
|
|
0
|
($x,$y) = ($y,$x); # mirror 45 |
|
295
|
|
|
|
|
|
|
} |
|
296
|
19
|
50
|
|
|
|
37
|
if ($arm & 2) { |
|
297
|
0
|
|
|
|
|
0
|
($x,$y) = (-1-$y,$x); # rotate +90 |
|
298
|
|
|
|
|
|
|
} |
|
299
|
19
|
50
|
|
|
|
37
|
if ($arm & 4) { |
|
300
|
0
|
|
|
|
|
0
|
$x = -1-$x; # rotate 180 |
|
301
|
0
|
|
|
|
|
0
|
$y = -1-$y; |
|
302
|
|
|
|
|
|
|
} |
|
303
|
|
|
|
|
|
|
|
|
304
|
19
|
|
|
|
|
50
|
return ($x,$y); |
|
305
|
|
|
|
|
|
|
} |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
sub xy_to_n { |
|
308
|
19776
|
|
|
19776
|
1
|
198110
|
my ($self, $x, $y) = @_; |
|
309
|
|
|
|
|
|
|
### SierpinskiCurveStair xy_to_n(): "$x, $y" |
|
310
|
|
|
|
|
|
|
|
|
311
|
19776
|
|
|
|
|
38298
|
$x = round_nearest($x); |
|
312
|
19776
|
|
|
|
|
37190
|
$y = round_nearest($y); |
|
313
|
|
|
|
|
|
|
|
|
314
|
19776
|
|
|
|
|
29056
|
my $arm = 0; |
|
315
|
19776
|
100
|
|
|
|
35355
|
if ($y < 0) { |
|
316
|
2720
|
|
|
|
|
3592
|
$arm = 4; |
|
317
|
2720
|
|
|
|
|
3773
|
$x = -1-$x; # rotate -180 |
|
318
|
2720
|
|
|
|
|
3590
|
$y = -1-$y; |
|
319
|
|
|
|
|
|
|
} |
|
320
|
19776
|
100
|
|
|
|
32220
|
if ($x < 0) { |
|
321
|
4608
|
|
|
|
|
6113
|
$arm += 2; |
|
322
|
4608
|
|
|
|
|
7873
|
($x,$y) = ($y, -1-$x); # rotate -90 |
|
323
|
|
|
|
|
|
|
} |
|
324
|
19776
|
100
|
|
|
|
33935
|
if ($y > $x) { # second octant |
|
325
|
9344
|
|
|
|
|
12315
|
$arm++; |
|
326
|
9344
|
|
|
|
|
17622
|
($x,$y) = ($y,$x); # mirror 45 |
|
327
|
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
|
|
329
|
19776
|
|
|
|
|
29834
|
my $arms = $self->{'arms'}; |
|
330
|
19776
|
100
|
|
|
|
33547
|
if ($arm >= $arms) { |
|
331
|
3680
|
|
|
|
|
6822
|
return undef; |
|
332
|
|
|
|
|
|
|
} |
|
333
|
|
|
|
|
|
|
|
|
334
|
16096
|
|
|
|
|
22097
|
$x -= 1; |
|
335
|
16096
|
100
|
100
|
|
|
46439
|
if ($x < 0 || $x < $y) { |
|
336
|
1008
|
|
|
|
|
2061
|
return undef; |
|
337
|
|
|
|
|
|
|
} |
|
338
|
|
|
|
|
|
|
### x adjust to zero: "$x,$y" |
|
339
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
340
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
# len=2*(2^level - 1) |
|
343
|
|
|
|
|
|
|
# len/2+1 = 2^level |
|
344
|
|
|
|
|
|
|
# 2^level = len/2+1 |
|
345
|
|
|
|
|
|
|
# 2^(level+1) = len+2 |
|
346
|
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
# len=(L+2)*2^(level-1) - 2 |
|
348
|
|
|
|
|
|
|
# (len+2)/(L+2) = 2^(level-1) |
|
349
|
|
|
|
|
|
|
|
|
350
|
15088
|
|
|
|
|
22792
|
my $diagonal_length = $self->{'diagonal_length'}; |
|
351
|
15088
|
|
|
|
|
36259
|
my ($len,$level) = round_down_pow (($x+1)/($diagonal_length+2), 2); |
|
352
|
|
|
|
|
|
|
### $level |
|
353
|
|
|
|
|
|
|
### $len |
|
354
|
15088
|
50
|
|
|
|
31220
|
if (is_infinite($level)) { |
|
355
|
0
|
|
|
|
|
0
|
return $level; |
|
356
|
|
|
|
|
|
|
} |
|
357
|
|
|
|
|
|
|
|
|
358
|
15088
|
|
|
|
|
25997
|
my $n = 0; |
|
359
|
