| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# Copyright 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 Kevin Ryde |
|
2
|
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
# This file is part of Math-PlanePath. |
|
4
|
|
|
|
|
|
|
# |
|
5
|
|
|
|
|
|
|
# Math-PlanePath is free software; you can redistribute it and/or modify |
|
6
|
|
|
|
|
|
|
# it under the terms of the GNU General Public License as published by the |
|
7
|
|
|
|
|
|
|
# Free Software Foundation; either version 3, or (at your option) any later |
|
8
|
|
|
|
|
|
|
# version. |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# Math-PlanePath is distributed in the hope that it will be useful, but |
|
11
|
|
|
|
|
|
|
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
|
12
|
|
|
|
|
|
|
# or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
|
13
|
|
|
|
|
|
|
# for more details. |
|
14
|
|
|
|
|
|
|
# |
|
15
|
|
|
|
|
|
|
# You should have received a copy of the GNU General Public License along |
|
16
|
|
|
|
|
|
|
# with Math-PlanePath. If not, see . |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
# math-image --path=DragonMidpoint --lines --scale=20 |
|
20
|
|
|
|
|
|
|
# math-image --path=DragonMidpoint --all --output=numbers_dash |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
# A006466 contfrac 2*sum( 1/2^(2^n)), 1 and 2 only |
|
23
|
|
|
|
|
|
|
# a(5n) recurrence ... |
|
24
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
25
|
|
|
|
|
|
|
# 1,1,1,1,1,1,1, 2, |
|
26
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
27
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
28
|
|
|
|
|
|
|
# 1, 2, |
|
29
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
30
|
|
|
|
|
|
|
# 1,1,1,1,1,1,1, 2, |
|
31
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
32
|
|
|
|
|
|
|
# 1, 2, |
|
33
|
|
|
|
|
|
|
# 1,1,1,1,1,1,1, 2, |
|
34
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
35
|
|
|
|
|
|
|
# 1, 2, |
|
36
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
37
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
38
|
|
|
|
|
|
|
# 1,1,1,1,1,1,1, 2, |
|
39
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
40
|
|
|
|
|
|
|
# 1, 2, |
|
41
|
|
|
|
|
|
|
# 1,1,1,1,1,1,1, 2, |
|
42
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
43
|
|
|
|
|
|
|
# 1,1,1,1, 2, |
|
44
|
|
|
|
|
|
|
# 1, 2 |
|
45
|
|
|
|
|
|
|
# A076214 in decimal |
|
46
|
|
|
|
|
|
|
# |
|
47
|
|
|
|
|
|
|
# A073097 number of 4s - 6s - 2s - 1 is -1,0,1 |
|
