| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
# math-image --path=MultipleRings --lines |
|
21
|
|
|
|
|
|
|
# |
|
22
|
|
|
|
|
|
|
# math-image --wx --path=MultipleRings,ring_shape=polygon,step=5 --scale=50 --figure=ring --all |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# |
|
25
|
|
|
|
|
|
|
# FIXME: $y equal across bottom side centre ? |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
package Math::PlanePath::MultipleRings; |
|
29
|
15
|
|
|
15
|
|
2999
|
use 5.004; |
|
|
15
|
|
|
|
|
53
|
|
|
30
|
15
|
|
|
15
|
|
82
|
use strict; |
|
|
15
|
|
|
|
|
30
|
|
|
|
15
|
|
|
|
|
426
|
|
|
31
|
15
|
|
|
15
|
|
78
|
use Carp 'croak'; |
|
|
15
|
|
|
|
|
36
|
|
|
|
15
|
|
|
|
|
1159
|
|
|
32
|
|
|
|
|
|
|
#use List::Util 'min','max'; |
|
33
|
|
|
|
|
|
|
*min = \&Math::PlanePath::_min; |
|
34
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# Math::Trig has asin_real() too, but it just runs the blob of code in |
|
37
|
|
|
|
|
|
|
# Math::Complex -- prefer libm |
|
38
|
15
|
|
|
15
|
|
868
|
use Math::Libm 'asin', 'hypot'; |
|
|
15
|
|
|
|
|
6183
|
|
|
|
15
|
|
|
|
|
864
|
|
|
39
|
|
|
|
|
|
|
|
|
40
|
15
|
|
|
15
|
|
93
|
use vars '$VERSION', '@ISA'; |
|
|
15
|
|
|
|
|
29
|
|
|
|
15
|
|
|
|
|
949
|
|
|
41
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath'); |
|
42
|
15
|
|
|
15
|
|
1636
|
use Math::PlanePath; |
|
|
15
|
|
|
|
|
30
|
|
|
|
15
|
|
|
|
|
842
|
|
|
43
|
|
|
|
|
|
|
*_sqrtint = \&Math::PlanePath::_sqrtint; |
|
44
|
|
|
|
|
|
|
$VERSION = 128; |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
47
|
15
|
|
|
15
|
|
97
|
'is_infinite'; |
|
|
15
|
|
|
|
|
28
|
|
|
|
15
|
|
|
|
|
625
|
|
|
48
|
15
|
|
|
15
|
|
1629
|
use Math::PlanePath::SacksSpiral; |
|
|
15
|
|
|
|
|
35
|
|
|
|
15
|
|
|
|
|
553
|
|
|
49
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
51
|
|
|
|
|
|
|
# use Smart::Comments; |
|
52
|
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
|
|
54
|
15
|
|
|
15
|
|
87
|
use constant 1.02; # for leading underscore |
|
|
15
|
|
|
|
|
237
|
|
|
|
15
|
|
|
|
|
597
|
|
|
55
|
15
|
|
|
15
|
|
90
|
use constant _PI => 2*atan2(1,0); |
|
|
15
|
|
|
|
|
35
|
|
|
|
15
|
|
|
|
|
888
|
|
|
56
|
|
|
|
|
|
|
|
|
57
|
15
|
|
|
15
|
|
103
|
use constant figure => 'circle'; |
|
|
15
|
|
|
|
|
37
|
|
|
|
15
|
|
|
|
|
723
|
|
|
58
|
15
|
|
|
15
|
|
85
|
use constant n_frac_discontinuity => 0; |
|
|
15
|
|
|
|
|
27
|
|
|
|
15
|
|
|
|
|
723
|
|
|
59
|
15
|
|
|
15
|
|
97
|
use constant gcdxy_minimum => 0; |
|
|
15
|
|
|
|
|
31
|
|
|
|
15
|
|
|
|
|
1480
|
|
|
60
|
|
|
|
|
|
|
|
|
61
|
15
|
|
|
|
|
20058
|
use constant parameter_info_array => |
|
62
|
|
|
|
|
|
|
[{ name => 'step', |
|
63
|
|
|
|
|
|
|
display => 'Step', |
|
64
|
|
|
|
|
|
|
share_key => 'step_6_min3', |
|
65
|
|
|
|
|
|
|
type => 'integer', |
|
66
|
|
|
|
|
|
|
minimum => 0, |
|
67
|
|
|
|
|
|
|
default => 6, |
|
68
|
|
|
|
|
|
|
width => 3, |
|
69
|
|
|
|
|
|
|
description => 'How much longer each ring is than the preceding.', |
|
70
|
|
|
|
|
|
|
}, |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
{ name => 'ring_shape', |
|
73
|
|
|
|
|
|
|
display => 'Ring Shape', |
|
74
|
|
|
|
|
|
|
type => 'enum', |
|
75
|
|
|
|
|
|
|
default => 'circle', |
|
76
|
|
|
|
|
|
|
choices => ['circle','polygon'], |
|
77
|
|
|
|
|
|
|
choices_display => ['Circle','Polygon'], |
|
78
|
|
|
|
|
|
|
description => 'The shape of each ring, either a circle or a polygon of "step" many sides.', |
|
79
|
|
|
|
|
|
|
}, |
|
80
|
15
|
|
|
15
|
|
101
|
]; |
|
|
15
|
|
|
|
|
33
|
|
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
sub turn_any_left { |
|
83
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
84
|
|
|
|
|
|
|
# step == 0 is always straight ahead |
|
85
|
0
|
|
|
|
|
0
|
return ($self->{'step'} != 0); |
|
86
|
|
|
|
|
|
|
} |
|
87
|
|
|
|
|
|
|
sub turn_any_right { |
|
88
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
89
|
|
|
|
|
|
|
# step=0 is always straight ahead |
|
90
|
|
|
|
|
|
|
# step=1 is never right |
|
91
|
0
|
|
|
|
|
0
|
return ($self->{'step'} >= 2); |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
{ |
|
94
|
|
|
|
|
|
|
my @_UNDOCUMENTED__turn_any_right_at_n |
|
95
|
|
|
|
|
|
|
= (undef, # 0 |
|
96
|
|
|
|
|
|
|
undef, # 1 |
|
97
|
|
|
|
|
|
|
131, # 2 |
|
98
|
|
|
|
|
|
|
44, # 3 |
|
99
|
|
|
|
|
|
|
23, # 4 |
|
100
|
|
|
|
|
|
|
29, # 5 |
|
101
|
|
|
|
|
|
|
17, # 6 |
|
102
|
|
|
|
|
|
|
20, # 7 |
|
103
|
|
|
|
|
|
|
23); # 8 |
|
104
|
|
|
|
|
|
|
sub _UNDOCUMENTED__turn_any_right_at_n { |
|
105
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
106
|
0
|
0
|
|
|
|
0
|
$self->turn_any_right or return undef; |
|
107
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
108
|
|
|
|
|
|
|
# step=8 24, 9, 10, 11 |
|
109
|
|
|
|
|
|
|
return $self->n_start - 1 + ($self->{'step'} < 9 ? 3*$self->{'step'} |
|
110
|
0
|
0
|
|
|
|
0
|
: $self->{'step'}); |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
return $self->n_start |
|
113
|
|
|
|
|
|
|
+ ($self->{'step'} <= $#_UNDOCUMENTED__turn_any_right_at_n |
|
114
|
|
|
|
|
|
|
? $_UNDOCUMENTED__turn_any_right_at_n[$self->{'step'}] |
|
115
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} - 1); |
|
116
|
|
|
|
|
|
|
} |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
sub turn_any_straight { |
|
120
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
121
|
|
|
|
|
|
|
# step=0 straight line |
|
122
|
|
|
|
|
|
|
# step=1 straight at N=2 |
|
123
|
|
|
|
|
|
|
# step=2 straight at N=2 |
|
124
|
|
|
|
|
|
|
return ($self->{'step'} <= 2 ? 1 |
|
125
|
0
|
0
|
|
|
|
0
|
: $self->{'ring_shape'} eq 'circle' ? 0 # never straight |
|
|
|
0
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
: 1); # ring_shape=polygon sides straight |
|
127
|
|
|
|
|
|
|
} |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
131
|
|
|
|
|
|
|
# Electricity transmission cable in sixes, with one at centre ? |
|
132
|
|
|
|
|
|
|
# 7 poppy |
|
133
|
|
|
|
|
|
|
# 19 hyacinth |
|
134
|
|
|
|
|
|
|
# 37 marigold |
|
135
|
|
|
|
|
|
|
# 61 cowslip |
|
136
|
|
|
|
|
|
|
# 127 bluebonnet |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
# An n-gon of points many vertices has each angle |
|
139
|
|
|
|
|
|
|
# alpha = 2*pi/points |
|
140
|
|
|
|
|
|
|
# The radius r to a vertex, using a line perpendicular to the line segment |
|
141
|
|
|
|
|
|
|
# sin(alpha/2) = (1/2)/r |
|
142
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/points) |
|
143
|
|
|
|
|
|
|
# And with points = d*step, starting from d=1 |
|
144
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/(d*step)) |
|
145
|
|
|
|
|
|
|
|
|
146
|
|
|
|
|
|
|
# step==0 is a straight line y==0 x=0,1,2,..., anything else whole plane |
|
147
|
|
|
|
|
|
|
sub x_negative { |
|
148
|
4
|
|
|
4
|
1
|
7
|
my ($self) = @_; |
|
149
|
4
|
|
|
|
|
13
|
return ($self->{'step'} > 0); |
|
150
|
|
|
|
|
|
|
} |
|
151
|
|
|
|
|
|
|
*y_negative = \&x_negative; |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
sub y_maximum { |
|
154
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
155
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 0 # step=0 always Y=0 |
|
156
|
|
|
|
|
|
|
: undef); |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
160
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
161
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? undef # no negatives |
|
162
|
|
|
|
|
|
|
: $self->{'step'} == 1 ? 3 |
|
163
|
0
|
0
|
|
|
|
0
|
: $self->n_start + int($self->{'step'}/4) + 1); |
|
|
|
0
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
} |
|
165
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
166
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
167
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? undef # no negatives |
|
168
|
|
|
|
|
|
|
: $self->{'step'} <= 2 ? 6 |
|
169
|
0
|
0
|
|
|
|
0
|
: $self->n_start + int($self->{'step'}/2) + 1); |
|
|
|
0
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