15088
|
|
|
|
|
28033
|
my $nlen = ((6*$diagonal_length+4)*$len*$len-1)/3; |
|
360
|
15088
|
|
|
|
|
24492
|
$len *= ($self->{'diagonal_length'}+2); |
|
361
|
|
|
|
|
|
|
### $len |
|
362
|
|
|
|
|
|
|
### $nlen |
|
363
|
|
|
|
|
|
|
|
|
364
|
15088
|
|
|
|
|
19556
|
my $n_last_1; |
|
365
|
15088
|
|
|
|
|
26321
|
foreach (0 .. $level) { |
|
366
|
|
|
|
|
|
|
### at: "loop=$_ x=$x,y=$y n=$n nlen=$nlen len=$len diag cmp ".(2*$len-2) |
|
367
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
368
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
369
|
|
|
|
|
|
|
|
|
370
|
37510
|
100
|
|
|
|
67682
|
if ($x+$y <= 2*$len-2) { |
|
371
|
|
|
|
|
|
|
### part 0 or 1... |
|
372
|
20665
|
100
|
|
|
|
34596
|
if ($x < $len-1) { |
|
373
|
|
|
|
|
|
|
### part 0 ... |
|
374
|
6256
|
|
|
|
|
8659
|
$n_last_1 = 0; |
|
375
|
|
|
|
|
|
|
} else { |
|
376
|
|
|
|
|
|
|
### part 1 ... |
|
377
|
14409
|
|
|
|
|
25408
|
($x,$y) = ($len-2-$y, $x-($len-1)); # shift then rotate +90 |
|
378
|
14409
|
|
|
|
|
20608
|
$n += $nlen; |
|
379
|
14409
|
|
|
|
|
19932
|
$n_last_1 = 1; |
|
380
|
|
|
|
|
|
|
} |
|
381
|
|
|
|
|
|
|
} else { |
|
382
|
16845
|
|
|
|
|
26814
|
$n += 2*$nlen + 1; # +1 for middle point |
|
383
|
|
|
|
|
|
|
### part 2 or 3 ... |
|
384
|
16845
|
100
|
|
|
|
27619
|
if ($y < $len) { |
|
385
|
|
|
|
|
|
|
### part 2... |
|
386
|
8671
|
|
|
|
|
15518
|
($x,$y) = ($y-1, 2*$len-2-$x); # shift y-1 then rotate -90 |
|
387
|
8671
|
|
|
|
|
11735
|
$n_last_1 = 0; |
|
388
|
|
|
|
|
|
|
} else { |
|
389
|
|
|
|
|
|
|
#### digit 3... |
|
390
|
8174
|
|
|
|
|
10803
|
$x -= $len; |
|
391
|
8174
|
|
|
|
|
10723
|
$y -= $len; |
|
392
|
8174
|
|
|
|
|
10709
|
$n += $nlen; |
|
393
|
|
|
|
|
|
|
} |
|
394
|
16845
|
100
|
|
|
|
29107
|
if ($x < 0) { |
|
395
|
81
|
|
|
|
|
198
|
return undef; |
|
396
|
|
|
|
|
|
|
} |
|
397
|
|
|
|
|
|
|
} |
|
398
|
37429
|
|
|
|
|
51888
|
$len /= 2; |
|
399
|
37429
|
|
|
|
|
58753
|
$nlen = ($nlen-1)/4; |
|
400
|
|
|
|
|
|
|
} |
|
401
|
|
|
|
|
|
|
|
|
402
|
|
|
|
|
|
|
### end at: "x=$x,y=$y n=$n last2=$n_last_1" |
|
403
|
|
|
|
|
|
|
### assert: $x >= 0 |
|
404
|
|
|
|
|
|
|
### assert: $y >= 0 |
|
405
|
|
|
|
|
|
|
|
|
406
|
15007
|
100
|
100
|
|
|
47601
|
if ($x == $y || $x == $y+1) { |
|
|
|
100
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
407
|
8932
|
|
|
|
|
12884
|
$n += $x+$y; |
|
408
|
|
|
|
|
|
|
} elsif ($n_last_1 && $x == $diagonal_length-1 && $y == $diagonal_length) { |
|
409
|
|
|
|
|
|
|
# in between diagonals |
|
410
|
458
|
|
|
|
|
780
|
$n += 2*$diagonal_length+1; |
|
411
|
|
|
|
|
|
|
} else { |
|
412
|
5617
|
|
|
|
|
13000
|
return undef; |
|
413
|
|
|
|
|
|
|
} |
|
414
|
|
|
|
|
|
|
|
|
415
|
9390
|
|
|
|
|
19620
|
return $n*$arms + $arm; |
|
416
|
|
|
|
|
|
|
} |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
# not exact |
|
419
