|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #######################################################################  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # $Id: DyckWords.pm,v 1.2 2010/04/14 03:41:06 mmertel Exp $  | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Math::DyckWords - Perl module for generating Dyck words. Dyck words  | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are named after the mathematician Walther von Dyck.  | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Math::DyckWords qw( dyck_words_by_lex  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           dyck_words_by_position  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           dyck_words_by_swap  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           ranking  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           unranking  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           catalan_number );  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   @words = dyck_words_by_lex( 4 );  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   @words = dyck_words_by_position( 4 );  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   @words = dyck_words_by_swap( 4 );  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $rank  = ranking( '01010101' );  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $word  = unranking( 3, 2 );  | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 DESCRIPTION  | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Dyck words are even numbered string of X's and Y's, or 0's and 1's,  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 or any other binary alphabet for that matter, such that no initial  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 segment has more Y's or 1's.  The following are the Dyck words of  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 length 2n where n = 3:  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     000111  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     010011  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     010101  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     001101  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     001011  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Another common use of Dyck words is in dealing with the balanced  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 parenthesis problem. Substituting the left and right parentheses  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 for the 0's an 1's listed above we have:  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ((()))  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ()(())  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ()()()  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     (())()  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     (()())  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 There is also a relationship between Dyck words and Catalan numbers.  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Catalan numbers have many applications in combinatorics and consists  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of a sequence of ever increasing integers following the formula:  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     (2n)!/(n!(n+1)!)  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The first few numbers in the Catalan sequence are:  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     1, 1, 2, 5, 14, 132, 429, 1430, 4862, 16796, 58786, 208012  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The relationship between Dyck words and the Catalan sequence can  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 be easily seen as the nth Catalan number is equal to the number of  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 permutations, or unique Dyck words of length 2n. For example,  | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the 3rd Catalan number, using a zero index, is 5. This is the same  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 number of Dyck words of length 2n where n = 3.  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The algorithms in this module are based on those presented in the  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 scholarly paper "Generating and ranking of Dyck words" by Zoltan Kasa  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 available on-line at http://arxiv4.library.cornell.edu/pdf/1002.2625,  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and the provide three different Dyck word generators - lexigraphical,  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 positional, and one that generates Dyck words by swapping characters.  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 EXPORT  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 None by default.  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Math::DyckWords;  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
77
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
30798
 | 
 use 5.006;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44
 | 
    | 
| 
78
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
7
 | 
 use strict;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
    | 
| 
79
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
6
 | 
 use warnings;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
43
 | 
    | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
81
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
5
 | 
 use Carp;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
118
 | 
    | 
| 
82
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
1834
 | 
 use Data::Dumper;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13282
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
86
 | 
    | 
| 
83
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
4816
 | 
 use Math::BigInt;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
26829
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
84
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
 
 | 
22058
 | 
 use Exporter;  | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
1896
 | 
    | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION = '0.03';  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our @ISA = qw( Exporter );  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our @EXPORT_OK = qw( dyck_words_by_lex  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                      dyck_words_by_position  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                      dyck_words_by_swap  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                      ranking  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                      unranking  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                      catalan_number );  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 FUNCTIONS  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item dyck_words_by_lex( $n )  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This algorithm returns a list of all Dyck words of length 2n in ascending  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 lexicographic order, i.e. 000111, 001011, 001101, 010011, 010101  | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my @words;  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub dyck_words_by_lex {  | 
| 
111
 | 
195
 | 
 
 | 
 
 | 
  
195
  
 | 
  
1
  
 | 
292
 | 
     my ( $n, $X, $i, $n0, $n1 ) = @_;  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # initialization - the first time called, the only argument  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # is the length 2n of the words  | 
| 
115
 | 
195
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
360
 | 
     if( not defined $X ) {  | 
| 
116
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
         ( $X, $i, $n0, $n1 )  = ( '0', 1, 1, 0 );  | 
| 
117
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
         @words = ();  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Case 1: We can continue by adding 0 and 1.  | 
| 
121
 | 
195
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
689
 | 
     if( $n0 < $n && $n1 < $n && $n0 > $n1 ) {  | 
| 
 