sub sumxy_minimum { |
|
173
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
174
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? 0 : undef); |
|
175
|
|
|
|
|
|
|
} |
|
176
|
|
|
|
|
|
|
sub sumabsxy_minimum { |
|
177
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
178
|
|
|
|
|
|
|
# first point N=1 innermost ring |
|
179
|
0
|
|
|
|
|
0
|
my ($x,$y) = $self->n_to_xy($self->n_start); |
|
180
|
0
|
|
|
|
|
0
|
return $x; |
|
181
|
|
|
|
|
|
|
} |
|
182
|
|
|
|
|
|
|
*diffxy_minimum = \&sumxy_minimum; |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
# step=0 X=0,Y=0 AbsDiff=0 |
|
185
|
|
|
|
|
|
|
# step=3 N=88 X=Y=5.3579957587697 ring of 24 is a multiple of 8 |
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
sub rsquared_minimum { |
|
188
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
189
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
190
|
0
|
0
|
|
|
|
0
|
if ($step <= 1) { |
|
191
|
|
|
|
|
|
|
# step=0 along X axis starting X=0,Y=0 |
|
192
|
|
|
|
|
|
|
# step=1 start at origin |
|
193
|
0
|
|
|
|
|
0
|
return 0; |
|
194
|
|
|
|
|
|
|
} |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
# step=3 *--___ |
|
197
|
|
|
|
|
|
|
# circle | --__ o 0.5/r = sin60 = sqrt(3)/2 |
|
198
|
|
|
|
|
|
|
# | o __* / | \ r = 1/sqrt(3) |
|
199
|
|
|
|
|
|
|
# | ___-- / | \ r^2 = 1/3 |
|
200
|
|
|
|
|
|
|
# *-- *---------* |
|
201
|
|
|
|
|
|
|
# 1/2 |
|
202
|
|
|
|
|
|
|
# polygon |
|
203
|
|
|
|
|
|
|
# o 0.5/r = sin60 = sqrt(3)/2 |
|
204
|
|
|
|
|
|
|
# / | \ r = 1/sqrt(3) |
|
205
|
|
|
|
|
|
|
# / | \ r^2 = 1/3 |
|
206
|
|
|
|
|
|
|
# *---------* |
|
207
|
|
|
|
|
|
|
# 1/2 |
|
208
|
|
|
|
|
|
|
# |
|
209
|
0
|
0
|
|
|
|
0
|
if ($step == 3) { |
|
210
|
0
|
0
|
|
|
|
0
|
return ($self->{'ring_shape'} eq 'polygon' ? 3/4 : 1/3); |
|
211
|
|
|
|
|
|
|
} |
|
212
|
0
|
0
|
|
|
|
0
|
if ($step == 4) { |
|
213
|
|
|
|
|
|
|
# radius = sqrt(2)/2, rsquared=1/2 |
|
214
|
0
|
|
|
|
|
0
|
return 0.5; |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
|
|
217
|
|
|
|
|
|
|
# _numsides_to_r() returns 1, no need for a special case here |
|
218
|
|
|
|
|
|
|
# if ($step == 6) { |
|
219
|
|
|
|
|
|
|
# # hexagon |
|
220
|
|
|
|
|
|
|
# return 1; |
|
221
|
|
|
|
|
|
|
# } |
|
222
|
|
|
|
|
|
|
|
|
223
|
0
|
|
|
|
|
0
|
my $r; |
|
224
|
0
|
0
|
0
|
|
|
0
|
if ($step >= 6 || $self->{'ring_shape'} eq 'polygon') { |
|
225
|
0
|
|
|
|
|
0
|
$r = _numsides_to_r($step,_PI); |
|
226
|
|
|
|
|
|
|
} else { |
|
227
|
0
|
|
|
|
|
0
|
$r = $self->{'base_r'} + 1; |
|
228
|
|
|
|
|
|
|
} |
|
229
|
0
|
|
|
|
|
0
|
return $r*$r; |
|
230
|
|
|
|
|
|
|
} |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
234
|
|
|
|
|
|
|
# dx_minimum() etc |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
# step <= 6 |
|
237
|
|
|
|
|
|
|
# R=base_r+d |
|
238
|
|
|
|
|
|
|
# theta = 2*$n * $pi / ($d * $step) |
|
239
|
|
|
|
|
|
|
# = 2pi/(d*step) |
|
240
|
|
|
|
|
|
|
# dX -> R*sin(theta) |
|
241
|
|
|
|
|
|
|
# -> R*theta |
|
242
|
|
|
|
|
|
|
# = (base_r+d)*2pi/(d*step) |
|
243
|
|
|
|
|
|
|
# -> 2pi/step |
|
244
|
|
|
|
|
|
|
# |
|
245
|
|
|
|
|
|
|
# step=5 across first ring |
|
246
|
|
|
|
|
|
|
# N=6 at X=base_r+2, Y=0 |
|
247
|
|
|
|
|
|
|
# N=5 at R=base_r+1 theta = 2pi/5 |
|
248
|
|
|
|
|
|
|
# X=(base_r+1)*cos(theta) |
|
249
|
|
|
|
|
|
|
# dX = base_r+2 - (base_r+1)*cos(theta) |
|
250
|
|
|
|
|
|
|
# |
|
251
|
|
|
|
|
|
|
# step=6 across first ring |
|
252
|
|
|
|
|
|
|
# base_r = 0.5/sin(_PI/6) - 1 |
|
253
|
|
|
|
|
|
|
# = 0.5/0.5 - 1 |
|
254
|
|
|
|
|
|
|
# = 0 |
|
255
|
|
|
|
|
|
|
# N=7 at X=base_r+2, Y=0 |
|
256
|
|
|
|
|
|
|
# N=6 at R=base_r+1 theta = 2pi/6 |
|
257
|
|
|
|
|
|
|
# X=(base_r+1)*cos(theta) |
|
258
|
|
|
|
|
|
|
# dX = base_r+2 - (base_r+1)*cos(theta) |
|
259
|
|
|
|
|
|
|
# = base_r+2 - (base_r+1)*0.5 |
|
260
|
|
|
|
|
|
|
# = 1.5*base_r + 1.5 |
|
261
|
|
|
|
|
|
|
# = 1.5 |
|
262
|
|
|
|
|
|
|
# |
|
263
|
|
|
|
|
|
|
# step > 6 |
|
264
|
|
|
|
|
|
|
# R = 0.5 / sin($pi / ($d*$step)) |
|
265
|
|
|
|
|
|
|
# diff = 0.5 / sin($pi / ($d*$step)) - 0.5 / sin($pi / (($d-1)*$step)) |
|
266
|
|
|
|
|
|
|
# -> 0.5 / ($pi / ($d*$step)) - 0.5 / ($pi / (($d-1)*$step)) |
|
267
|
|
|
|
|
|
|
# = 0.5 * ($d*$step) / $pi - 0.5 * (($d-1)*$step) / $pi |
|
268
|
|
|
|
|
|
|
# = step*0.5/pi * ($d - ($d-1)) |
|
269
|
|
|
|
|
|
|
# = step*0.5/pi |
|
270
|
|
|
|
|
|
|
# and extra from N=step to N=step+1 |
|
271
|
|
|
|
|
|
|
# * (1-cos(2pi/step)) |
|
272
|
|
|
|
|
|
|
# |
|
273
|
|
|
|
|
|
|
sub dx_minimum { |
|
274
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
275
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} == 0) { |
|
276
|
0
|
|
|
|
|
0
|
return 1; # horizontal only |
|
277
|
|
|
|
|
|
|
} |
|
278
|
|
|
|
|
|
|
|
|
279
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} > 6) { |
|
280
|
0
|
|
|
|
|
0
|
return -1; # supremum, unless polygon and step even |
|
281
|
|
|
|
|
|
|
} |
|
282
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
283
|
|
|
|
|
|
|
# step=3,4,5 |
|
284
|
0
|
|
|
|
|
0
|
return (-2*_PI()) / $self->{'step'}; |
|
285
|
|
|
|
|
|
|
} else { |
|
286
|
0
|
|
|
|
|
0
|
return (-2*_PI()) / $self->{'step'}; |
|
287
|
|
|
|
|
|
|
} |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
sub dx_maximum { |
|
291
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
292
|
|
|
|
|
|
|
return ($self->{'step'} == 0 |
|
293
|
|
|
|
|
|
|
? 1 # horizontal only |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
: $self->{'step'} == 5 |
|
296
|
|
|
|
|
|
|
? $self->{'base_r'}+2 - ($self->{'base_r'}+1)*cos(2*_PI()/5) |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
: $self->{'step'} == 6 |
|
299
|
|
|
|
|
|
|
? 1.5 |
|
300
|
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
: $self->{'step'} <= 6 |
|
302
|
|
|
|
|
|
|
? (2*_PI()) / $self->{'step'} |
|
303
|
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
# step > 6, between rings |
|
305
|
|
|
|
|
|
|
: (0.5/_PI()) * $self->{'step'} |
|
306
|
0
|
0
|
|
|
|
0
|
* (2-cos(2*_PI()/$self->{'step'}))); |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
} |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
sub dy_minimum { |
|
310
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
311
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 0 # horizontal only |
|
312
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? (-2*_PI) / $self->{'step'} |
|
|
|
0
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
: -1); # supremum |
|
314
|
|
|
|
|
|
|
} |
|
315
|
|
|
|
|
|
|
sub dy_maximum { |
|
316
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
317
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 0 # horizontal only |
|
318
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? (2*_PI) / $self->{'step'} |
|
|
|
0
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
: 1); # supremum |
|
320
|
|
|
|
|
|
|
} |
|
321
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list { |
|
322
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
323
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 ? (1,0) # E only |
|
324
|
|
|
|
|
|
|
: ()); # unlimited |
|
325
|
|
|
|
|
|
|
} |
|
326
|
|
|
|
|
|
|
|
|
327
|
|
|
|
|
|
|
sub absdx_minimum { |
|
328
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
329
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
330
|
0
|
0
|
|
|
|
0
|
if ($step == 0) { |
|
331
|
0
|
|
|
|
|
0
|
return 1; # horizontal dX=1 always |
|
332
|
|
|
|
|
|
|
} |
|
333
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
334
|
0
|
0
|
|
|
|
0
|
if ($step % 2) { |
|
335
|
0
|
|
|
|
|
0
|
return 0; # polygons with odd num sides have left vertical dX=0 |
|
336
|
|
|
|
|
|
|
} else { |
|
337
|
0
|
|
|
|
|
0
|
return sin(_PI/2 /$step); |
|
338
|
|
|
|
|
|
|
} |
|
339
|
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
# if ($self->{'step'} % 2 == 1) { |
|
341
|
|
|
|
|
|
|
# |
|
342
|
|
|
|
|
|
|