48
|
|
|
|
|
|
|
# A081769 positions of 2s |
|
49
|
|
|
|
|
|
|
# A073088 cumulative total multiples of 4 roughly, hence (4n-3-cum)/2 |
|
50
|
|
|
|
|
|
|
# |
|
51
|
|
|
|
|
|
|
# A088435 (contfrac+1)/2 of sum(k>=1,1/3^(2^k)). |
|
52
|
|
|
|
|
|
|
# A007404 in decimal |
|
53
|
|
|
|
|
|
|
# |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
package Math::PlanePath::DragonMidpoint; |
|
57
|
5
|
|
|
5
|
|
9193
|
use 5.004; |
|
|
5
|
|
|
|
|
25
|
|
|
58
|
5
|
|
|
5
|
|
24
|
use strict; |
|
|
5
|
|
|
|
|
9
|
|
|
|
5
|
|
|
|
|
140
|
|
|
59
|
5
|
|
|
5
|
|
26
|
use List::Util 'min'; # 'max' |
|
|
5
|
|
|
|
|
11
|
|
|
|
5
|
|
|
|
|
480
|
|
|
60
|
|
|
|
|
|
|
*max = \&Math::PlanePath::_max; |
|
61
|
|
|
|
|
|
|
|
|
62
|
5
|
|
|
5
|
|
31
|
use vars '$VERSION', '@ISA'; |
|
|
5
|
|
|
|
|
10
|
|
|
|
5
|
|
|
|
|
325
|
|
|
63
|
|
|
|
|
|
|
$VERSION = 128; |
|
64
|
5
|
|
|
5
|
|
678
|
use Math::PlanePath; |
|
|
5
|
|
|
|
|
11
|
|
|
|
5
|
|
|
|
|
138
|
|
|
65
|
5
|
|
|
5
|
|
961
|
use Math::PlanePath::Base::NSEW; |
|
|
5
|
|
|
|
|
9
|
|
|
|
5
|
|
|
|
|
199
|
|
|
66
|
|
|
|
|
|
|
@ISA = ('Math::PlanePath::Base::NSEW', |
|
67
|
|
|
|
|
|
|
'Math::PlanePath'); |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
use Math::PlanePath::Base::Generic |
|
70
|
5
|
|
|
|
|
245
|
'is_infinite', |
|
71
|
5
|
|
|
5
|
|
28
|
'round_nearest'; |
|
|
5
|
|
|
|
|
13
|
|
|
72
|
|
|
|
|
|
|
use Math::PlanePath::Base::Digits |
|
73
|
5
|
|
|
|
|
293
|
'bit_split_lowtohigh', |
|
74
|
|
|
|
|
|
|
'digit_join_lowtohigh', |
|
75
|
5
|
|
|
5
|
|
498
|
'round_up_pow'; |
|
|
5
|
|
|
|
|
11
|
|
|
76
|
|
|
|
|
|
|
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate; |
|
77
|
|
|
|
|
|
|
|
|
78
|
|
|
|
|
|
|
# uncomment this to run the ### lines |
|
79
|
|
|
|
|
|
|
# use Smart::Comments; |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
# whole plane when arms==4 |
|
83
|
5
|
|
|
5
|
|
1300
|
use Math::PlanePath::DragonCurve; |
|
|
5
|
|
|
|
|
10
|
|
|
|
5
|
|
|
|
|
175
|
|
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
|
|
86
|
5
|
|
|
5
|
|
32
|
use constant n_start => 0; |
|
|
5
|
|
|
|
|
8
|
|
|
|
5
|
|
|
|
|
393
|
|
|
87
|
5
|
|
|
|
|
6845
|
use constant parameter_info_array => [ { name => 'arms', |
|
88
|
|
|
|
|
|
|
share_key => 'arms_4', |
|
89
|
|
|
|
|
|
|
display => 'Arms', |
|
90
|
|
|
|
|
|
|
type => 'integer', |
|
91
|
|
|
|
|
|
|
minimum => 1, |
|
92
|
|
|
|
|
|
|
maximum => 4, |
|
93
|
|
|
|
|
|
|
default => 1, |
|
94
|
|
|
|
|
|
|
width => 1, |
|