 | 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
122
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
132
 | 
         dyck_words_by_lex( $n, $X . '0', $i++, $n0 + 1, $n1 );  | 
| 
123
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
120
 | 
         dyck_words_by_lex( $n, $X . '1', $i++, $n0, $n1 + 1 );  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Case 2: We can continue by adding 0 only.  | 
| 
127
 | 
195
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
1107
 | 
     if( ( $n0 < $n && $n1 < $n && $n0 == $n1 ) ||  | 
| 
 
 | 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         ( $n0 < $n && $n1 == $n ) )  | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     {  | 
| 
130
 | 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
58
 | 
         dyck_words_by_lex( $n, $X . '0', $i++, $n0 + 1, $n1 );  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Case 3: We can continue by adding 1 only.  | 
| 
134
 | 
195
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
674
 | 
     if( $n0 == $n && $n1 < $n  ) {  | 
| 
135
 | 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
259
 | 
         dyck_words_by_lex( $n, $X . '1', $i++, $n0, $n1 + 1 );  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Case 5: A Dyck word is obtained.  | 
| 
139
 | 
195
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
708
 | 
     if( $n0 == $n && $n1 == $n ) {  | 
| 
140
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
72
 | 
         push @words, $X;  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # All Dyck words have been obtained  | 
| 
144
 | 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
259
 | 
     return @words;  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item dyck_words_by_position( $n )  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This algorithm returns a list of all Dyck words of length 2n in descending  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 lexicographic order, i.e. 010101, 010011, 001101, 001011, 000111.  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub dyck_words_by_position {  | 
| 
159
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
382
 | 
     my $n = shift;  | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # reset the return list  | 
| 
162
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     @words = ();  | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # generate the maximum Dyck word of length n - which has 1s in all  | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # even numbered positions, i.e. 2468 = 01010101  | 
| 
166
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     my @b = map { $_ * 2 } ( 1 .. $n );  | 
| 
 
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
    | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # set a flag  | 
| 
169
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     my $found = 1;  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
171
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     while( $found ) {  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # save the Dyck word to the return list  | 
| 
173
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
633
 | 
         push @words, translate_positions( @b );  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # reset flag  | 
| 
176
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
54
 | 
         $found = 0;  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # reverse iterate through the length of the word  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # setting the appropriate bits to 1's or 0's  | 
| 
180
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
         for( my $i = $n - 1; $i >= 1; $i-- ) {  | 
| 
181
 | 
89
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
210
 | 
 	        if( $b[ $i - 1 ] < $n + $i ) {  | 
| 
182
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
43
 | 
                 $b[ $i - 1 ] += 1;  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
184
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
88
 | 
                 for( my $j = $i + 1; $j <= $n - 1; $j++ ) {  | 
| 
185
 | 
44
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
135
 | 
 		            $b[ $j - 1 ] = $b[ $j - 2 ] + 1 > $j * 2  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                                  ? $b[ $j - 2 ] + 1  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                                  : $j * 2;  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		        }  | 
| 
189
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
38
 | 
 		        $found = 1;  | 
| 
190
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
86
 | 
                 last;   | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        }  | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
194
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
26
 | 
     return @words;  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item translate_positions( @p )  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This function translates an array of integer values indicating  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the position of 1's in the resultant Dyck word, and is called by  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the dyck_words_by_position function.  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub translate_positions( @ ) {  | 
| 
210
 | 
43
 | 
 