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
420
|
32
|
|
|
32
|
1
|
192
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
421
|
|
|
|
|
|
|
### SierpinskiCurveStair rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
422
|
|
|
|
|
|
|
|
|
423
|
32
|
|
|
|
|
71
|
$x1 = round_nearest ($x1); |
|
424
|
32
|
|
|
|
|
87
|
$x2 = round_nearest ($x2); |
|
425
|
32
|
|
|
|
|
72
|
$y1 = round_nearest ($y1); |
|
426
|
32
|
|
|
|
|
70
|
$y2 = round_nearest ($y2); |
|
427
|
32
|
50
|
|
|
|
87
|
($x1,$x2) = ($x2,$x1) if $x1 > $x2; |
|
428
|
32
|
50
|
|
|
|
85
|
($y1,$y2) = ($y2,$y1) if $y1 > $y2; |
|
429
|
|
|
|
|
|
|
|
|
430
|
|
|
|
|
|
|
# x2 |
|
431
|
|
|
|
|
|
|
# y2 +-------+ * |
|
432
|
|
|
|
|
|
|
# | | * |
|
433
|
|
|
|
|
|
|
# y1 +-------+ * |
|
434
|
|
|
|
|
|
|
# * |
|
435
|
|
|
|
|
|
|
# * |
|
436
|
|
|
|
|
|
|
# * |
|
437
|
|
|
|
|
|
|
# ------------------ |
|
438
|
|
|
|
|
|
|
# |
|
439
|
|
|
|
|
|
|
# |
|
440
|
|
|
|
|
|
|
# * |
|
441
|
|
|
|
|
|
|
# x1 * x2 * |
|
442
|
|
|
|
|
|
|
# +-----*-+y2* |
|
443
|
|
|
|
|
|
|
# | *| * |
|
444
|
|
|
|
|
|
|
# | * * |
|
445
|
|
|
|
|
|
|
# | |* * |
|
446
|
|
|
|
|
|
|
# | | ** |
|
447
|
|
|
|
|
|
|
# +-------+y1* |
|
448
|
|
|
|
|
|
|
# ---------------- |
|
449
|
|
|
|
|
|
|
# |
|
450
|
32
|
|
|
|
|
61
|
my $arms = $self->{'arms'}; |
|
451
|
32
|
100
|
33
|
|
|
248
|
if (($arms <= 4 |
|
|
|
50
|
33
|
|
|
|
|
|
452
|
|
|
|
|
|
|
? ($y2 < 0 # y2 negative, nothing ... |
|
453
|
|
|
|
|
|
|
|| ($arms == 1 && $x2 <= $y1) |
|
454
|
|
|
|
|
|
|
|| ($arms == 2 && $x2 < 0) |
|
455
|
|
|
|
|
|
|
|| ($arms == 3 && $x2 < -$y2)) |
|
456
|
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
# arms >= 5 |
|
458
|
|
|
|
|
|
|
: ($y2 < 0 |
|
459
|
|
|
|
|
|
|
&& (($arms == 5 && $x1 >= $y2) |
|
460
|
|
|
|
|
|
|
|| ($arms == 6 && $x1 >= 0) |
|
461
|
|
|
|
|
|
|
|| ($arms == 7 && $x1 > 3-$y2))))) { |
|
462
|
|
|
|
|
|
|
### rect outside octants, for arms: $arms |
|
463
|
|
|
|
|
|
|
### $x1 |
|
464
|
|
|
|
|
|
|
### $y2 |
|
465
|
0
|
|
|
|
|
0
|
return (1,0); |
|
466
|
|
|
|
|
|
|
} |
|
467
|
|
|
|
|
|
|
|
|
468
|
32
|
|
|
|
|
63
|
my $max = $x2; # arms 1,8 using X, starting at X=1 |
|
469
|
32
|
100
|
|
|
|
79
|
if ($arms >= 2) { |
|
470
|
|
|
|
|
|
|
# arms 2,3 upper using Y, starting at Y=1 |
|
471
|
28
|
|
|
|
|
80
|
_apply_max ($max, $y2); |
|
472
|
|
|
|
|
|
|
|
|
473
|
28
|
100
|
|
|
|
76
|
if ($arms >= 4) { |
|
474
|
|
|
|
|
|
|
# arms 4,5 right using X, starting at X=-2 |
|
475
|
20
|
|
|
|
|
59
|
_apply_max ($max, -1-$x1); |
|
476
|
|
|
|
|
|
|
|
|
477
|
20
|
100
|
|
|
|
62
|
if ($arms >= 6) { |
|
478
|
|
|
|
|
|
|
# arms 6,7 down using Y, starting at Y=-2 |
|
479
|
12
|
|
|
|
|
55
|
_apply_max ($max, -1-$y1); |
|
480
|
|
|
|
|
|
|
} |
|
481
|
|
|
|
|
|
|
} |
|
482
|
|
|
|
|
|
|
} |
|
483
|
|
|
|
|
|
|
### $max |
|
484
|
|
|
|
|
|
|
|