95
|
|
|
|
|
|
|
description => 'Arms', |
|
96
|
5
|
|
|
5
|
|
31
|
} ]; |
|
|
5
|
|
|
|
|
9
|
|
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
{ |
|
99
|
|
|
|
|
|
|
my @x_negative_at_n = (undef, 6,5,2,2); |
|
100
|
|
|
|
|
|
|
sub x_negative_at_n { |
|
101
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
102
|
0
|
|
|
|
|
0
|
return $x_negative_at_n[$self->{'arms'}]; |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
{ |
|
106
|
|
|
|
|
|
|
my @y_negative_at_n = (undef, 27,19,11,7); |
|
107
|
|
|
|
|
|
|
sub y_negative_at_n { |
|
108
|
0
|
|
|
0
|
1
|
0
|
my ($self) = @_; |
|
109
|
0
|
|
|
|
|
0
|
return $y_negative_at_n[$self->{'arms'}]; |
|
110
|
|
|
|
|
|
|
} |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
{ |
|
113
|
|
|
|
|
|
|
my @_UNDOCUMENTED__dxdy_list_at_n = (undef, 9, 9, 5, 3); |
|
114
|
|
|
|
|
|
|
sub _UNDOCUMENTED__dxdy_list_at_n { |
|
115
|
0
|
|
|
0
|
|
0
|
my ($self) = @_; |
|
116
|
0
|
|
|
|
|
0
|
return $_UNDOCUMENTED__dxdy_list_at_n[$self->{'arms'}]; |
|
117
|
|
|
|
|
|
|
} |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
sub new { |
|
124
|
15
|
|
|
15
|
1
|
2629
|
my $self = shift->SUPER::new(@_); |
|
125
|
15
|
|
100
|
|
|
89
|
$self->{'arms'} = max(1, min(4, $self->{'arms'} || 1)); |
|
126
|
15
|
|
|
|
|
32
|
return $self; |
|
127
|
|
|
|
|
|
|
} |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
# sub n_to_xy { |
|
130
|
|
|
|
|
|
|
# my ($self, $n) = @_; |
|
131
|
|
|
|
|
|
|
# ### DragonMidpoint n_to_xy(): $n |
|
132
|
|
|
|
|
|
|
# |
|
133
|
|
|
|
|
|
|
# if ($n < 0) { return; } |
|
134
|
|
|
|
|
|
|
# if (is_infinite($n)) { return ($n, $n); } |
|
135
|
|
|
|
|
|
|
# |
|
136
|
|
|
|
|
|
|
# { |
|
137
|
|
|
|
|
|
|
# my $int = int($n); |
|
138
|
|
|
|
|
|
|
# if ($n != $int) { |
|
139
|
|
|
|
|
|
|
# my ($x1,$y1) = $self->n_to_xy($int); |
|
140
|
|
|
|
|
|
|
# my ($x2,$y2) = $self->n_to_xy($int+$self->{'arms'}); |
|
141
|
|
|
|
|
|
|
# my $frac = $n - $int; # inherit possible BigFloat |
|
142
|
|
|
|
|
|
|
# my $dx = $x2-$x1; |
|
143
|
|
|
|
|
|
|
# my $dy = $y2-$y1; |
|
144
|
|
|
|
|
|
|
# return ($frac*$dx + $x1, $frac*$dy + $y1); |
|
145
|
|
|
|
|
|
|
# } |
|
146
|
|
|
|
|
|
|
# $n = $int; # BigFloat int() gives BigInt, use that |
|
147
|
|
|
|
|
|
|
# } |
|
148
|
|
|
|
|
|
|
# |
|
149
|
|
|
|
|
|
|
# my ($x1,$y1) = Math::PlanePath::DragonCurve->n_to_xy($n); |
|
150
|
|
|
|
|
|
|
# my ($x2,$y2) = Math::PlanePath::DragonCurve->n_to_xy($n+1); |
|
151
|
|
|
|
|
|
|
# |
|
152
|
|
|
|
|