 | 
 
 | 
  
43
  
 | 
  
1
  
 | 
54
 | 
     my $n = scalar @_;  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # convert the list of positions to a hash for easier lookup  | 
| 
213
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
42
 | 
     my %position;  | 
| 
214
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
193
 | 
     @position{ @_ } = @_;  | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
216
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
     my $word;  | 
| 
217
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
96
 | 
     for( my $i = 0; $i < $n * 2; $i++ ) {  | 
| 
218
 | 
430
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
1084
 | 
         $word .= exists $position{ $i + 1 } ? '1' : '0';  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
220
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
140
 | 
     return $word;  | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item dyck_words_by_position( $n )  | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This algorithm returns a list of all Dyck words of length 2n in no  | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 particular order, i.e. 010101, 001101, 001011, 000111, 010011. This  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is done by changing the first occurrence of '10' to '01'.  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub dyck_words_by_swap {  | 
| 
236
 | 
42
 | 
 
 | 
 
 | 
  
42
  
 | 
  
0
  
 | 
388
 | 
     my ( $n, $X, $k ) = @_;  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
238
 | 
42
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
84
 | 
     if( not defined $X ) {  | 
| 
239
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
         $X = join '', ( '01' x $n );  | 
| 
240
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
         $k = 0;  | 
| 
241
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
         @words = ( $X );  | 
| 
242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
244
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
50
 | 
     my $i = $k;  | 
| 
245
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
246
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
     while( $i < $n * 2 ) {  | 
| 
247
 | 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
153
 | 
         my $j = index( $X, '10', $i );  | 
| 
248
 | 
83
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
139
 | 
         if( $j > 0 ) {  | 
| 
249
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
204
 | 
             my @Y = split //, $X;  | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
             # swap  | 
| 
251
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
125
 | 
             ( $Y[ $j ], $Y[ $j + 1 ] ) =  | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 ( $Y[ $j + 1 ], $Y[ $j ] );  | 
| 
253
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
89
 | 
             my $Y = join '', @Y;  | 
| 
254
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62
 | 
             push @words, $Y;  | 
| 
255
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
             dyck_words_by_swap( $n, $Y, $j - 1 );  | 
| 
256
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
148
 | 
             $i = $j + 2;  | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         else {  | 
| 
259
 | 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
80
 | 
             return @words;  | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item monotonic_path_count( $n, $i, $j )  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Ranking Dyck words means to determine the position of a Dyck  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 word in a given ordered sequence of all Dyck words.  | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 For ranking these words we will use the following function,  | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 where f(n,i,j) represents the number of paths between (0,0)  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and (i,j) not crossing the diagonal x = y of the grid.  | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub monotonic_path_count {  | 
| 
279
 | 
141
 | 
 
 | 
 
 | 
  
141
  
 | 
  
1
  
 | 
151
 | 
     my ( $n, $i, $j ) = @_;  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
281
 | 
141
 | 
  
100
  
 | 
  
 33
  
 | 
 
 | 
 
 | 
861
 | 
     if( $n >= $i and $i >= 0 and $j == 0 ) {  | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
282
 | 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
163
 | 
         return 1;  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
284
 | 
83
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
381
 | 
     if( $n >= $i and $i > $j and $j >= 1 ) {  | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
285
 | 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
101
 | 
         return monotonic_path_count( $n, $i - 1, $j ) +  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	           monotonic_path_count( $n, $i, $j - 1 );  | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
288
 | 
36
 | 
  
 50
  
 | 
  
 33
  
 | 
 
 | 
 
 | 
181
 | 
     if( $n >= $i and $i >= 1 and $j == $i ) {  | 
| 
 
 | 
 
 | 
 
 | 
  
 33
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
289
 | 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
73
 | 
         return monotonic_path_count( $n, $i, $i - 1 );  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
291
 | 
0
 | 
  
  0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
0
 | 
     if( $n >= $j and $j > $i and $i >= 0 ) {  | 
| 
 
