|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
  
 
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Copyright 2011, 2012, 2013, 2014 Kevin Ryde  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # This file is part of Math-NumSeq.  | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Math-NumSeq is free software; you can redistribute it and/or modify  | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # it under the terms of the GNU General Public License as published by the  | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Free Software Foundation; either version 3, or (at your option) any later  | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # version.  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Math-NumSeq is distributed in the hope that it will be useful, but  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # for more details.  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # You should have received a copy of the GNU General Public License along  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # with Math-NumSeq.  If not, see .  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Math::NumSeq::SqrtEngel;  | 
| 
19
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
7225
 | 
 use 5.004;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
    | 
| 
20
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
5
 | 
 use strict;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
40
 | 
    | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
22
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
5
 | 
 use vars '$VERSION', '@ISA';  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
89
 | 
    | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 $VERSION = 72;  | 
| 
24
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
344
 | 
 use Math::NumSeq;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
47
 | 
    | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @ISA = ('Math::NumSeq');  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
27
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
316
 | 
 use Math::NumSeq::Squares;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
49
 | 
    | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # uncomment this to run the ### lines  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #use Smart::Comments;  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # use constant name => Math::NumSeq::__('Sqrt Engel Expansion');  | 
| 
34
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
7
 | 
 use constant description => Math::NumSeq::__('Engel expansion for a square root.');  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
    | 
| 
35
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
6
 | 
 use constant characteristic_increasing => 0; # in general  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
68
 | 
    | 
| 
36
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
5
 | 
 use constant characteristic_non_decreasing => 1;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61
 | 
    | 
| 
37
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
6
 | 
 use constant characteristic_integer => 1;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61
 | 
    | 
| 
38
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
6
 | 
 use constant i_start => 1;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
60
 | 
    | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
40
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
359
 | 
 use Math::NumSeq::SqrtDigits;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
113
 | 
    | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use constant parameter_info_array =>  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   [  | 
| 
43
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
    Math::NumSeq::SqrtDigits->parameter_info_hash->{'sqrt'},  | 
| 
44
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
11
 | 
   ];  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
46
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
8
 | 
 use constant values_min => 1;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
608
 | 
    | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub values_max {  | 
| 
48
 | 
  
0
  
 | 
 
 | 
 
 | 
  
0
  
 | 
  
1
  
 | 
0
 | 
   my ($self) = @_;  | 
| 
49
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
   return ($self->Math::NumSeq::Squares::pred($self->{'sqrt'})  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           ? 1   # perfect square, only some 1s  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
           : undef);  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # cf A028259 of phi=(sqrt(5)+1)/2 golden ratio  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #    A068388 of sqrt(3/2)  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #    A059178 cube root 2  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #    A059179 cube root 3  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my @oeis_anum = (  | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  # OEIS-Catalogue array begin  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 0  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 1  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  'A028254', # # 2  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  'A028257', # sqrt=3  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 4  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  'A059176', # sqrt=5  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 6  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  'A161368', # sqrt=7  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 8  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  undef,     # 9  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  'A059177', # sqrt=10  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  # OEIS-Catalogue array end  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 );  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub oeis_anum {  | 
| 
75
 | 
3
 | 
 
 | 
 
 | 
  
3
  
 | 
  
1
  
 | 
7
 | 
   my ($self) = @_;  | 
| 
76
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
   return $oeis_anum[$self->{'sqrt'}];  | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a/b + 1/(b*v) = sqrt(s)  | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a + 1/v = b*sqrt(s)  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/v = b*sqrt(s) - a  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # v = 1 / (b*sqrt(s) - a)  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = (b*sqrt(s) + a) / (b*sqrt(s) - a)*(b*sqrt(s) + a)  | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = (b*sqrt(s) + a) / (b^2*s - a^2)  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = (sqrt(s*b^2) + a) / (s*b^2 - a^2)  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # round up v  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   sqrt(sb2) never an integer  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   bigint sqrt rounds down so +1 to round up  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   division add den-1 to round up  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   so add 1+den-1=den means  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # v = floor( (floor(sqrt(s*b^2)) + a) / (s*b^2 - a^2) ) + 1  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a/b + 1/bv < sqrt(s)  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a + 1/v < b*sqrt(s)  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a^2 + 2a/v + 1/v^2 < s*b^2  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a^2*v^2 + 2a*v + 1 < s*b^2*v^2  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a/b < sqrt(s)  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a < b*sqrt(s)  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a^2 < s*b^2  | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub rewind {  | 
| 
103
 | 
29
 | 
 