# return 0; |
|
343
|
|
|
|
|
|
|
# } else { |
|
344
|
|
|
|
|
|
|
# return abs($self->dx_minimum); |
|
345
|
|
|
|
|
|
|
# } |
|
346
|
|
|
|
|
|
|
} |
|
347
|
0
|
|
|
|
|
0
|
return 0; |
|
348
|
|
|
|
|
|
|
} |
|
349
|
|
|
|
|
|
|
sub absdy_minimum { |
|
350
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
351
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
352
|
0
|
0
|
|
|
|
0
|
if ($step == 0) { |
|
353
|
0
|
|
|
|
|
0
|
return 0; # horizontal dX=1 always |
|
354
|
|
|
|
|
|
|
} |
|
355
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
356
|
0
|
0
|
|
|
|
0
|
if ($step == 3) { |
|
357
|
0
|
|
|
|
|
0
|
return 0.5; # sin(30 degrees) innermost polygon |
|
358
|
|
|
|
|
|
|
} |
|
359
|
0
|
|
|
|
|
0
|
my $frac = ($step+2) % 4; |
|
360
|
0
|
0
|
|
|
|
0
|
if ($frac == 3) { $frac = 1; } |
|
|
0
|
|
|
|
|
0
|
|
|
361
|
0
|
|
|
|
|
0
|
return sin(_PI/2 * $frac/$step); |
|
362
|
|
|
|
|
|
|
} |
|
363
|
0
|
|
|
|
|
0
|
return 0; |
|
364
|
|
|
|
|
|
|
} |
|
365
|
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
sub dsumxy_minimum { |
|
367
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
368
|
0
|
0
|
|
|
|
0
|
return ($self->{'step'} == 0 |
|
369
|
|
|
|
|
|
|
? 1 # horizontal only |
|
370
|
|
|
|
|
|
|
: -1); # infimum |
|
371
|
|
|
|
|
|
|
} |
|
372
|
15
|
|
|
15
|
|
131
|
use constant dsumxy_maximum => 1; |
|
|
15
|
|
|
|
|
39
|
|
|
|
15
|
|
|
|
|
44972
|
|
|
373
|
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
# FIXME: for step=1 is there a supremum at 9 or thereabouts? |
|
375
|
|
|
|
|
|
|
# and for other step<6 too? |
|
376
|
|
|
|
|
|
|
# 2*dXmax * sqrt(2) ? |
|
377
|
|
|
|
|
|
|
sub ddiffxy_minimum { |
|
378
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
379
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 1 # horizontal only |
|
380
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? $self->dx_minimum * sqrt(2) |
|
|
|
0
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
: -1); # infimum |
|
382
|
|
|
|
|
|
|
} |
|
383
|
|
|
|
|
|
|
sub ddiffxy_maximum { |
|
384
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
385
|
|
|
|
|
|
|
return ($self->{'step'} == 0 ? 1 # horizontal only |
|
386
|
0
|
0
|
|
|
|
0
|
: $self->{'step'} <= 6 ? $self->dx_maximum * sqrt(2) |
|
|
|
0
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
: 1); # supremum |
|
388
|
|
|
|
|
|
|
} |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
391
|
|
|
|
|
|
|
# dir_maximum_dxdy() |
|
392
|
|
|
|
|
|
|
|
|
393
|
|
|
|
|
|
|
# polygon step many sides |
|
394
|
|
|
|
|
|
|
# start at vertical angle 1/4 plus 0.5/step, then k*1/step each side |
|
395
|
|
|
|
|
|
|
# a = 1/4 + (k+1/2)/step |
|
396
|
|
|
|
|
|
|
# = (1 + 4(k+1/2)/step) / 4 |
|
397
|
|
|
|
|
|
|
# = ((4*k+2)/step + 1) / 4 |
|
398
|
|
|
|
|
|
|
# |
|
399
|
|
|
|
|
|
|
# maximum want 1 > a >= 1-1/step |
|
400
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step >= 1-1/step |
|
401
|
|
|
|
|
|
|
# (k+1/2)/step >= 3/4-1/step |
|
402
|
|
|
|
|
|
|
# k+1/2 >= 3*step/4-1 |
|
403
|
|
|
|
|
|
|
# k >= 3*step/4-3/2 |
|
404
|
|
|
|
|
|
|
# k >= (3*step-6)/4 |
|
405
|
|
|
|
|
|
|
# k = ceil((3*step-6)/4) |
|
406
|
|
|
|
|
|
|
# = floor((3*step-6)/4 + 3/4) |
|
407
|
|
|
|
|
|
|
# = floor((3*step-3)/4) |
|
408
|
|
|
|
|
|
|
# high side |
|
409
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step < 1 |
|
410
|
|
|
|
|
|
|
# (k+1/2)/step < 3/4 |
|
411
|
|
|
|
|
|
|
# k+1/2 < 3*step/4 |
|
412
|
|
|
|
|
|
|
# k < (3*step-2)/4 |
|
413
|
|
|
|
|
|
|
# k = floor((3*step-2)/4 - 1/4) |
|
414
|
|
|
|
|
|
|
# = floor((3*step-3)/4) |
|
415
|
|
|
|
|
|
|
# |
|
416
|
|
|
|
|
|
|
# so |
|
417
|
|
|
|
|
|
|
# a = 1/4 + (floor((3*step-3)/4) + 1/2)/step |
|
418
|
|
|
|
|
|
|
# = (1 + 4*(floor((3*step-3)/4) + 1/2)/step) / 4 |
|
419
|
|
|
|
|
|
|
# = ((floor((3*step-3)/4)*4 + 2)/step + 1) / 4 |
|
420
|
|
|
|
|
|
|
# step=4 a = 7/8 |
|
421
|
|
|
|
|
|
|
# step=5 a = 19/20 |
|
422
|
|
|
|
|
|
|
# step=6 a = 5/6 |
|
423
|
|
|
|
|
|
|
# step=7 a = 25/28 |
|
424
|
|
|
|
|
|
|
# step=8 a = 15/16 |
|
425
|
|
|
|
|
|
|
# step=10 a = 9/10 |
|
426
|
|
|
|
|
|
|
# return (int((3*$step-3)/4) * 4 + 2)/$step + 1; |
|
427
|
|
|
|
|
|
|
# is full circle less 4,3,2,1 as step-2 mod 4 |
|
428
|
|
|
|
|
|
|
# |
|
429
|
|
|
|
|
|
|
# sub dir4_maximum { |
|
430
|
|
|
|
|
|
|
# my ($self) = @_; |
|
431
|
|
|
|
|
|
|
# if ($self->{'step'} == 0) { |
|
432
|
|
|
|
|
|
|
# return 0; # horizontal only |
|
433
|
|
|
|
|
|
|
# } |
|
434
|
|
|
|
|
|
|
# my $step = $self->{'step'}; |
|
435
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
|
436
|
|
|
|
|
|
|
# return (($step-2)%4 - 4)/$step + 4; |
|
437
|
|
|
|
|
|
|
# } |
|
438
|
|
|
|
|
|
|
# return 4; # supremum, full circle |
|
439
|
|
|
|
|
|
|
# } |
|
440
|
|
|
|
|
|
|
|
|
441
|
|
|
|
|
|
|
# want a >= 1 |
|
442
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step >= 1 |
|
443
|
|
|
|
|
|
|
# (k+1/2)/step >= 3/4 |
|
444
|
|
|
|
|
|
|
# k+1/2 >= 3*step/4 |
|
445
|
|
|
|
|
|
|
# k >= 3*step/4 - 1/2 |
|
446
|
|
|
|
|
|
|
# k >= (3*step-2)/4 |
|
447
|
|
|
|
|
|
|
# k = ceil((3*step-2)/4) |
|
448
|
|
|
|
|
|
|
# = floor((3*step-2)/4 + 3/4) |
|
449
|
|
|
|
|
|
|
# = floor((3*step+1)/4) |
|
450
|
|
|
|
|
|
|
# min_a = 1/4 + (floor((3*step+1)/4) + 1/2)/step - 1 |
|
451
|
|
|
|
|
|
|
# = (1 + 4*(floor((3*step+1)/4) + 1/2)/step ) / 4 |
|
452
|
|
|
|
|
|
|
# = ((4*floor((3*step+1)/4) + 2)/step + 1) / 4 - 1 |
|
453
|
|
|
|
|
|
|
# = ((floor((3*step+1)/4)*4 + 2)/step - 3) / 4 |
|
454
|
|
|
|
|
|
|
# return (int((3*$step+1)/4) * 4 + 2)/$step - 3; |
|
455
|
|
|
|
|
|
|
# is 0,1,2,3 as step-2 mod 4 |
|
456
|
|
|
|
|
|
|
# return (($step-2) % 4) / $step; |
|
457
|
|
|
|
|
|
|
# |
|
458
|
|
|
|
|
|
|
# but last of ring across to first of next may be shallower |
|
459
|
|
|
|
|
|
|
# |
|
460
|
|
|
|
|
|
|
# sub dir4_minimum { |
|
461
|
|
|
|
|
|
|
# my ($self) = @_; |
|
462
|
|
|
|
|
|
|
# my $step = $self->{'step'}; |
|
463
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
|
464
|
|
|
|
|
|
|
# if ($step % 4 != 2) { # polygon step=2mod4 includes horizontal ... |
|
465
|
|
|
|
|
|
|
# my ($dx,$dy) = $self->n_to_dxdy($self->{'step'}); |
|
466
|
|
|
|
|
|
|
# return min (atan2($dy,$dx) * (2/_PI), |
|
467
|
|
|
|
|
|
|
# (($step-2) % 4) / $step); |
|
468
|
|
|
|
|
|
|
# } |
|
469
|
|
|
|
|
|
|
# |
|
470
|
|
|
|
|
|
|
# } |
|
471
|
|
|
|
|
|
|
# return 0; # horizontal |
|
472
|
|
|
|
|
|
|
# } |
|
473
|
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
sub dir_minimum_dxdy { |
|
475
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
476
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
477
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
478
|
0
|
0
|
|
|
|
0
|
return $self->n_to_dxdy($step == 9 |
|
479
|
|
|
|
|
|
|
? 9 |
|
480
|
|
|
|
|
|
|
: int((3*$step+5)/4)); |
|
481
|
|
|
|
|
|
|
} |
|
482
|
0
|
|
|
|
|
0
|
return (1,0); # horizontal |
|
483
|
|
|
|
|
|
|
} |
|
484
|
|
|
|
|
|
|
sub dir_maximum_dxdy { |
|
485
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
486
|
0
|
0
|
|
|
|
0
|
if ($self->{'step'} == 0) { |
|
487
|
0
|
|
|
|
|
0
|
return (1,0); # step=0 horizontal always |
|
488
|
|
|
|
|
|
|
} |
|
489
|
|
|
|
|
|
|
|
|
490
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
491
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
492
|
0
|
|
|
|
|
0
|
return $self->n_to_dxdy(int((3*$step+1)/4)); # 1 before the minimum |
|
493
|
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
# # just before 3/4 way around, then half back .... |
|
495
|
|
|
|
|
|
|
# # sides side |
|
496
|
|
|
|
|
|
|
# # ----- ---- |
|
497
|
|
|
|
|
|
|
# # 3 1 |
|
498
|
|
|
|
|
|
|
# # 4 2 |
|
499
|
|
|
|
|
|
|
# # 5 3 |
|
500
|
|
|
|
|
|
|
# # 6 3 |
|
501
|
|
|
|
|
|
|
# # 7 4 |
|
502
|
|
|
|
|
|
|
# # 8 5 |
|
503
|
|
|
|
|
|
|
# # 9 6 |
|
504
|
|
|
|
|
|
|
# # 10 6 |
|
505
|
|
|
|
|
|
|
# return _circlefrac_to_xy (1, int((3*$step-3)/4), $step, _PI); |
|