|
|
# my $dx = $x2-$x1; |
|
153
|
|
|
|
|
|
|
# my $dy = $y2-$y1; |
|
154
|
|
|
|
|
|
|
# return ($x1+$y1 + ($dx+$dy-1)/2, |
|
155
|
|
|
|
|
|
|
# $y1-$x1 + ($dy-$dx+1)/2); |
|
156
|
|
|
|
|
|
|
# } |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
sub n_to_xy { |
|
159
|
264
|
|
|
264
|
1
|
18811
|
my ($self, $n) = @_; |
|
160
|
|
|
|
|
|
|
### DragonMidpoint n_to_xy(): $n |
|
161
|
|
|
|
|
|
|
|
|
162
|
264
|
50
|
|
|
|
584
|
if ($n < 0) { return; } |
|
|
0
|
|
|
|
|
0
|
|
|
163
|
264
|
50
|
|
|
|
632
|
if (is_infinite($n)) { return ($n, $n); } |
|
|
0
|
|
|
|
|
0
|
|
|
164
|
|
|
|
|
|
|
|
|
165
|
264
|
|
|
|
|
441
|
my $frac; |
|
166
|
|
|
|
|
|
|
{ |
|
167
|
264
|
|
|
|
|
358
|
my $int = int($n); |
|
|
264
|
|
|
|
|
405
|
|
|
168
|
264
|
|
|
|
|
411
|
$frac = $n - $int; # inherit possible BigFloat |
|
169
|
264
|
|
|
|
|
417
|
$n = $int; # BigFloat int() gives BigInt, use that |
|
170
|
|
|
|
|
|
|
} |
|
171
|
264
|
|
|
|
|
366
|
my $zero = ($n * 0); # inherit bignum 0 |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
# arm as initial rotation |
|
174
|
264
|
|
|
|
|
695
|
my $rot = _divrem_mutate ($n, $self->{'arms'}); |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
### $arms |
|
177
|
|
|
|
|
|
|
### rot from arm: $rot |
|
178
|
|
|
|
|
|
|
### $n |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
# ENHANCE-ME: sx,sy just from len,len |
|
181
|
264
|
|
|
|
|
641
|
my @digits = bit_split_lowtohigh($n); |
|
182
|
264
|
|
|
|
|
517
|
my @sx; |
|
183
|
|
|
|
|
|
|
my @sy; |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
{ |
|
186
|
264
|
|
|
|
|
342
|
my $sx = $zero + 1; |
|
|
264
|
|
|
|
|
389
|
|
|
187
|
264
|
|
|
|
|
388
|
my $sy = -$sx; |
|
188
|
264
|
|
|
|
|
509
|
foreach (@digits) { |
|
189
|
2180
|
|
|
|
|
2954
|
push @sx, $sx; |
|
190
|
2180
|
|
|
|
|
2758
|
push @sy, $sy; |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
# (sx,sy) + rot+90(sx,sy) |
|
193
|
2180
|
|
|
|
|
3457
|
($sx,$sy) = ($sx - $sy, |
|
194
|
|
|
|
|
|
|
$sy + $sx); |
|
195
|
|
|
|
|
|
|
} |
|
196
|
|
|
|
|
|
|
} |
|
197
|
|
|
|
|
|
|
|
|
198
|
|
|
|
|
|
|
### @digits |
|
199
|
264
|
|
|
|
|
347
|
my $rev = 0; |
|
200
|
264
|
|
|
|
|
429
|
my $x = $zero; |
|
201
|
264
|
|
|
|
|
346
|
my $y = $zero; |
|
202
|
264
|
|
|
|
|
474
|
my $above_low_zero = 0; |
|
203
|
|
|
|
|
|
|
|
|
204
|
264
|
|
|
|
|
661
|
for (my $i = $#digits; $i >= 0; $i--) { # high to low |
|
205
|
2180
|
|
|
|
|
3012
|
my $digit = $digits[$i]; |
|
206
|
2180
|
|
|
|
|