 | 
 
 | 
  
29
  
 | 
  
1
  
 | 
1032
 | 
   my ($self) = @_;  | 
| 
104
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61
 | 
   $self->{'i'} = $self->i_start;  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
106
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
31
 | 
   my $sqrt = $self->{'sqrt'};  | 
| 
107
 | 
29
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
51
 | 
   if ($sqrt <= 0) {  | 
| 
108
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     $self->{'a'} = 0;  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } else {  | 
| 
110
 | 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
33
 | 
     my $root = sqrt($sqrt);  | 
| 
111
 | 
29
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
54
 | 
     if ($root == int($root)) {  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # perfect square  | 
| 
113
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
       $self->{'perfect_square'} = 1;  | 
| 
114
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
21
 | 
       $self->{'a'} = $root;  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # start 0/1 a=0,b=1, so sb2=s*b^2=s  | 
| 
117
 | 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
45
 | 
       $self->{'a'} = Math::NumSeq::_to_bigint(0);  | 
| 
118
 | 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1165
 | 
       $self->{'sb2'} = Math::NumSeq::_to_bigint($sqrt);  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub next {  | 
| 
123
 | 
192
 | 
 
 | 
 
 | 
  
192
  
 | 
  
1
  
 | 
137874
 | 
   my ($self) = @_;  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ### SqrtEngel next() ...  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
126
 | 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
218
 | 
   my $a = $self->{'a'};  | 
| 
127
 | 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
137
 | 
   my $value;  | 
| 
128
 | 
192
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
296
 | 
   if ($self->{'perfect_square'}) {  | 
| 
129
 | 
22
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
28
 | 
     if ($a) {  | 
| 
130
 | 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17
 | 
       $value = 1;  | 
| 
131
 | 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
       $self->{'a'} -= 1;  | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     } else {  | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       # perfect square no more terms  | 
| 
134
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
       return;  | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } else {  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### a: "$self->{'a'}"  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### sb2: "$self->{'sb2'}"  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### b: "".sqrt($self->{'sb2'} / $self->{'sqrt'})  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### assert: $self->{'a'} * $self->{'a'} <= $self->{'sb2'}  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### num: (sqrt($self->{'sb2'}) + $self->{'a'}).''  | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### den: ($self->{'sb2'} - $self->{'a'}**2).''  | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # always "+ 1" to round up because sqrt() is not an integer so the  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # numerator is not divisible by the denominator  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
147
 | 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
362
 | 
     $value = (sqrt($self->{'sb2'}) + $a) / ($self->{'sb2'} - $a*$a) + 1;  | 
| 
148
 | 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
53018
 | 
     $self->{'a'} = $a*$value + 1;  | 
| 
149
 | 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17768
 | 
     $self->{'sb2'} *= $value * $value;  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### new value: "$value"  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ### assert: $self->{'a'} * $self->{'a'} <= $self->{'sb2'}  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
154
 | 
170
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
10658
 | 
     if ($value <= ~0) {  | 
| 
155
 | 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9700
 | 
       $value = $value->numify;  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
159
 | 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1793
 | 
   return ($self->{'i'}++, $value);  | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  ### assert: $self->{'a'} ** 2 * $value ** 2 + 2 * $self->{'a'} * $value + 1 < $self->{'sb2'} * $value ** 2  | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # a/b + 1/bv + 1/bvw < sqrt(s)  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bvw < sqrt(s) - a/b - 1/bv  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/w < bv*sqrt(s) - bv*a/b - bv/bv  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/w < bv*sqrt(s) - v*a - 1  | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/w < v*(b*sqrt(s) - a) - 1  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv + 1/bvw  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = 1/bv + 1/bvw + 1/bw - 1/bw  | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = 1/bw + 1/bvw + (1/bv - 1/bw)  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = 1/bw + 1/bvw + w/bvw - v/bvw  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = 1/bw + (1+w-v)/bvw  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv+1/bv1, should have had smaller v at previous stage  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv < sqrt  1/b(v-1) > sqrt  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # sqrt-1/bv > 0  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv+1/bv(v-1)  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = 1/bv * (1 + 1/(v-1))  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv < t < 1/b(v-1)  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bv + 1/bvw < t < 1/bv + 1/bv(w-1)  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1/bvw < t-1/bv < 1/bv(w-1)  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # sqrt(2) - (1 + 1/3 + 1/3*5) > 0  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # sqrt(2) - (1 + 1/3 + 1/3*6)  | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   = sqrt(2) - 25/18  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # R = t - (a/b + 1/bv) > 0  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvR = bvt - (bva/b + bv/bv)  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     = bvt - (va + 1) > 0  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvwR = tbvw - (avw + w)  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvt - (va + 1) > 0  | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvt > (va + 1)  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # t - (a/b + 1/b(v-1)) < 0  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvt - (bva/b + bv/b(v-1)) < 0  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvt - (va + v/(v-1)) < 0  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvt < (va + v/(v-1))  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # S = t - (a/b + 1/bv + 1/bvw) > 0  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # bvwS = tbvw - (bvwa/b + bvw/bv + bvw/bvw)  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #      = tbvw - (vwa + w + 1) > 0  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 __END__  |