506
|
|
|
|
|
|
|
} |
|
507
|
|
|
|
|
|
|
|
|
508
|
0
|
|
|
|
|
0
|
return (0,0); # supremum, full circle |
|
509
|
|
|
|
|
|
|
} |
|
510
|
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
512
|
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
sub new { |
|
514
|
|
|
|
|
|
|
### MultipleRings new() ... |
|
515
|
146
|
|
|
146
|
1
|
15154
|
my $self = shift->SUPER::new(@_); |
|
516
|
|
|
|
|
|
|
|
|
517
|
146
|
|
|
|
|
259
|
my $step = $self->{'step'}; |
|
518
|
146
|
50
|
|
|
|
339
|
$step = $self->{'step'} = (! defined $step ? 6 # default |
|
|
|
100
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
: $step < 0 ? 0 # minimum |
|
520
|
|
|
|
|
|
|
: $step); |
|
521
|
|
|
|
|
|
|
### $step |
|
522
|
|
|
|
|
|
|
|
|
523
|
146
|
|
100
|
|
|
437
|
my $ring_shape = ($self->{'ring_shape'} ||= 'circle'); |
|
524
|
146
|
50
|
66
|
|
|
271
|
if (! ($ring_shape eq 'circle' || $ring_shape eq 'polygon')) { |
|
525
|
0
|
|
|
|
|
0
|
croak "Unrecognised ring_shape option: ", $ring_shape; |
|
526
|
|
|
|
|
|
|
} |
|
527
|
146
|
100
|
|
|
|
243
|
if ($step < 3) { |
|
528
|
|
|
|
|
|
|
# polygon shape only for step >= 3 |
|
529
|
79
|
|
|
|
|
116
|
$ring_shape = $self->{'ring_shape'} = 'circle'; |
|
530
|
|
|
|
|
|
|
} |
|
531
|
|
|
|
|
|
|
|
|
532
|
146
|
100
|
|
|
|
352
|
if ($ring_shape eq 'polygon') { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
533
|
|
|
|
|
|
|
### polygon ... |
|
534
|
4
|
50
|
|
|
|
9
|
if ($step == 6) { |
|
|
|
0
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
### 0.5/sin(PI/6)=1 exactly ... |
|
536
|
4
|
|
|
|
|
8
|
$self->{'base_r'} = 1; |
|
537
|
|
|
|
|
|
|
} elsif ($step == 3) { |
|
538
|
|
|
|
|
|
|
### 0.5/sin(PI/3)=sqrt(3)/3 ... |
|
539
|
0
|
|
|
|
|
0
|
$self->{'base_r'} = sqrt(3)/3; |
|
540
|
|
|
|
|
|
|
} else { |
|
541
|
0
|
|
|
|
|
0
|
$self->{'base_r'} = 0.5/sin(_PI/$step); |
|
542
|
|
|
|
|
|
|
} |
|
543
|
|
|
|
|
|
|
|
|
544
|
|
|
|
|
|
|
} elsif ($step == 6) { |
|
545
|
|
|
|
|
|
|
### 0.5/sin(PI/6) = 1 exactly ... |
|
546
|
18
|
|
|
|
|
32
|
$self->{'base_r'} = 0; |
|
547
|
|
|
|
|
|
|
|
|
548
|
|
|
|
|
|
|
} elsif ($step == 4) { |
|
549
|
|
|
|
|
|
|
### 0.5/sin(PI/4) = sqrt(2)/2 ... |
|
550
|
13
|
|
|
|
|
21
|
$self->{'base_r'} = sqrt(2)/2 - 1; |
|
551
|
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
} elsif ($step == 3) { |
|
553
|
|
|
|
|
|
|
### 0.5/sin(PI/3) = sqrt(3)/3 ... |
|
554
|
12
|
|
|
|
|
20
|
$self->{'base_r'} = sqrt(3)/3 - 1; |
|
555
|
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
} elsif ($step < 6) { |
|
557
|
|
|
|
|
|
|
### sin: $step>1 && sin(_PI/$step) |
|
558
|
83
|
|
66
|
|
|
190
|
$self->{'base_r'} = ($step > 1 && 0.5/sin(_PI/$step)) - 1; |
|
559
|
|
|
|
|
|
|
} |
|
560
|
|
|
|
|
|
|
### base r: $self->{'base_r'} |
|
561
|
|
|
|
|
|
|
|
|
562
|
146
|
|
|
|
|
230
|
return $self; |
|
563
|
|
|
|
|
|
|
} |
|
564
|
|
|
|
|
|
|
|
|
565
|
|
|
|
|
|
|
# with N decremented |
|
566
|
|
|
|
|
|
|
# d = [ 1, 2, 3, 4, 5 ] |
|
567
|
|
|
|
|
|
|
# N = [ 0, 1, 3, 6, 10 ] |
|
568
|
|
|
|
|
|
|
# |
|
569
|
|
|
|
|
|
|
# N = (1/2 d^2 - 1/2 d) |
|
570
|
|
|
|
|
|
|
# = (1/2*$d**2 - 1/2*$d) |
|
571
|
|
|
|
|
|
|
# = ((0.5*$d - 0.5)*$d) |
|
572
|
|
|
|
|
|
|
# = 0.5*$d*($d-1) |
|
573
|
|
|
|
|
|
|
# |
|
574
|
|
|
|
|
|
|
# d = 1/2 + sqrt(2 * $n + 1/4) |
|
575
|
|
|
|
|
|
|
# = 0.5 + sqrt(2*$n + 0.25) |
|
576
|
|
|
|
|
|
|
# = [ 1 + 2*sqrt(2n + 1/4) ] / 2 |
|
577
|
|
|
|
|
|
|
# = [ 1 + sqrt(8n + 1) ] / 2 |
|
578
|
|
|
|
|
|
|
# |
|
579
|
|
|
|
|
|
|
# (d+1)d/2 - d(d-1)/2 |
|
580
|
|
|
|
|
|
|
# = [ (d^2 + d) - (d^2-d) ] / 2 |
|
581
|
|
|
|
|
|
|
# = [ d^2 + d - d^2 + d ] / 2 |
|
582
|
|
|
|
|
|
|
# = 2d/2 = d |
|
583
|
|
|
|
|
|
|
# |
|
584
|
|
|
|
|
|
|
# radius |
|
585
|
|
|
|
|
|
|
# step > 6 1 / (2 * sin(pi / ($d*$step)) |
|
586
|
|
|
|
|
|
|
# step <= 6 Rbase + d |
|
587
|
|
|
|
|
|
|
# |
|
588
|
|
|
|
|
|
|
# usual polygon formula R = a / 2*sin(pi/n) |
|
589
|
|
|
|
|
|
|
# cf inner radius r = a / 2*tan(pi/n) |
|
590
|
|
|
|
|
|
|
# along chord |
|
591
|
|
|
|
|
|
|
# |
|
592
|
|
|
|
|
|
|
# polygon horizontal when a=1 |
|
593
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step = 1 |
|
594
|
|
|
|
|
|
|
# (k+1/2)/step = 3/4 |
|
595
|
|
|
|
|
|
|
# k+1/2 = 3*step/4 |
|
596
|
|
|
|
|
|
|
# k = 3*step/4 - 1/2 |
|
597
|
|
|
|
|
|
|
# k = ()/4 |
|
598
|
|
|
|
|
|
|
# 4*k = 3*step-2 |
|
599
|
|
|
|
|
|
|
# and when a=1/2 |
|
600
|
|
|
|
|
|
|
# 1/4 + (k+1/2)/step = 1/2 |
|
601
|
|
|
|
|
|
|
# (k+1/2)/step = 1/4 |
|
602
|
|
|
|
|
|
|
# k+1/2 = step/4 |
|
603
|
|
|
|
|
|
|
# 4*k+2 = step |
|
604
|
|
|
|
|
|
|
|
|
605
|
|
|
|
|
|
|
# 1/2 / R = sin(2pi/sides) |
|
606
|
|
|
|
|
|
|
# 1/2 / (R^2 - 1/4) = tan(2pi/sides) |
|
607
|
|
|
|
|
|
|
# f(x) = 1/2 / R - sin(2pi/sides) = $f |
|
608
|
|
|
|
|
|
|
# f'(x) = -1/2 / R^2 - cos(2pi/sides) = $slope |
|
609
|
|
|
|
|
|
|
# $r-$f/$slope better approx |
|
610
|
|
|
|
|
|
|
# (1/2 / R - sin(2pi/sides)) / (-1/2 / R^2 - cos(2pi/sides)) |
|
611
|
|
|
|
|
|
|
# = (R/2 - R^2 sin(2pi/sides)) / (-1/2 - R^2 * cos(2pi/sides)) |
|
612
|
|
|
|
|
|
|
|
|
613
|
|
|
|
|
|
|
sub n_to_xy { |
|
614
|
179
|
|
|
179
|
1
|
947
|
my ($self, $n) = @_; |
|
615
|
|
|
|
|
|
|
### MultipleRings n_to_xy(): "n=$n step=$self->{'step'} shape=$self->{'ring_shape'}" |
|
616
|
|
|
|
|
|
|
|
|
617
|
|
|
|
|
|
|
# "$n<1" separate test from decrement so as to warn on undef |
|
618
|
|
|
|
|
|
|
# don't have anything sensible for infinity, and _PI / infinity would |
|
619
|
|
|
|
|
|
|
# throw a div by zero |
|
620
|
179
|
50
|
|
|
|
295
|
if ($n < 1) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
621
|
179
|
50
|
|
|
|
875
|
if (is_infinite($n)) { return ($n,$n); } |
|
|
0
|
|
|
|
|
0
|
|
|
622
|
179
|
|
|
|
|
1571
|
$n -= 1; |
|
623
|
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
### decremented n: $n |
|
625
|
179
|
|
|
|
|
940
|
my $step = $self->{'step'}; |
|
626
|
179
|
100
|
|
|
|
278
|
if (! $step) { |
|
627
|
|
|
|
|
|
|
### step==0 goes along X axis ... |
|
628
|
13
|
|
|
|
|
33
|
return ($n, 0); |
|
629
|
|
|
|
|
|
|
} |
|
630
|
|
|
|
|
|
|
|
|
631
|
166
|
|
|
|
|
382
|
my $d = int((_sqrtint(8*$n/$step + 1) + 1) / 2); |
|
632
|
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
### d frac: (sqrt(int(8*$n) + 1) + 1) / 2 |
|
634
|
|
|
|
|
|
|
### d int: "$d" |
|
635
|
|
|
|
|
|
|
### base: ($d*($d-1)/2).'' |
|
636
|
|
|
|
|
|
|
### next base: (($d+1)*$d/2).'' |
|
637
|
|
|
|
|
|
|
### assert: $n >= ($d*($d-1)/2) |
|
638
|
|
|
|
|
|
|
### assert: $n < ($step * ($d+1) * $d / 2) |
|
639
|
|
|
|
|
|
|
|
|
640
|
166
|
|
|
|
|
1433
|
$n -= $d*($d-1)/2 * $step; |
|
641
|
|
|
|
|
|
|
### n remainder: "$n" |
|
642
|
|
|
|
|
|
|
### assert: $n >= 0 |
|
643
|
|
|
|
|
|
|
### assert: $n < $d*$step |
|
644
|
|
|
|
|
|
|
|
|
645
|
166
|
|
|
|
|
1808
|
my $zero = $n * 0; |
|
646
|
166
|
100
|
|
|
|
780
|
if (ref $n) { |
|
647
|
2
|
100
|
|
|
|
10
|
if ($n->isa('Math::BigInt')) { |
|
|
|
50
|
|
|
|
|
|
|
648
|
1
|
|
|
|
|
5
|
$n = Math::PlanePath::SacksSpiral::_bigfloat()->new($n); |
|
649
|
|
|
|
|
|
|
} elsif ($n->isa('Math::BigRat')) { |
|
650
|
0
|
|
|
|
|
0
|
$n = $n->as_float; |
|
651
|
|
|
|
|
|
|
} |
|
652
|
2
|
50
|
|
|
|
176
|
if ($n->isa('Math::BigFloat')) { |
|
653
|
|
|
|
|
|
|
### bigfloat ... |
|
654
|
2
|
|
|
|
|
27
|
$d = Math::BigFloat->new($d); |
|
655
|
|
|
|
|
|
|
} |
|
656
|
|
|
|
|
|
|
} |
|
657
|
166
|
|
|
|
|
431
|
my $pi = _pi($n); |
|
658
|
|
|
|
|
|
|
### $pi |
|
659
|
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
# my $base_r = $self->{'base_r'}; |
|
661
|
|
|
|
|
|
|
# $base_r = Math::BigFloat->new($base_r); |
|
662
|
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
{ |
|
664
|
166
|
|
|
|
|
1176
|
my $numsides; |
|
|
166
|
|
|
|
|
225
|
|
|
665
|
|
|
|
|
|
|
my $r; |
|
666
|
166
|
100
|
|
|
|
255
|
if ($self->{'ring_shape'} eq 'circle') { |
|
667
|
|
|
|
|
|
|
### circle ... |
|
668
|
162
|
|
|
|
|
217
|