2783
|
my $sx = $sx[$i]; |
|
207
|
2180
|
|
|
|
|
2782
|
my $sy = $sy[$i]; |
|
208
|
|
|
|
|
|
|
### at: "$x,$y $digit side $sx,$sy" |
|
209
|
|
|
|
|
|
|
### $rot |
|
210
|
|
|
|
|
|
|
|
|
211
|
2180
|
100
|
|
|
|
3631
|
if ($rot & 2) { |
|
212
|
1012
|
|
|
|
|
1308
|
$sx = -$sx; |
|
213
|
1012
|
|
|
|
|
1288
|
$sy = -$sy; |
|
214
|
|
|
|
|
|
|
} |
|
215
|
2180
|
100
|
|
|
|
3508
|
if ($rot & 1) { |
|
216
|
1080
|
|
|
|
|
1754
|
($sx,$sy) = (-$sy,$sx); |
|
217
|
|
|
|
|
|
|
} |
|
218
|
|
|
|
|
|
|
### rotated side: "$sx,$sy" |
|
219
|
|
|
|
|
|
|
|
|
220
|
2180
|
100
|
|
|
|
3327
|
if ($rev) { |
|
221
|
1037
|
100
|
|
|
|
1544
|
if ($digit) { |
|
222
|
467
|
|
|
|
|
592
|
$x -= $sy; |
|
223
|
467
|
|
|
|
|
870
|
$y += $sx; |
|
224
|
|
|
|
|
|
|
### rev add to: "$x,$y next is still rev" |
|
225
|
|
|
|
|
|
|
} else { |
|
226
|
570
|
|
|
|
|
851
|
$above_low_zero = $digits[$i+1]; |
|
227
|
570
|
|
|
|
|
760
|
$rot ++; |
|
228
|
570
|
|
|
|
|
1045
|
$rev = 0; |
|
229
|
|
|
|
|
|
|
### rev rot, next is no rev ... |
|
230
|
|
|
|
|
|
|
} |
|
231
|
|
|
|
|
|
|
} else { |
|
232
|
1143
|
100
|
|
|
|
1634
|
if ($digit) { |
|
233
|
691
|
|
|
|
|
894
|
$rot ++; |
|
234
|
691
|
|
|
|
|
905
|
$x += $sx; |
|
235
|
691
|
|
|
|
|
866
|
$y += $sy; |
|
236
|
691
|
|
|
|
|
1275
|
$rev = 1; |
|
237
|
|
|
|
|
|
|
### plain add to: "$x,$y next is rev" |
|
238
|
|
|
|
|
|
|
} else { |
|
239
|
452
|
|
|
|
|
939
|
$above_low_zero = $digits[$i+1]; |
|
240
|
|
|
|
|
|
|
} |
|
241
|
|
|
|
|
|
|
} |
|
242
|
|
|
|
|
|
|
} |
|
243
|
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
# Digit above the low zero is the direction of the next turn, 0 for left, |
|
245
|
|
|
|
|
|
|
# 1 for right. |
|
246
|
|
|
|
|
|
|
# |
|
247
|
|
|
|
|
|
|
### final: "$x,$y rot=$rot above_low_zero=".($above_low_zero||0) |
|
248
|
|
|
|
|
|
|
|
|
249
|
264
|
100
|
|
|
|
564
|
if ($rot & 2) { |
|
250
|
138
|
|
|
|
|
188
|
$frac = -$frac; # rotate 180 |
|
251
|
138
|
|
|
|
|
193
|
$x -= 1; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
264
|
100
|
|
|
|
484
|
if (($rot+1) & 2) { |
|
254
|
|
|
|
|
|
|
# rot 1 or 2 |
|
255
|
173
|
|
|
|
|
245
|
$y += 1; |
|
256
|
|
|
|
|
|
|
} |
|
257
|
264
|
100
|
100
|
|
|
678
|
if (!($rot & 1) && $above_low_zero) { |
|
258
|
78
|
|
|
|
|
114
|
$frac = -$frac; |
|
259
|
|
|
|
|
|
|
} |
|
260
|
264
|
|
|
|
|
456
|
$above_low_zero ^= ($rot & 1); |
|
261
|
264
|
100
|
|
|
|
419
|
if ($above_low_zero) { |
|
262
|
145
|
|
|
|
|
207
|
$y = $frac + $y; |
|
263
|