 | 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
292
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
         return 0;  | 
| 
293
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item positions( $w )  | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This function converts a Dyck word string of 1's and 0's into a list  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of positions where the 1's are located, i.e. 2468 => 01010101  | 
| 
302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub positions( $ ) {  | 
| 
308
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
3
 | 
     my $w = shift;  | 
| 
309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
310
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     my ( $i, @p ) = ( 1, () );  | 
| 
311
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
     foreach my $p ( split //, $w ) {  | 
| 
312
 | 
10
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
24
 | 
         if( $p == 1 ) {  | 
| 
313
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
             push @p, $i;  | 
| 
314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         }  | 
| 
315
 | 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
         $i++;  | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
317
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     return @p;  | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
322
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item ranking( $w )  | 
| 
323
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This function returns the rank of an individual Dyck word $w in the  | 
| 
325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 list of all Dyck words of the same length.  | 
| 
326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
327
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub ranking( $ ) {  | 
| 
332
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
1037
 | 
     my @b = positions( shift );  | 
| 
333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
334
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     my @c = ( 2 );  | 
| 
335
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
     my $n = scalar @b;  | 
| 
336
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     for( my $j = 2; $j <= $n; $j++ ) {  | 
| 
337
 | 
4
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
21
 | 
 	    $c[ $j - 1 ] = $b[ $j - 2 ] + 1 > $j * 2  | 
| 
338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	                 ? $b[ $j - 2 ] + 1  | 
| 
339
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  : $j * 2;  | 
| 
340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
341
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
     my $nr = 1;  | 
| 
342
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     for( my $i = 1; $i <= $n - 1; $i++ ) {  | 
| 
343
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
209
 | 
 	    for( my $j = $c[ $i - 1]; $j <= $b[ $i - 1] - 1; $j++ ) {  | 
| 
344
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
 	        $nr = $nr + monotonic_path_count( $n, $n - $i, $n + $i - $j );  | 
| 
345
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
347
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
     return $nr;  | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item unranking( $n, $r )  | 
| 
353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This function returns the rank $r Dyck word of length $n.  | 
| 
355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
359
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
360
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub unranking( $$ ) {  | 
| 
361
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
361
 | 
     my ( $n, $nr ) = @_;  | 
| 
362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # initialize the dyck word to all '0'  | 
| 
364
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     my @b = ( '0' x ( $n * 2 ) );  | 
| 
365
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
366
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
     $nr--;  | 
| 
367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
368
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
     for( my $i = 1; $i <= $n; $i++ ) {  | 
| 
369
 | 
5
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
18
 | 
 	    $b[ $i ] = $b[ $i - 1 ] + 1 > $i * 2  | 
| 
370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  ? $b[ $i - 1 ] + 1  | 
| 
371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                  : $i * 2;  | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
373
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
 	    my $j  = $n + $i - $b[ $i ];  | 
| 
374
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
 	    my $np = monotonic_path_count( $n, $n - $i, $j );  | 
| 
375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
376
 | 
5
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
26
 | 
 	    while( $nr >= $np && ( $b[ $i ] < $n + $i ) ) {  | 
| 
377
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
 	        $nr      = $nr - $np;  | 
| 
378
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
 	        $b[ $i ] = $b[ $i ] + 1;  | 
| 
379
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 	        $j       = $j - 1;  | 
| 
380
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
             $np      = monotonic_path_count( $n, $n - $i, $j );  | 
| 
381
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # discard the zeroth element of the list of positions  | 
| 
384
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
     shift @b;  | 
| 
385
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
386
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
     return translate_positions( @b );  | 
| 
387
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
388
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
389
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item catalan_number( $n )  | 
| 
392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Using the formula - (2n)!/(n!(n+1)!) - this function returns the  | 
| 
394
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 corresponding number $n from the Catalan sequence.  | 
| 
395
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
396
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub catalan_number( $ ) {  | 
| 
401
 | 
1
 | 
 
 | 
 
 | 
  
1
  
 | 
  
1
  
 | 
261
 | 
     my $x = shift;  | 
| 
402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
403
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
     my $X = Math::BigInt->new( $x );  | 
| 
404
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
110
 | 
     my $Y = $X->copy;  | 
| 
405
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
21
 | 
     my $Z = $X->copy;  | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
407
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
     return $X->bmul( 2 )->bfac->bdiv(  | 
| 
408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         $Y->bfac->bmul( $Z->badd( 1 )->bfac )  | 
| 
409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     );  | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  |