$numsides = $d * $step; |
|
669
|
162
|
100
|
|
|
|
873
|
if ($step > 6) { |
|
670
|
20
|
|
|
|
|
32
|
$r = 0.5 / sin($pi / $numsides); |
|
671
|
|
|
|
|
|
|
} else { |
|
672
|
142
|
|
|
|
|
151
|
my $base_r; |
|
673
|
142
|
100
|
|
|
|
263
|
if ($step == 6) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
674
|
17
|
|
|
|
|
23
|
$base_r = 0; # exactly |
|
675
|
|
|
|
|
|
|
} elsif ($step == 4) { |
|
676
|
|
|
|
|
|
|
### 0.5/sin(PI/4)=sqrt(2)/2 ... |
|
677
|
21
|
|
|
|
|
34
|
$base_r = sqrt(0.5 + $zero) - 1; # sqrt() instead of sin() |
|
678
|
|
|
|
|
|
|
} elsif ($step == 3) { |
|
679
|
|
|
|
|
|
|
### 0.5/sin(PI/3)=sqrt(3)/3 ... |
|
680
|
19
|
|
|
|
|
31
|
$base_r = sqrt(3 + $zero)/3 - 1; # sqrt() instead of sin() |
|
681
|
|
|
|
|
|
|
} elsif ($step == 1) { |
|
682
|
51
|
|
|
|
|
60
|
$base_r = -1; # so initial d=1 at $r=0 |
|
683
|
|
|
|
|
|
|
} else { |
|
684
|
34
|
|
|
|
|
55
|
$base_r = 0.5/sin($pi/$step) - 1; |
|
685
|
|
|
|
|
|
|
} |
|
686
|
142
|
|
|
|
|
173
|
$r = $base_r + $d; |
|
687
|
|
|
|
|
|
|
} |
|
688
|
|
|
|
|
|
|
} else { |
|
689
|
|
|
|
|
|
|
### polygon ... |
|
690
|
4
|
|
|
|
|
7
|
$numsides = $step; |
|
691
|
4
|
|
|
|
|
10
|
my $base_r = _numsides_to_r($step,$pi); |
|
692
|
4
|
50
|
|
|
|
7
|
if ($step > 6) { |
|
693
|
0
|
|
|
|
|
0
|
$r = $base_r*$d; |
|
694
|
|
|
|
|
|
|
} else { |
|
695
|
4
|
|
|
|
|
9
|
$r = $base_r + ($d-1)/cos($pi/$step); |
|
696
|
|
|
|
|
|
|
} |
|
697
|
4
|
|
|
|
|
7
|
$n /= $d; |
|
698
|
|
|
|
|
|
|
} |
|
699
|
|
|
|
|
|
|
### n with frac: $n |
|
700
|
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
# numsides even N > numsides/2 |
|
702
|
|
|
|
|
|
|
# numsides odd N >= (numsides+1)/2 = ceil(numsides/2) |
|
703
|
166
|
|
|
|
|
687
|
my $y_neg; |
|
704
|
166
|
100
|
|
|
|
277
|
if (2*$n >= $numsides) { |
|
705
|
51
|
|
|
|
|
597
|
$n = $numsides - $n; |
|
706
|
51
|
|
|
|
|
321
|
$y_neg = 1; |
|
707
|
|
|
|
|
|
|
} |
|
708
|
|
|
|
|
|
|
|
|
709
|
166
|
|
|
|
|
585
|
my $x_neg; |
|
710
|
|
|
|
|
|
|
my $xy_transpose; |
|
711
|
166
|
100
|
|
|
|
293
|
if ($numsides % 2 == 0) { |
|
712
|
120
|
100
|
|
|
|
1578
|
if (4*$n >= $numsides) { |
|
713
|
48
|
|
|
|
|
524
|
$n = $numsides/2 - $n; |
|
714
|
48
|
|
|
|
|
1058
|
$x_neg = 1; |
|
715
|
|
|
|
|
|
|
} |
|
716
|
120
|
100
|
100
|
|
|
753
|
if ($numsides % 4 == 0 && 8*$n >= $numsides) { |
|
717
|
19
|
|
|
|
|
36
|
$n = $numsides/4 - $n; |
|
718
|
19
|
|
|
|
|
23
|
$xy_transpose = 1; |
|
719
|
|
|
|
|
|
|
} |
|
720
|
|
|
|
|
|
|
} |
|
721
|
|
|
|
|
|
|
|
|
722
|
166
|
|
|
|
|
1578
|
my $side = int($n); |
|
723
|
166
|
|
|
|
|
346
|
$n -= $side; |
|
724
|
|
|
|
|
|
|
### $side |
|
725
|
|
|
|
|
|
|
|
|
726
|
166
|
|
|
|
|
469
|
my ($x, $y) = _circlefrac_to_xy($r, $side, $numsides, $pi); |
|
727
|
|
|
|
|
|
|
|
|
728
|
166
|
100
|
|
|
|
485548
|
if ($n) { |
|
729
|
|
|
|
|
|
|
# fractional n offset into side ... |
|
730
|
|
|
|
|
|
|
|
|
731
|
25
|
|
|
|
|
29
|
my ($to_x, $to_y); |
|
732
|
25
|
|
|
|
|
30
|
$side += 1; |
|
733
|
25
|
100
|
66
|
|
|
73
|
if (2*$side == $numsides+1) { |
|
|
|
100
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
# vertical at left, so X unchanged Y negate |
|
735
|
3
|
|
|
|
|
4
|
$to_x = $x; |
|
736
|
3
|
|
|
|
|
4
|
$to_y = - $y; |
|
737
|
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
} elsif (4*$side == $numsides+2 || 4*$side == 3*$numsides-2) { |
|
739
|
|
|
|
|
|
|
# horizontal at top or bottom, so Y unchanged X negate |
|
740
|
10
|
|
|
|
|
13
|
$to_x = - $x; |
|
741
|
10
|
|
|
|
|
14
|
$to_y = $y; |
|
742
|
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
} else { |
|
744
|
12
|
|
|
|
|
15
|
($to_x, $to_y) = _circlefrac_to_xy($r, $side, $numsides, $pi); |
|
745
|
|
|
|
|
|
|
} |
|
746
|
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
### $side |
|
748
|
|
|
|
|
|
|
### $r |
|
749
|
|
|
|
|
|
|
### from: "$x, $y" |
|
750
|
|
|
|
|
|
|
### to: "$to_x, $to_y" |
|
751
|
|
|
|
|
|
|
|
|
752
|
|
|
|
|
|
|
# If vertical or horizontal then don't apply the proportions since the |
|
753
|
|
|
|
|
|
|
# two parts $x*$n and $to_x*(1-$n) can round off giving the sum != to |
|
754
|
|
|
|
|
|
|
# the original $x. |
|
755
|
25
|
100
|
|
|
|
55
|
if ($to_x != $x) { |
|
756
|
22
|
|
|
|
|
32
|
$x = $x*(1-$n) + $to_x*$n; |
|
757
|
|
|
|
|
|
|
} |
|
758
|
25
|
100
|
|
|
|
40
|
if ($to_y != $y) { |
|
759
|
14
|
|
|
|
|
68
|
$y = $y*(1-$n) + $to_y*$n; |
|
760
|
|
|
|
|
|
|
} |
|
761
|
|
|
|
|
|
|
} |
|
762
|
|
|
|
|
|
|
|
|
763
|
166
|
100
|
|
|
|
306
|
if ($xy_transpose) { |
|
764
|
19
|
|
|
|
|
36
|
($x,$y) = ($y,$x); |
|
765
|
|
|
|
|
|
|
} |
|
766
|
166
|
100
|
|
|
|
228
|
if ($x_neg) { |
|
767
|
48
|
|
|
|
|
65
|
$x = -$x; |
|
768
|
|
|
|
|
|
|
} |
|
769
|
166
|
100
|
|
|
|
271
|
if ($y_neg) { |
|
770
|
51
|
|
|
|
|
60
|
$y = -$y; |
|
771
|
|
|
|
|
|
|
} |
|
772
|
|
|
|
|
|
|
|
|
773
|
|
|
|
|
|
|
### final: "x=$x y=$y" |
|
774
|
166
|
|
|
|
|
502
|
return ($x, $y); |
|
775
|
|
|
|
|
|
|
} |
|
776
|
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
# { |
|
778
|
|
|
|
|
|
|
# # && $d != 0 # watch out for overflow making d==0 ?? |
|
779
|
|
|
|
|
|
|
# # |
|
780
|
|
|
|
|
|
|
# my $d_step = $d*$step; |
|
781
|
|
|
|
|
|
|
# my $r = ($step > 6 |
|
782
|
|
|
|
|
|
|
# ? 0.5 / sin($pi / $d_step) |
|
783
|
|
|
|
|
|
|
# : $base_r + $d); |
|
784
|
|
|
|
|
|
|
# ### r: "$r" |
|
785
|
|
|
|
|
|
|
# |
|
786
|
|
|
|
|
|
|
# my $n2 = 2*$n; |
|
787
|
|
|
|
|
|
|
# |
|
788
|
|
|
|
|
|
|
# if ($n2 == int($n2)) { |
|
789
|
|
|
|
|
|
|
# if (($n2 % $d_step) == 0) { |
|
790
|
|
|
|
|
|
|
# ### theta=0 or theta=pi, exactly on X axis ... |
|
791
|
|
|
|
|
|
|
# return ($n ? -$r : $r, # n remainder 0 means +ve X axis, non-zero -ve |
|
792
|
|
|
|
|
|
|
# 0); |
|
793
|
|
|
|
|
|
|
# } |
|
794
|
|
|
|
|
|
|
# if (($d_step % 2) == 0) { |
|
795
|
|
|
|
|
|
|
# my $n2sub = $n2 - $d_step/2; |
|
796
|
|
|
|
|
|
|
# if (($n2sub % $d_step) == 0) { |
|
797
|
|
|
|
|
|
|
# ### theta=pi/2 or theta=3pi/2, exactly on Y axis ... |
|
798
|
|
|
|
|
|
|
# return (0, |
|
799
|
|
|
|
|
|
|
# $n2sub ? -$r : $r); |
|
800
|
|
|
|
|
|
|
# } |
|
801
|
|
|
|
|
|
|
# } |
|
802
|
|
|
|
|
|
|
# } |
|
803
|
|
|
|
|
|
|
# |
|
804
|
|
|
|
|
|
|
# my $theta = $n2 * $pi / $d_step; |
|
805
|
|
|
|
|
|
|
# |
|
806
|
|
|
|
|
|
|
# ### theta frac: (($n - $d*($d-1)/2)/$d).'' |
|
807
|
|
|
|
|
|
|
# ### theta: "$theta" |
|
808
|
|
|
|
|
|
|
# |
|
809
|
|
|
|
|
|
|
# return ($r * cos($theta), |
|
810
|
|
|
|
|
|
|
# $r * sin($theta)); |
|
811
|
|
|
|
|
|
|
# } |
|
812
|
|
|
|
|
|
|
} |
|
813
|
|
|
|
|
|
|
|
|
814
|
|
|
|
|
|
|
# $side is 0 to $numsides-1 |
|
815
|
|
|
|
|
|
|
sub _circlefrac_to_xy { |
|
816
|
178
|
|
|
178
|
|
270
|
my ($r, $side, $numsides, $pi) = @_; |
|
817
|
|
|
|
|
|
|
### _circlefrac_to_xy(): "r=$r side=$side numsides=$numsides pi=$pi" |
|
818
|
|
|
|
|
|
|
|
|
819
|
178
|
50
|
|
|
|
263
|
if (2*$side == $numsides) { |
|
820
|
|
|
|
|
|
|
### 180-degrees, so X=R, Y=0 ... |
|
821
|
0
|
|
|
|
|
0
|
return (-$r, 0); |
|
822
|
|
|
|
|
|
|
|
|
823
|
|
|
|
|
|
|
} |
|
824
|
178
|
100
|
|
|
|
1092
|
if (4*$side == $numsides) { |
|
825
|
|
|
|
|
|
|
### 90-degrees, so X=0, Y=R ... |
|
826
|
4
|
|
|
|
|
9
|
return (0, $r); |
|
827
|
|
|
|
|
|
|
} |
|
828
|
174
|
100
|
|
|
|
1032
|
if (6*$side == $numsides) { |
|
829
|
|
|
|
|
|
|
### 60-degrees, so X=R/2, Y=sqrt(3)/2*R ... |
|
830
|
7
|
|
|
|
|
19
|
return ($r / 2, |
|
831
|
|
|
|
|
|
|
$r * sqrt(3 + $r*0) / 2); |
|
832
|
|
|
|
|
|
|
} |
|
833
|
167
|
100
|
|
|
|
1003
|
if (8*$side == $numsides) { |
|
834
|
|
|
|
|
|
|
### 45-degrees, so X=Y=R/sqrt(2) ... |
|
835
|
1
|
|
|
|
|
4
|
my $x = $r / sqrt(2 + $r*0); |
|
836
|
1
|
|
|
|
|
2
|
return ($x, $x); |
|
837
|
|
|
|
|
|
|
} |
|
838
|
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
# my $two_pi = (ref $r && $r->isa('Math::BigFloat') |
|
840
|
|
|
|
|
|
|
# ? 2*Math::BigFloat->bpi; |
|
841
|
|
|
|
|
|
|
# : 2*_PI); |
|
842
|
|
|
|
|
|
|
# |
|