|
|
|
|
|
|
} else { |
|
264
|
119
|
|
|
|
|
181
|
$x = $frac + $x; |
|
265
|
|
|
|
|
|
|
} |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
### rotated return: "$x,$y" |
|
268
|
264
|
|
|
|
|
1056
|
return ($x,$y); |
|
269
|
|
|
|
|
|
|
} |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
# or tables arithmetically, |
|
272
|
|
|
|
|
|
|
# |
|
273
|
|
|
|
|
|
|
# my $ax = ((($x+1) ^ ($y+1)) >> 1) & 1; |
|
274
|
|
|
|
|
|
|
# my $ay = (($x^$y) >> 1) & 1; |
|
275
|
|
|
|
|
|
|
# ### assert: $ax == - $yx_adj_x[$y%4]->[$x%4] |
|
276
|
|
|
|
|
|
|
# ### assert: $ay == - $yx_adj_y[$y%4]->[$x%4] |
|
277
|
|
|
|
|
|
|
# |
|
278
|
|
|
|
|
|
|
my @yx_adj_x = ([0,1,1,0], |
|
279
|
|
|
|
|
|
|
[1,0,0,1], |
|
280
|
|
|
|
|
|
|
[1,0,0,1], |
|
281
|
|
|
|
|
|
|
[0,1,1,0]); |
|
282
|
|
|
|
|
|
|
|
|
283
|
|
|
|
|
|
|
my @yx_adj_y = ([0,0,1,1], |
|
284
|
|
|
|
|
|
|
[0,0,1,1], |
|
285
|
|
|
|
|
|
|
[1,1,0,0], |
|
286
|
|
|
|
|
|
|
[1,1,0,0]); |
|
287
|
|
|
|
|
|
|
|
|
288
|
|
|
|
|
|
|
# arm $x $y 2 | 1 Y=1 |
|
289
|
|
|
|
|
|
|
# 0 0 0 3 | 0 Y=0 |
|
290
|
|
|
|
|
|
|
# 1 0 1 ----+---- |
|
291
|
|
|
|
|
|
|
# 2 -1 1 X=-1 X=0 |
|
292
|
|
|
|
|
|
|
# 3 -1 0 |
|
293
|
|
|
|
|
|
|
my @xy_to_arm = ([0, # x=0,y=0 |
|
294
|
|
|
|
|
|
|
1], # x=0,y=1 |
|
295
|
|
|
|
|
|
|
[3, # x=-1,y=0 |
|
296
|
|
|
|
|
|
|
2]); # x=-1,y=1 |
|
297
|
|
|
|
|
|
|
|
|
298
|
|
|
|
|
|
|
sub xy_to_n { |
|
299
|
519
|
|
|
519
|
1
|
11463
|
my ($self, $x, $y) = @_; |
|
300
|
|
|
|
|
|
|
### DragonMidpoint xy_to_n(): "$x, $y" |
|
301
|
|
|
|
|
|
|
|
|
302
|
519
|
|
|
|
|
1160
|
$x = round_nearest($x); |
|
303
|
519
|
|
|
|
|
1043
|
$y = round_nearest($y); |
|
304
|
|
|
|
|
|
|
|
|
305
|
519
|
|
|
|
|
772
|
{ my $overflow = abs($x)+abs($y)+2; |
|
|
519
|
|
|
|
|
825
|
|
|
306
|
519
|
50
|
|
|
|
961
|
if (is_infinite($overflow)) { return $overflow; } |
|
|
0
|
|
|
|
|
0
|
|
|
307
|
|
|
|
|
|
|
} |
|
308
|
519
|
|
|
|
|
989
|
my $zero = ($x * 0 * $y); |
|
309
|
519
|
|
|
|
|
740
|
my @nbits; # low to high |
|
310
|
|
|
|
|
|
|
|
|
311
|
519
|
|
100
|
|
|
1772
|
while ($x < -1 || $x > 0 || $y < 0 || $y > 1) { |
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
312
|
7554
|
|
|
|
|
5417
|
my $y4 = $y % 4; |
|
313
|
7554
|
|
|
|
|
4897
|
my $x4 = $x % 4; |
|
314
|
7554
|
|
|
|
|
5309
|
my $ax = $yx_adj_x[$y4]->[$x4]; |
|
315
|
7554
|
|
|
|
|
5079
|
my $ay = $yx_adj_y[$y4]->[$x4]; |
|
316
|
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
### at: "$x,$y n=$n axy=$ax,$ay bit=".($ax^$ay) |
|