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
# points(level) = (4^(level+2) - 1) / 3 |
|
487
|
|
|
|
|
|
|
# Nlast(level) = (4^(level+2) - 1) / 3 - 1 |
|
488
|
|
|
|
|
|
|
# = (4^(level+2) - 4) / 3 |
|
489
|
|
|
|
|
|
|
# then + arms-1 for last of arms |
|
490
|
|
|
|
|
|
|
# Nhi = Nlast(level) * arms + arms-1 |
|
491
|
|
|
|
|
|
|
# = (Nlast(level + 1)) * arms - 1 |
|
492
|
|
|
|
|
|
|
# = ((4^(level+2) - 4) / 3 + 1) * arms - 1 |
|
493
|
|
|
|
|
|
|
# = ((4^(level+2) - 1) / 3) * arms - 1 |
|
494
|
|
|
|
|
|
|
# |
|
495
|
|
|
|
|
|
|
# len(level) = = (L+2)*2^(level-1) - 2 |
|
496
|
|
|
|
|
|
|
# points(level) = ((3*P+1)*4^level - 1) / 3 |
|
497
|
|
|
|
|
|
|
# |
|
498
|
32
|
|
|
|
|
110
|
my ($pow,$level) = round_down_pow ($max/($self->{'diagonal_length'}+2), |
|
499
|
|
|
|
|
|
|
2); |
|
500
|
|
|
|
|
|
|
return (0, |
|
501
|
32
|
|
|
|
|
132
|
((6*$self->{'diagonal_length'}+4)*4*$pow*$pow - 1) / 3 |
|
502
|
|
|
|
|
|
|
* $arms - 1); |
|
503
|
|
|
|
|
|
|
} |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
# set $_[0] to the max of $_[0] and $_[1] |
|
506
|
|
|
|
|
|
|
sub _apply_max { |
|
507
|
|
|
|
|
|
|
### _apply_max(): "$_[0] cf $_[1]" |
|
508
|
60
|
100
|
|
60
|
|
145
|
unless ($_[0] > $_[1]) { |
|
509
|
28
|
|
|
|
|
56
|
$_[0] = $_[1]; |
|
510
|
|
|
|
|
|
|
} |
|
511
|
|
|
|
|
|
|
} |
|
512
|
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
|
|
514
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
515
|
|
|
|
|
|
|
|
|
516
|
|
|
|
|
|
|
# Nlevel = ((3L+2)*4^level - 5) / 3 |
|
517
|
|
|
|
|
|
|
# LevelPoints = Nlevel+1 |
|
518
|
|
|
|
|
|
|
# Nlevel(arms) = (Nlevel+1)*arms - 1 |
|
519
|
|
|
|
|
|
|
# |
|
520
|
|
|
|
|
|
|
# Eg. L=1 level=1 (5*4-5)/3 = 5 |
|
521
|
|
|
|
|
|
|
# arms=8 ((5*4-5)/3+1)*8 - 1 = 47 |
|
522
|
|
|
|
|
|
|
# |
|
523
|
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
sub level_to_n_range { |
|
525
|
12
|
|
|
12
|
1
|
719
|
my ($self, $level) = @_; |
|
526
|
|
|
|
|
|
|
return (0, |
|
527
|
|
|
|
|
|
|
(4**$level * (3*$self->{'diagonal_length'}+2) - 2) / 3 |
|
528
|
12
|
|
|
|
|
55
|
* $self->{'arms'} - 1); |
|
529
|
|
|
|
|
|
|
} |
|
530
|
|
|
|
|
|
|
sub n_to_level { |
|
531
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
532
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
533
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
534
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
535
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
|
536
|
0
|
|
|
|
|
|
my $diagonal_div = 3*$self->{'diagonal_length'} + 2; |
|
537
|
0
|
|
|
|
|
|
my ($pow,$exp) = round_up_pow ((3*$n+3) / (3*$self->{'diagonal_length'}+2), |
|
538
|
|
|
|
|
|
|
4); |
|
539
|
0
|
|
|
|
|
|
return $exp; |
|
540
|
|
|
|
|
|
|
} |
|
541
|
|
|
|
|
|
|
|
|
542
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
543
|
|
|
|
|
|
|
1; |
|
544
|
|
|
|
|
|
|
__END__ |