843
|
|
|
|
|
|
|
# if (2*$side == $numsides+1) { |
|
844
|
|
|
|
|
|
|
# ### first below X axis ... |
|
845
|
|
|
|
|
|
|
# my $theta = 2*$pi * ($side-1)/$numsides; |
|
846
|
|
|
|
|
|
|
# return ($r * cos($theta), |
|
847
|
|
|
|
|
|
|
# - $r * sin($theta)); |
|
848
|
|
|
|
|
|
|
# } |
|
849
|
|
|
|
|
|
|
# if (4*$side == $numsides+1) { |
|
850
|
|
|
|
|
|
|
# ### first past Y axis ... |
|
851
|
|
|
|
|
|
|
# my $theta = 2*$pi * ($side-1)/$numsides; |
|
852
|
|
|
|
|
|
|
# return (- $r * cos($theta), |
|
853
|
|
|
|
|
|
|
# $r * sin($theta)); |
|
854
|
|
|
|
|
|
|
# } |
|
855
|
|
|
|
|
|
|
|
|
856
|
|
|
|
|
|
|
### general case ... |
|
857
|
166
|
|
|
|
|
1068
|
my $theta = 2 * $pi * $side/$numsides; |
|
858
|
166
|
|
|
|
|
2847
|
return (cos($theta) * $r, |
|
859
|
|
|
|
|
|
|
sin($theta) * $r); |
|
860
|
|
|
|
|
|
|
} |
|
861
|
|
|
|
|
|
|
|
|
862
|
|
|
|
|
|
|
# my $numsides = $step; |
|
863
|
|
|
|
|
|
|
# if ($self->{'ring_shape'} eq 'polygon') { |
|
864
|
|
|
|
|
|
|
# $n /= $d; |
|
865
|
|
|
|
|
|
|
# my $base_r = _numsides_to_r($step,$pi); |
|
866
|
|
|
|
|
|
|
# if ($step > 6) { |
|
867
|
|
|
|
|
|
|
# $r = $base_r*$d; |
|
868
|
|
|
|
|
|
|
# } else { |
|
869
|
|
|
|
|
|
|
# $r = $base_r + ($d-1)/cos($pi/$step); |
|
870
|
|
|
|
|
|
|
# } |
|
871
|
|
|
|
|
|
|
# } else { |
|
872
|
|
|
|
|
|
|
# $numsides *= $d; |
|
873
|
|
|
|
|
|
|
# if ($step > 6) { |
|
874
|
|
|
|
|
|
|
# $r = _numsides_to_r($numsides,$pi); |
|
875
|
|
|
|
|
|
|
# } else { |
|
876
|
|
|
|
|
|
|
# $r = _numsides_to_r($step,$pi) + $d; |
|
877
|
|
|
|
|
|
|
# } |
|
878
|
|
|
|
|
|
|
# } |
|
879
|
|
|
|
|
|
|
# my $side = int($n); |
|
880
|
|
|
|
|
|
|
# $n -= $side; |
|
881
|
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
sub _numsides_to_r { |
|
883
|
4
|
|
|
4
|
|
8
|
my ($numsides, $pi) = @_; |
|
884
|
4
|
50
|
|
|
|
7
|
if ($numsides == 3) { return sqrt(0.75 + $pi*0); } |
|
|
0
|
|
|
|
|
0
|
|
|
885
|
4
|
50
|
|
|
|
8
|
if ($numsides == 4) { return sqrt(0.5 + $pi*0); } |
|
|
0
|
|
|
|
|
0
|
|
|
886
|
4
|
50
|
|
|
|
7
|
if ($numsides == 6) { return 1 + $pi*0; } |
|
|
4
|
|
|
|
|
9
|
|
|
887
|
0
|
|
|
|
|
0
|
return 0.5 / sin($pi/$numsides); |
|
888
|
|
|
|
|
|
|
} |
|
889
|
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
# for step=4 |
|
892
|
|
|
|
|
|
|
# R = sqrt(2)/2 + d |
|
893
|
|
|
|
|
|
|
# R^2 = (sqrt(2)/2 + d)^2 |
|
894
|
|
|
|
|
|
|
# = 2/4 + 2*sqrt(2)/2*d + d^2 |
|
895
|
|
|
|
|
|
|
# = 1/2 + d*sqrt(2) + d^2 |
|
896
|
|
|
|
|
|
|
# not an integer |
|
897
|
|
|
|
|
|
|
# |
|
898
|
|
|
|
|
|
|
sub n_to_rsquared { |
|
899
|
107
|
|
|
107
|
1
|
7577
|
my ($self, $n) = @_; |
|
900
|
|
|
|
|
|
|
### MultipleRings n_to_rsquared(): "n=$n" |
|
901
|
107
|
50
|
|
|
|
211
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
902
|
107
|
50
|
|
|
|
214
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
0
|
|
|
903
|
|
|
|
|
|
|
|
|
904
|
107
|
100
|
|
|
|
187
|
if (defined (my $r = _n_to_radius_exact($self,$n))) { |
|
905
|
55
|
|
|
|
|
112
|
return $r*$r; |
|
906
|
|
|
|
|
|
|
} |
|
907
|
52
|
100
|
|
|
|
85
|
if ($self->{'step'} == 1) { |
|
908
|
|
|
|
|
|
|
# $n < 4 covered by _n_to_radius_exact() |
|
909
|
|
|
|
|
|
|
|
|
910
|
26
|
100
|
66
|
|
|
72
|
if ($n >= 4 && $n < 7) { |
|
911
|
|
|
|
|
|
|
# triangle numsides=3 |
|
912
|
|
|
|
|
|
|
# N=4 at X=2, Y=0 |
|
913
|
|
|
|
|
|
|
# N=5 at X=-1, Y=sqrt(3) |
|
914
|
|
|
|
|
|
|
# N=4+f at X=2-3*f Y=f*sqrt(3) |
|
915
|
|
|
|
|
|
|
# R^2 = (2-3f)^2 + 3*f^2 |
|
916
|
|
|
|
|
|
|
# = 4-12f+9*f^2 + 3*f^2 |
|
917
|
|
|
|
|
|
|
# = 4-12f+12*f^2 |
|
918
|
|
|
|
|
|
|
# = 4*(1 - 3f + 3*f^2) |
|
919
|
|
|
|
|
|
|
# = 4 - 6*(2*f) + 3*(2*f)^2 |
|
920
|
|
|
|
|
|
|
# f=1/2 is R^2 = 1 |
|
921
|
|
|
|
|
|
|
# N=5+f at X=-1 Y = sqrt(3)*(1-2*f) |
|
922
|
|
|
|
|
|
|
# R^2 = 1 + 3*(1-2*f)^2 |
|
923
|
|
|
|
|
|
|
# = 1 + 3 - 3*4*f + 3*4*f^2 |
|
924
|
|
|
|
|
|
|
# = 4 - 12*f + 12*f^2 |
|
925
|
|
|
|
|
|
|
# = 4 - 12*(f - f^2) |
|
926
|
|
|
|
|
|
|
# = 4 - 12*f*(1 - f) |
|
927
|
|
|
|
|
|
|
|
|
928
|
12
|
|
|
|
|
19
|
$n -= int($n); |
|
929
|
12
|
|
|
|
|
29
|
return 4 - 12*$n*(1-$n); |
|
930
|
|
|
|
|
|
|
} |
|
931
|
|
|
|
|
|
|
|
|
932
|
14
|
100
|
66
|
|
|
37
|
if ($n >= 7 && $n < 11) { |
|
933
|
|
|
|
|
|
|
### square numsides=4 ... |
|
934
|
|
|
|
|
|
|
# X=3-3*f Y=3*f |
|
935
|
|
|
|
|
|
|
# R^2 = (3-3*f)^2 + (3*f)^2 |
|
936
|
|
|
|
|
|
|
# = 9*[ (1-f)^2 + f^2) ] |
|
937
|
|
|
|
|
|
|
# = 9*[ 1 - 2f + f^2 + f^2) ] |
|
938
|
|
|
|
|
|
|
# = 9*[ 1 - 2f + 2f^2 ] |
|
939
|
|
|
|
|
|
|
# = 9*[ 1 - 2(f - f^2) ] |
|
940
|
|
|
|
|
|
|
# = 9 - 18*f*(1 - f) |
|
941
|
|
|
|
|
|
|
# eg f=1/2 R^2 = (sqrt(2)/2*3)^2 = 2/4*9 = 9/2 |
|
942
|
|
|
|
|
|
|
|
|
943
|
8
|
|
|
|
|
14
|
$n -= int($n); |
|
944
|
8
|
|
|
|
|
20
|
return 9 - 18*$n*(1-$n); |
|
945
|
|
|
|
|
|
|
} |
|
946
|
|
|
|
|
|
|
|
|
947
|
6
|
50
|
33
|
|
|
18
|
if ($n >= 16 && $n < 22) { |
|
948
|
|
|
|
|
|
|
### hexagon numsides=6 ... |
|
949
|
|
|
|
|
|
|
# X=5 Y=0 to X=5*1/2 Y=5*sqrt(3)/2 |
|
950
|
|
|
|
|
|
|
# R^2 = (5 - 5/2*f)^2 + (5*sqrt(3)/2*f)^2 |
|
951
|
|
|
|
|
|
|
# = 25 - 25*f + 25*f^2 |
|
952
|
|
|
|
|
|
|
# = 25 - 25*f*(1-f) |
|
953
|
|
|
|
|
|
|
# eg f=1/2 R^2 = 18.75 |
|
954
|
|
|
|
|
|
|
# or f=1/5 R^2 = 21 exactly, though 1/5 not exact in binary floats |
|
955
|
|
|
|
|
|
|
|
|
956
|
6
|
|
|
|
|
12
|
$n -= int($n); |
|
957
|
6
|
|
|
|
|
15
|
return 25 - 25*$n*(1-$n); |
|
958
|
|
|
|
|
|
|
} |
|
959
|
|
|
|
|
|
|
|
|
960
|
|
|
|
|
|
|
# other numsides don't have sin(pi/numsides) an integer or sqrt so |
|
961
|
|
|
|
|
|
|
# aren't an exact R^2 |
|
962
|
|
|
|
|
|
|
} |
|
963
|
|
|
|
|
|
|
|
|
964
|
|
|
|
|
|
|
# ENHANCE-ME: step=1 various exact values for ring of 4 and ring of 6 |
|
965
|
|
|
|
|
|
|
|
|
966
|
26
|
|
|
|
|
60
|
return $self->SUPER::n_to_rsquared($n); |
|
967
|
|
|
|
|
|
|
} |
|
968
|
|
|
|
|
|
|
sub n_to_radius { |
|
969
|
43
|
|
|
43
|
1
|
2729
|
my ($self, $n) = @_; |
|
970
|
|
|
|
|
|
|
### n_to_radius(): $n |
|
971
|
|
|
|
|
|
|
|
|
972
|
43
|
50
|
|
|
|
92
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
973
|
43
|
50
|
|
|
|
90
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
0
|
|
|
974
|
|
|
|
|
|
|
|
|
975
|
43
|
100
|
|
|
|
78
|
if (defined (my $r = _n_to_radius_exact($self,$n))) { |
|
976
|
30
|
|
|
|
|
53
|
return $r; |
|
977
|
|
|
|
|
|
|
} |
|
978
|
13
|
|
|
|
|
38
|
return sqrt($self->n_to_rsquared($n)); |
|
979
|
|
|
|
|
|
|
# return $self->SUPER::n_to_radius($n); |
|
980
|
|
|
|
|
|
|
} |
|
981
|
|
|
|
|
|
|
|
|
982
|
|
|
|
|
|
|
# step=6 shape=polygon exact integer for some of second ring too |
|
983
|
|
|
|
|
|
|
# sub n_to_trsquared { |
|
984
|
|
|
|
|
|
|
# my ($self, $n) = @_; |
|
985
|
|
|
|
|
|
|
# ### MultipleRings n_to_rsquared(): "n=$n" |
|
986
|
|
|
|
|
|
|
# } |
|
987
|
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
sub _n_to_radius_exact { |
|
989
|
150
|
|
|
150
|
|
208
|
my ($self, $n) = @_; |
|
990
|
|
|
|
|
|
|
### _n_to_radius_exact(): "n=$n step=$self->{'step'}" |
|
991
|
|
|
|
|
|
|
|
|
992
|
150
|
50
|
|
|
|
229
|
if ($n < 1) { return undef; } |
|
|
0
|
|
|
|
|
0
|
|
|
993
|
150
|
50
|
|
|
|
241
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
0
|
|
|
994
|
|
|
|
|
|
|
|
|
995
|
150
|
|
|
|
|
245
|
my $step = $self->{'step'}; |
|
996
|
150
|
100
|
|
|
|
227
|
if ($step == 0) { |
|
997
|
13
|
|
|
|
|
37
|
return $n - 1; # step=0 goes along X axis starting X=0,Y=0 |
|
998
|
|
|
|
|
|
|
} |
|
999
|
|
|
|
|
|
|
|
|
1000
|
137
|
100
|
|
|
|
215
|
if ($step == 1) { |
|
|
|
100
|
|
|
|
|
|
|
1001
|
89
|
100
|
|
|
|
134
|
if ($n < 4) { |
|
1002
|
26
|
100
|
|
|
|
46
|
if ($n < 2) { |
|
1003
|
4
|
|
|
|
|
9
|
return 0; # 0,0 only, no jump across to next ring |
|
1004
|
|
|
|
|
|
|
} |
|
1005
|
22
|
|
|
|
|
28
|
$n -= int($n); |
|
1006
|
22
|
|
|
|
|
68
|
return abs(1-2*$n); |
|
1007
|
|
|
|
|
|
|
} |
|
1008
|
63
|
100
|
|
|
|
114
|
if ($n == int($n)) { |
|
1009
|
|
|
|
|
|
|