318
|
|
|
|
|
|
|
|
|
319
|
7554
|
|
|
|
|
5781
|
push @nbits, $ax^$ay; |
|
320
|
|
|
|
|
|
|
|
|
321
|
7554
|
|
|
|
|
4832
|
$x -= $ax; |
|
322
|
7554
|
|
|
|
|
4722
|
$y -= $ay; |
|
323
|
|
|
|
|
|
|
### assert: ($x+$y)%2 == 0 |
|
324
|
7554
|
|
|
|
|
31052
|
($x,$y) = (($x+$y)/2, # rotate -45 and divide sqrt(2) |
|
325
|
|
|
|
|
|
|
($y-$x)/2); |
|
326
|
|
|
|
|
|
|
} |
|
327
|
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
### final: "xy=$x,$y" |
|
329
|
|
|
|
|
|
|
|
|
330
|
519
|
|
|
|
|
883
|
my $arm = $xy_to_arm[$x]->[$y]; |
|
331
|
|
|
|
|
|
|
### $arm |
|
332
|
519
|
|
|
|
|
1385
|
my $arms_count = $self->arms_count; |
|
333
|
519
|
100
|
|
|
|
1138
|
if ($arm >= $arms_count) { |
|
334
|
110
|
|
|
|
|
250
|
return undef; |
|
335
|
|
|
|
|
|
|
} |
|
336
|
|
|
|
|
|
|
|
|
337
|
409
|
100
|
|
|
|
844
|
if ($arm & 1) { |
|
338
|
|
|
|
|
|
|
### flip ... |
|
339
|
133
|
|
|
|
|
250
|
@nbits = map {$_^1} @nbits; |
|
|
1112
|
|
|
|
|
1736
|
|
|
340
|
|
|
|
|
|
|
} |
|
341
|
|
|
|
|
|
|
|
|
342
|
409
|
|
|
|
|
1101
|
return digit_join_lowtohigh(\@nbits, 2, $zero) * $arms_count + $arm; |
|
343
|
|
|
|
|
|
|
} |
|
344
|
|
|
|
|
|
|
|
|
345
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
346
|
|
|
|
|
|
|
# xy_is_visited() |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
sub xy_is_visited { |
|
349
|
0
|
|
|
0
|
1
|
0
|
my ($self, $x, $y) = @_; |
|
350
|
|
|
|
|
|
|
return ($self->{'arms'} >= 4 |
|
351
|
0
|
|
0
|
|
|
0
|
|| _xy_to_arm($x,$y) < $self->{'arms'}); |
|
352
|
|
|
|
|
|
|
} |
|
353
|
|
|
|
|
|
|
|
|
354
|
|
|
|
|
|
|
# return arm number 0,1,2,3 |
|
355
|
|
|
|
|
|
|
sub _xy_to_arm { |
|
356
|
0
|
|
|
0
|
|
0
|
my ($x, $y) = @_; |
|
357
|
|
|
|
|
|
|
### DragonMidpoint _xy_to_arm(): "$x, $y" |
|
358
|
|
|
|
|
|
|
|
|
359
|
0
|
|
|
|
|
0
|
$x = round_nearest($x); |
|
360
|
0
|
|
|
|
|
0
|
$y = round_nearest($y); |
|
361
|
|
|
|
|
|
|
|
|
362
|
0
|
|
|
|
|
0
|
{ my $overflow = abs($x)+abs($y)+2; |
|
|
0
|
|
|
|
|
0
|
|
|
363
|
0
|
0
|
|
|
|
0
|
if (is_infinite($overflow)) { return $overflow; } |
|
|
0
|
|
|
|
|
0
|
|
|
364
|
|
|
|
|
|
|
} |
|
365
|
|
|
|
|
|
|
|
|
366
|
0
|
|
0
|
|
|
0
|
while ($x < -1 || $x > 0 || $y < 0 || $y > 1) { |
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
367
|
0
|
|
|
|
|
0
|
my $y4 = $y % 4; |
|
368
|
0
|
|
|
|
|
0
|
my $x4 = $x % 4; |
|
369
|
0
|
|
|
|
|
0
|
$x -= $yx_adj_x[$y4]->[$x4]; |
|
370
|
0
|
|
|
|
|
0
|
$y -= $yx_adj_y[$y4]->[$x4]; |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