### step=1 radius=integer steps for integer N ... |
|
1010
|
22
|
|
|
|
|
41
|
return _n0_to_d($self,$n-1) - 1; |
|
1011
|
|
|
|
|
|
|
} |
|
1012
|
41
|
|
|
|
|
46
|
my $two_n = 2*$n; |
|
1013
|
41
|
50
|
66
|
|
|
160
|
if ($two_n == 9 || $two_n == 11 || $two_n == 13) { |
|
|
|
|
66
|
|
|
|
|
|
1014
|
|
|
|
|
|
|
# N=4.5 at X=1/2 Y=sqrt(3)/2 R^2 = 1/4 + 3/4 = 1 exactly |
|
1015
|
|
|
|
|
|
|
# N=5.5 at X=-1, Y=0 so R^2 = 1 exactly |
|
1016
|
|
|
|
|
|
|
# N=6.5 same as N=4.5 |
|
1017
|
2
|
|
|
|
|
7
|
return 1; |
|
1018
|
|
|
|
|
|
|
} |
|
1019
|
|
|
|
|
|
|
|
|
1020
|
|
|
|
|
|
|
} elsif ($step == 6) { |
|
1021
|
22
|
50
|
|
|
|
43
|
if ($n == int($n)) { |
|
1022
|
|
|
|
|
|
|
# step=6 circle all integer N has exact integer radius |
|
1023
|
|
|
|
|
|
|
# step=6 polygon only innermost ring N<=6 exact integer radius |
|
1024
|
22
|
50
|
66
|
|
|
49
|
if ($self->{'ring_shape'} eq 'circle' |
|
1025
|
|
|
|
|
|
|
|| $n <= 6) { # ring_shape=polygon |
|
1026
|
22
|
|
|
|
|
34
|
return _n0_to_d($self,$n-1); |
|
1027
|
|
|
|
|
|
|
} |
|
1028
|
|
|
|
|
|
|
} |
|
1029
|
|
|
|
|
|
|
} |
|
1030
|
|
|
|
|
|
|
|
|
1031
|
|
|
|
|
|
|
### no exact radius ... |
|
1032
|
65
|
|
|
|
|
127
|
return undef; |
|
1033
|
|
|
|
|
|
|
} |
|
1034
|
|
|
|
|
|
|
sub _n0_to_d { |
|
1035
|
44
|
|
|
44
|
|
61
|
my ($self, $n) = @_; |
|
1036
|
44
|
|
|
|
|
166
|
return int((_sqrtint(8*$n/$self->{'step'} + 1) + 1) / 2); |
|
1037
|
|
|
|
|
|
|
} |
|
1038
|
|
|
|
|
|
|
sub _d_to_n0base { |
|
1039
|
51
|
|
|
51
|
|
65
|
my ($self, $d) = @_; |
|
1040
|
51
|
|
|
|
|
100
|
return $d*($d-1)/2 * $self->{'step'}; |
|
1041
|
|
|
|
|
|
|
} |
|
1042
|
|
|
|
|
|
|
|
|
1043
|
|
|
|
|
|
|
# From above |
|
1044
|
|
|
|
|
|
|
# r = 0.5 / sin(pi/(d*step)) |
|
1045
|
|
|
|
|
|
|
# |
|
1046
|
|
|
|
|
|
|
# sin(pi/(d*step)) = 0.5/r |
|
1047
|
|
|
|
|
|
|
# pi/(d*step) = asin(1/(2*r)) |
|
1048
|
|
|
|
|
|
|
# 1/d * pi/step = asin(1/(2*r)) |
|
1049
|
|
|
|
|
|
|
# d = pi/(step*asin(1/(2*r))) |
|
1050
|
|
|
|
|
|
|
# |
|
1051
|
|
|
|
|
|
|
# r1 = 0.5 / sin(pi/(d*step)) |
|
1052
|
|
|
|
|
|
|
# r2 = 0.5 / sin(pi/((d+1)*step)) |
|
1053
|
|
|
|
|
|
|
# r2 - r1 = 0.5 / sin(pi/(d*step)) - 0.5 / sin(pi/((d+1)*step)) |
|
1054
|
|
|
|
|
|
|
# r2-r1 >= 1 when step>=7 ? |
|
1055
|
|
|
|
|
|
|
|
|
1056
|
|
|
|
|
|
|
sub _xy_to_d { |
|
1057
|
51
|
|
|
51
|
|
75
|
my ($self, $x, $y) = @_; |
|
1058
|
|
|
|
|
|
|
### _xy_to_d(): "x=$x y=$y" |
|
1059
|
|
|
|
|
|
|
|
|
1060
|
51
|
|
|
|
|
107
|
my $r = hypot ($x, $y); |
|
1061
|
51
|
50
|
|
|
|
102
|
if ($r < 0.5) { |
|
1062
|
|
|
|
|
|
|
### r smaller than 0.5 ring, treat as d=1 |
|
1063
|
|
|
|
|
|
|
# 1/(2*r) could be div-by-zero |
|
1064
|
|
|
|
|
|
|
# or 1/(2*r) > 1 would be asin()==-nan |
|
1065
|
51
|
|
|
|
|
108
|
return 1; |
|
1066
|
|
|
|
|
|
|
} |
|
1067
|
0
|
|
|
|
|
0
|
my $two_r = 2*$r; |
|
1068
|
0
|
0
|
|
|
|
0
|
if (is_infinite($two_r)) { |
|
1069
|
|
|
|
|
|
|
### 1/inf is a divide by zero, avoid that ... |
|
1070
|
0
|
|
|
|
|
0
|
return $two_r; |
|
1071
|
|
|
|
|
|
|
} |
|
1072
|
|
|
|
|
|
|
### $r |
|
1073
|
|
|
|
|
|
|
|
|
1074
|
0
|
|
|
|
|
0
|
my $step = $self->{'step'}; |
|
1075
|
0
|
0
|
|
|
|
0
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
1076
|
0
|
|
|
|
|
0
|
my $theta_frac = _xy_to_angle_frac($x,$y); |
|
1077
|
0
|
|
|
|
|
0
|
$theta_frac -= int($theta_frac*$step) / $step; # modulo 1/step |
|
1078
|
|
|
|
|
|
|
|
|
1079
|
0
|
|
|
|
|
0
|
my $r = hypot ($x, $y); |
|
1080
|
0
|
|
|
|
|
0
|
my $alpha = 2*_PI/$step; |
|
1081
|
0
|
|
|
|
|
0
|
my $theta = 2*_PI * $theta_frac; |
|
1082
|
|
|
|
|
|
|
### $r |
|
1083
|
|
|
|
|
|
|
### x=r*cos(theta): $r*cos($theta) |
|
1084
|
|
|
|
|
|
|
### y=r*sin(theta): $r*sin($theta) |
|
1085
|
|
|
|
|
|
|
|
|
1086
|
0
|
|
|
|
|
0
|
my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2); |
|
1087
|
|
|
|
|
|
|
### $p |
|
1088
|
|
|
|
|
|
|
### base_r: $self->{'base_r'} |
|
1089
|
|
|
|
|
|
|
### p - base_r: $p - $self->{'base_r'} |
|
1090
|
|
|
|
|
|
|
|
|
1091
|
0
|
0
|
|
|
|
0
|
if ($step >= 6) { |
|
1092
|
0
|
|
|
|
|
0
|
return $p / $self->{'base_r'}; |
|
1093
|
|
|
|
|
|
|
} else { |
|
1094
|
0
|
|
|
|
|
0
|
return ($p - $self->{'base_r'}) * cos(_PI/$step) + 1; |
|
1095
|
|
|
|
|
|
|
} |
|
1096
|
|
|
|
|
|
|
} |
|
1097
|
|
|
|
|
|
|
|
|
1098
|
0
|
0
|
|
|
|
0
|
if ($step > 6) { |
|
1099
|
|
|
|
|
|
|
### d frac by asin: _PI / ($step * asin(1/$two_r)) |
|
1100
|
0
|
|
|
|
|
0
|
return _PI / ($step * asin(1/$two_r)); |
|
1101
|
|
|
|
|
|
|
} else { |
|
1102
|
|
|
|
|
|
|
# $step <= 6 |
|
1103
|
|
|
|
|
|
|
### d frac by base: $r - $self->{'base_r'} |
|
1104
|
0
|
|
|
|
|
0
|
return $r - $self->{'base_r'}; |
|
1105
|
|
|
|
|
|
|
} |
|
1106
|
|
|
|
|
|
|
} |
|
1107
|
|
|
|
|
|
|
|
|
1108
|
|
|
|
|
|
|
sub xy_to_n { |
|
1109
|
56
|
|
|
56
|
1
|
138
|
my ($self, $x, $y) = @_; |
|
1110
|
|
|
|
|
|
|
### MultipleRings xy_to_n(): "$x, $y step=$self->{'step'} shape=$self->{'ring_shape'}" |
|
1111
|
|
|
|
|
|
|
|
|
1112
|
56
|
|
|
|
|
60
|
my $n; |
|
1113
|
56
|
|
|
|
|
83
|
my $step = $self->{'step'}; |
|
1114
|
56
|
100
|
|
|
|
87
|
if ($step == 0) { |
|
1115
|
|
|
|
|
|
|
# step==0 |
|
1116
|
5
|
|
|
|
|
11
|
$n = int ($x + 1.5); |
|
1117
|
|
|
|
|
|
|
|
|
1118
|
|
|
|
|
|
|
} else { |
|
1119
|
51
|
|
|
|
|
83
|
my $theta_frac = _xy_to_angle_frac($x,$y); |
|
1120
|
|
|
|
|
|
|
### $theta_frac |
|
1121
|
|
|
|
|
|
|
### assert: (0 <= $theta_frac && $theta_frac < 1) || $theta_frac!=$theta_frac |
|
1122
|
|
|
|
|
|
|
|
|
1123
|
51
|
|
|
|
|
56
|
my $d; |
|
1124
|
51
|
50
|
|
|
|
81
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
1125
|
0
|
|
|
|
|
0
|
$n = int($theta_frac*$step); |
|
1126
|
0
|
|
|
|
|
0
|
$theta_frac -= $n/$step; |
|
1127
|
|
|
|
|
|
|
### theta modulo 1/step: $theta_frac |
|
1128
|
|
|
|
|
|
|
### $n |
|
1129
|
|
|
|
|
|
|
|
|
1130
|
0
|
|
|
|
|
0
|
my $r = hypot ($x, $y); |
|
1131
|
0
|
|
|
|
|
0
|
my $alpha = 2*_PI/$step; |
|
1132
|
0
|
|
|
|
|
0
|
my $theta = 2*_PI * $theta_frac; |
|
1133
|
|
|
|
|
|
|
### $r |
|
1134
|
|
|
|
|
|
|
### so x=r*cos(theta): $r*cos($theta) |
|
1135
|
|
|
|
|
|
|
### so y=r*sin(theta): $r*sin($theta) |
|
1136
|
|
|
|
|
|
|
|
|
1137
|
0
|
|
|
|
|
0
|
my $pi = _PI; |
|
1138
|
0
|
|
|
|
|
0
|
my $p = $r*cos($theta) + $r*sin($theta) * sin($alpha/2)/cos($alpha/2); |
|
1139
|
0
|
|
|
|
|
0
|
my $base_r = Math::PlanePath::MultipleRings::_numsides_to_r($step,$pi); |
|
1140
|
|
|
|
|
|
|
### $p |
|
1141
|
|
|
|
|
|
|
### $base_r |
|
1142
|
|
|
|
|
|
|
|
|
1143
|
0
|
0
|
|
|
|
0
|
if ($step > 6) { |
|
1144
|
0
|
|
|
|
|
0
|
$d = $p / $base_r; |
|
1145
|
|
|
|
|
|
|
} else { |
|
1146
|
0
|
|
|
|
|
0
|
$d = ($p - $base_r) * cos($pi/$step) + 1; |
|
1147
|
|
|
|
|
|
|
} |
|
1148
|
|
|
|
|
|
|
### d frac: $d |
|
1149
|
0
|
|
|
|
|
0
|
$d = int($d+0.5); |
|
1150
|
|
|
|
|
|
|
### $d |
|
1151
|
|
|
|
|
|
|
### cf _xy_to_d(): _xy_to_d($self,$x,$y) |
|
1152
|
|
|
|
|
|
|
|
|
1153
|
0
|
0
|
|
|
|
0
|
my $f = ($p == 0 ? 0 : $r*sin($theta) / ($p*sin($alpha))); |
|
1154
|
0
|
|
|
|
|
0
|
$n = int(($n+$f)*$d + 0.5); |
|
1155
|
|
|
|
|
|
|
|
|
1156
|
|
|
|
|
|
|
### e: $r*sin($theta) * sin($alpha/2)/cos($alpha/2) |
|
1157
|
|
|
|
|
|
|
### $f |
|
1158
|
|
|
|
|
|
|
### $n |
|
1159
|
|
|
|
|
|
|
|
|
1160
|
|
|
|
|
|
|
} else { |
|
1161
|
51
|
|
|
|
|
83
|
$d = int(_xy_to_d($self,$x,$y) + 0.5); |
|
1162
|
|
|
|
|
|
|
### $d |
|
1163
|
51
|
|
|
|
|
80
|
$n = int (0.5 + $theta_frac * $d*$step); |
|
1164
|
51
|
50
|
|
|
|
84
|
if ($n >= $d*$step) { $n = 0; } |
|
|
0
|
|
|
|
|
0
|
|
|
1165
|
|
|
|
|
|
|
} |
|
1166
|
|
|
|
|
|
|
|
|
1167
|
|
|
|
|
|
|
### n within ring: $n |
|
1168
|
|
|
|
|
|
|
### n ring start: _d_to_n0base($self,$d) + 1 |
|
1169
|
|
|
|
|
|
|
|
|
1170
|
51
|
|
|
|
|
74
|
$n += _d_to_n0base($self,$d) + 1; |
|
1171
|
|
|
|
|
|
|
### $d |
|
1172
|
|
|
|
|
|
|
### d base: 0.5*$d*($d-1) |
|
1173
|
|
|
|
|
|
|
### d base M: $step * 0.5*$d*($d-1) |
|
1174
|
|
|
|
|
|
|
### $theta_frac |
|
1175
|
|
|
|
|
|
|
### theta offset: $theta_frac*$d |
|
1176
|
|
|
|
|
|
|
### $n |
|
1177
|
|
|
|
|
|
|
} |
|
1178
|
|
|
|
|
|
|
|
|
1179
|
|
|
|
|
|
|
### trial n: $n |
|
1180
|
56
|
50
|
|
|
|
94
|
if (my ($nx, $ny) = $self->n_to_xy($n)) { |
|
1181
|
|
|
|
|
|
|
### nxy: "nx=$nx ny=$ny hypot=".hypot($x-$nx,$y-$ny) |
|
1182
|
|
|
|
|
|
|
### cf orig xy: "x=$x y=$y" |
|
1183
|
56
|
100
|
|
|
|
158
|
if (hypot($x-$nx, $y-$ny) <= 0.5) { |
|
1184
|
17
|
|
|
|
|
71
|
return $n; |
|
1185
|
|
|
|
|
|
|
} |
|
1186
|
|
|
|
|
|
|
} |
|
1187
|
39
|
|
|
|
|
131
|
return undef; |
|
1188
|
|
|
|
|
|
|
} |
|
1189
|
|
|
|
|
|
|
|
|
1190
|
|
|
|
|
|
|
# ENHANCE-ME: step>=3 small rectangles around 0,0 don't cover any pixels |
|
1191
|
|
|
|
|
|
|
# |
|
1192
|
|
|
|
|
|
|
# not exact |
|
1193
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
1194
|
22
|
|
|
22
|
1
|
69
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
1195
|
|
|
|
|
|
|
### MultipleRings rect_to_n_range(): "$x1,$y1, $x2,$y2 step=$self->{'step'}" |
|
1196
|
|
|
|
|
|
|
|
|
1197
|
22
|
|
66
|
|
|
50
|
my $zero = ($x1<0) != ($x2<0) || ($y1<0) != ($y2<0); |
|
1198
|
22
|
|
|
|
|
34
|
my $step = $self->{'step'}; |
|
1199
|
|
|
|
|
|
|
|
|
1200
|
22
|
|
|
|
|
60
|
my ($r_lo, $r_hi) = Math::PlanePath::SacksSpiral::_rect_to_radius_range |
|
1201
|
|
|
|
|
|
|
($x1,$y1, $x2,$y2); |
|
1202
|
|
|
|
|
|
|
### $r_lo |
|
1203
|
|
|
|
|
|
|
### $r_hi |
|
1204
|
22
|
50
|
|
|
|
46
|
if (is_infinite($r_hi)) { |
|
1205
|
0
|
|
|
|
|
0
|
return (1,$r_hi); |
|
1206
|
|
|
|
|
|
|
} |
|
1207
|
22
|
100
|
|
|
|
42
|
if ($r_hi < 1) { $r_hi = 1; } |
|
|
11
|
|
|
|
|
12
|
|
|
1208
|
22
|
50
|
|
|
|
43
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
1209
|
0
|
|
|
|
|
0
|
$r_hi /= cos(_PI/$self->{'step'}); |
|
1210
|
|
|
|
|
|
|
### poly increase r_hi: $r_hi |
|
1211
|
|
|
|
|
|
|
} |
|
1212
|
|
|
|
|
|
|
|
|
1213
|
22
|
|
|
|
|
27
|
my ($d_lo, $d_hi); |
|
1214
|
22
|
50
|
|
|
|
29
|
if ($self->{'ring_shape'} eq 'polygon') { |
|
1215
|
0
|
0
|
|
|
|
0
|
if ($step >= 6) { |
|
1216
|
0
|
|
|
|
|
0
|
$d_lo = $r_lo / $self->{'base_r'}; |
|
1217
|
0
|
|
|
|
|
0
|
$d_hi = $r_hi / $self->{'base_r'}; |
|
1218
|
|
|
|
|
|
|
} else { |
|
1219
|
0
|
|
|
|
|
0
|
$d_lo = ($r_lo - $self->{'base_r'}) * cos(_PI/$step) + 1; |
|
1220
|
0
|
|
|
|
|
0
|
$d_hi = ($r_hi - $self->{'base_r'}) * cos(_PI/$step) + 1; |
|
1221
|
|
|
|
|
|
|
} |
|
1222
|
|
|
|
|
|
|
} else { |
|
1223
|
22
|
100
|
|
|
|
33
|
if ($step > 6) { |
|
1224
|
8
|
50
|
|
|
|
14
|
$d_lo = ($r_lo > 0 |
|
1225
|
|
|
|
|
|
|
? _PI / ($step * asin(0.5/$r_lo)) |
|
1226
|
|
|
|
|
|
|
: 0); |
|
1227
|
8
|
|
|
|
|
26
|
$d_hi = _PI / ($step * asin(0.5/$r_hi)); |
|
1228
|
|
|
|
|
|
|
} else { |
|
1229
|
14
|
|
|
|
|
20
|
$d_lo = $r_lo - $self->{'base_r'}; |
|
1230
|
14
|
|
|
|
|
18
|
$d_hi = $r_hi - $self->{'base_r'}; |
|
1231
|
|
|
|
|
|
|
} |
|
1232
|
|
|
|
|
|
|
} |
|
1233
|
|
|
|
|
|
|
### $d_lo |
|
1234
|
|
|
|
|
|
|
### $d_hi |
|
1235
|
|
|
|
|
|
|
|
|
1236
|
22
|
|
|
|
|
31
|
$d_lo = int($d_lo - 1); |
|
1237
|
22
|
|
|
|
|
30
|
$d_hi = int($d_hi + 2); |
|
1238
|
22
|
50
|
|
|
|
34
|
if ($d_lo < 1) { $d_lo = 1; } |
|
|
22
|
|
|
|
|
29
|
|
|
1239
|
|
|
|
|
|
|
|
|
1240
|
22
|
100
|
|
|
|
41
|
if ($step) { |
|
1241
|
|
|
|
|
|
|
# start of ring is N= 0.5*$d*($d-1) * $step + 1 |
|
1242
|
|
|
|
|
|
|
### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1 |
|
1243
|
|
|
|
|
|
|
### n_hi: 0.5*$d_hi*($d_hi+1) * $step |
|
1244
|
20
|
|
|
|
|
58
|
return ($d_lo*($d_lo-1)/2 * $step + 1, |
|
1245
|
|
|
|
|
|
|
$d_hi*($d_hi+1)/2 * $step); |
|
1246
|
|
|
|
|
|
|
} else { |
|
1247
|
|
|
|
|
|
|
# $step == 0 |
|
1248
|
2
|
|
|
|
|
6
|
return ($d_lo, $d_hi); |
|
1249
|
|
|
|
|
|
|
} |
|
1250
|
|
|
|
|
|
|
|
|
1251
|
|
|
|
|
|
|
|
|
1252
|
|
|
|
|
|
|
|
|
1253
|
|
|
|
|
|
|
|
|
1254
|
|
|
|
|
|
|
|
|
1255
|
|
|
|
|
|
|
# # if x1,x2 pos and neg then 0 is covered and it's the minimum |
|
1256
|
|
|
|
|
|
|
# # ENHANCE-ME: might be able to be a little tighter on $d_lo |
|
1257
|
|
|
|
|
|
|
# my $d_lo = ($zero |
|
1258
|
|
|
|
|
|
|
# ? 1 |
|
1259
|
|
|
|
|
|
|
# : max (1, -2 + int (_xy_to_d ($self, |
|
1260
|
|
|
|
|
|
|
# min($x1,$x2), |
|
1261
|
|
|
|
|
|
|
# min($y1,$y2))))); |
|
1262
|
|
|
|
|
|
|
# my $d_hi = 1 + int (_xy_to_d ($self, |
|
1263
|
|
|
|
|
|
|
# max($x1,$x2), |
|
1264
|
|
|
|
|
|
|
# max($y1,$y2))); |
|
1265
|
|
|
|
|
|
|
# ### $d_lo |
|
1266
|
|
|
|
|
|
|
# ### $d_hi |
|
1267
|
|
|
|
|
|
|
# if ((my $step = $self->{'step'})) { |
|
1268
|
|
|
|
|
|
|
# # start of ring is N= 0.5*$d*($d-1) * $step + 1 |
|
1269
|
|
|
|
|
|
|
# ### n_lo: 0.5*$d_lo*($d_lo-1) * $step + 1 |
|
1270
|
|
|
|
|
|
|
# ### n_hi: 0.5*$d_hi*($d_hi+1) * $step |
|
1271
|
|
|
|
|
|
|
# return ($d_lo*($d_lo-1)/2 * $step + 1, |
|
1272
|
|
|
|
|
|
|
# $d_hi*($d_hi+1)/2 * $step); |
|
1273
|
|
|
|
|
|
|
# } else { |
|
1274
|
|
|
|
|
|
|
# # $step == 0 |
|
1275
|
|
|
|
|
|
|
# return ($d_lo, $d_hi); |
|
1276
|
|
|
|
|
|
|
# } |
|
1277
|
|
|
|
|
|
|
} |
|
1278
|
|
|
|
|
|
|
|
|
1279
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
1280
|
|
|
|
|
|
|
# generic |
|
1281
|
|
|
|
|
|
|
|
|
1282
|
|
|
|
|
|
|
# _xy_to_angle_frac() returns the angle of X,Y as a fraction 0 <= angle < 1 |
|
1283
|
|
|
|
|
|
|
# measured anti-clockwise around from the X axis. |
|
1284
|
|
|
|
|
|
|
# |
|
1285
|
|
|
|
|
|
|
sub _xy_to_angle_frac { |
|
1286
|
120
|
|
|
120
|
|
557
|
my ($x, $y) = @_; |
|
1287
|
|
|
|
|
|
|
|
|
1288
|
|
|
|
|
|
|
# perlfunc.pod warns atan2(0,0) is implementation dependent. The C99 spec |
|
1289
|
|
|
|
|
|
|
# is atan2(+/-0, -0) returns +/-pi, both of which would come out 0.5 here. |
|
1290
|
|
|
|
|
|
|
# Prefer 0 for any +/-0,+/-0. |
|
1291
|
120
|
100
|
100
|
|
|
350
|
if ($x == 0 && $y == 0) { |
|
1292
|
53
|
|
|
|
|
97
|
return 0; |
|
1293
|
|
|
|
|
|
|
} |
|
1294
|
|
|
|
|
|
|
|
|
1295
|
67
|
|
|
|
|
140
|
my $frac = atan2($y,$x) * (0.5 / _PI); |
|
1296
|
|
|
|
|
|
|
### $frac |
|
1297
|
67
|
100
|
|
|
|
126
|
if ($frac < 0) { $frac += 1; } |
|
|
16
|
50
|
|
|
|
23
|
|
|
1298
|
0
|
|
|
|
|
0
|
elsif ($frac >= 1) { $frac -= 1; } |
|
1299
|
67
|
|
|
|
|
111
|
return $frac; |
|
1300
|
|
|
|
|
|
|
} |
|
1301
|
|
|
|
|
|
|
|
|
1302
|
|
|
|
|
|
|
# return pi=3.14159 etc, inheriting precision etc from $n if it's a BigFloat |
|
1303
|
|
|
|
|
|
|
# or other overload |
|
1304
|
|
|
|
|
|
|
sub _pi { |
|
1305
|
168
|
|
|
168
|
|
2163
|
my ($n) = @_; |
|
1306
|
168
|
100
|
|
|
|
265
|
if (ref $n) { |
|
1307
|
3
|
50
|
|
|
|
11
|
if ($n->isa('Math::BigFloat')) { |
|
1308
|
3
|
|
|
|
|
25
|
my $digits; |
|
1309
|
3
|
100
|
|
|
|
13
|
if (defined($digits = $n->accuracy)) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
1310
|
|
|
|
|
|
|
### n accuracy ... |
|
1311
|
|
|
|
|
|
|
} elsif (defined($digits = $n->precision)) { |
|
1312
|
|
|
|
|
|
|
### n precision ... |
|
1313
|
0
|
|
|
|
|
0
|
$digits = -$digits + 1; |
|
1314
|
|
|
|
|
|
|
} elsif (defined($digits = Math::BigFloat->accuracy)) { |
|
1315
|
|
|
|
|
|
|
### global accuracy ... |
|
1316
|
|
|
|
|
|
|
} elsif (defined($digits = Math::BigFloat->precision)) { |
|
1317
|
|
|
|
|
|
|
### global precision ... |
|
1318
|
0
|
|
|
|
|
0
|
$digits = -$digits + 1; |
|
1319
|
|
|
|
|
|
|
} else { |
|
1320
|
|
|
|
|
|
|
### div_scale ... |
|
1321
|
1
|
|
|
|
|
72
|
$digits = Math::BigFloat->div_scale+1; |
|
1322
|
|
|
|
|
|
|
} |
|
1323
|
|
|
|
|
|
|
### $digits |
|
1324
|
3
|
|
|
|
|
48
|
$digits = max (1, $digits); |
|
1325
|
3
|
|
|
|
|
11
|
return Math::BigFloat->bpi($digits); |
|
1326
|
|
|
|
|
|
|
} |
|
1327
|
|
|
|
|
|
|
### other overload n class: ref $n |
|
1328
|
0
|
|
|
|
|
0
|
my $zero = $n * 0; |
|
1329
|
0
|
|
|
|
|
0
|
return 2*atan2($zero,1+$zero); |
|
1330
|
|
|
|
|
|
|
} |
|
1331
|
165
|
|
|
|
|
267
|
return _PI; |
|
1332
|
|
|
|
|
|
|
} |
|
1333
|
|
|
|
|
|
|
|
|
1334
|
|
|
|
|
|
|
1; |
|
1335
|
|
|
|
|
|
|
__END__ |