### assert: ($x+$y)%2 == 0 |
|
373
|
0
|
|
|
|
|
0
|
($x,$y) = (($x+$y)/2, # rotate -45 and divide sqrt(2) |
|
374
|
|
|
|
|
|
|
($y-$x)/2); |
|
375
|
|
|
|
|
|
|
} |
|
376
|
0
|
|
|
|
|
0
|
return $xy_to_arm[$x]->[$y]; |
|
377
|
|
|
|
|
|
|
} |
|
378
|
|
|
|
|
|
|
|
|
379
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
380
|
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
# not exact |
|
382
|
|
|
|
|
|
|
sub rect_to_n_range { |
|
383
|
94
|
|
|
94
|
1
|
8215
|
my ($self, $x1,$y1, $x2,$y2) = @_; |
|
384
|
|
|
|
|
|
|
### DragonMidpoint rect_to_n_range(): "$x1,$y1 $x2,$y2 arms=$self->{'arms'}" |
|
385
|
94
|
|
|
|
|
173
|
$x1 = abs($x1); |
|
386
|
94
|
|
|
|
|
123
|
$x2 = abs($x2); |
|
387
|
94
|
|
|
|
|
144
|
$y1 = abs($y1); |
|
388
|
94
|
|
|
|
|
137
|
$y2 = abs($y2); |
|
389
|
94
|
|
|
|
|
215
|
my $xmax = int(max($x1,$x2)); |
|
390
|
94
|
|
|
|
|
185
|
my $ymax = int(max($y1,$y2)); |
|
391
|
|
|
|
|
|
|
return (0, |
|
392
|
94
|
|
|
|
|
295
|
($xmax*$xmax + $ymax*$ymax + 1) * $self->{'arms'} * 5); |
|
393
|
|
|
|
|
|
|
} |
|
394
|
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
# sub rect_to_n_range { |
|
396
|
|
|
|
|
|
|
# my ($self, $x1,$y1, $x2,$y2) = @_; |
|
397
|
|
|
|
|
|
|
# ### DragonMidpoint rect_to_n_range(): "$x1,$y1 $x2,$y2" |
|
398
|
|
|
|
|
|
|
# |
|
399
|
|
|
|
|
|
|
# return Math::PlanePath::DragonCurve->rect_to_n_range |
|
400
|
|
|
|
|
|
|
# (sqrt(2)*$x1, sqrt(2)*$y1, sqrt(2)*$x2, sqrt(2)*$y2); |
|
401
|
|
|
|
|
|
|
# } |
|
402
|
|
|
|
|
|
|
|
|
403
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
404
|
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
sub level_to_n_range { |
|
406
|
0
|
|
|
0
|
1
|
|
my ($self, $level) = @_; |
|
407
|
0
|
|
|
|
|
|
return (0, 2**$level * $self->{'arms'} - 1); |
|
408
|
|
|
|
|
|
|
} |
|
409
|
|
|
|
|
|
|
sub n_to_level { |
|
410
|
0
|
|
|
0
|
1
|
|
my ($self, $n) = @_; |
|
411
|
0
|
0
|
|
|
|
|
if ($n < 0) { return undef; } |
|
|
0
|
|
|
|
|
|
|
|
412
|
0
|
0
|
|
|
|
|
if (is_infinite($n)) { return $n; } |
|
|
0
|
|
|
|
|
|
|
|
413
|
0
|
|
|
|
|
|
$n = round_nearest($n); |
|
414
|
0
|
|
|
|
|
|
_divrem_mutate ($n, $self->{'arms'}); |
|
415
|
0
|
|
|
|
|
|
my ($pow, $exp) = round_up_pow ($n+1, 2); |
|
416
|
0
|
|
|
|
|
|
return $exp; |
|
417
|
|
|
|
|
|
|
} |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
#------------------------------------------------------------------------------ |
|
420
|
|
|
|
|
|
|
1; |
|
421
|
|
|
|
|
|
|
__END__ |