|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
  
 
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Math::Brent;  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
83239
 | 
 use 5.010001;  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
    | 
| 
4
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
20
 | 
 use strict;  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
93
 | 
    | 
| 
5
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
19
 | 
 use warnings;  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
105
 | 
    | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
7
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
19
 | 
 use Exporter;  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
517
 | 
    | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our (@ISA, @EXPORT_OK, %EXPORT_TAGS);  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @ISA = qw(Exporter);  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 %EXPORT_TAGS = (  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	all => [qw(  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		BracketMinimum  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		Brent Minimise1D  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		Brentzero  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	) ],  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 );  | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 @EXPORT_OK = ( @{ $EXPORT_TAGS{all} } );  | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION = 1.00;  | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
22
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
3125
 | 
 use Math::VecStat qw(max min);  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5107
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
288
 | 
    | 
| 
23
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
3155
 | 
 use Math::Utils qw(:fortran);  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11635
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
590
 | 
    | 
| 
24
 | 
4
 | 
 
 | 
 
 | 
  
4
  
 | 
 
 | 
25
 | 
 use Carp;  | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
 
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6480
 | 
    | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #use Smart::Comments ('###', '####');  # 3 for variables, 4 for 'here we are'.  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Math::Brent - Brent's single dimensional function minimisation, and Brent's zero finder.  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     use Math::Brent qw(Minimise1D);  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $tolerance = 1e-7;  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $itmax = 80;  | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     sub sinc {  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       my $x = shift ;  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       return $x ? sin($x)/$x: 1;  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my($x, $y) = Minimise1D(1, 1, \&sinc, $tolerance, $itmax);  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     print "Minimum is at sinc($x) = $y\n";  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 or  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     use Math::Brent qw(BracketMinimum Brent);  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $tolerance = 1e-7;  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $itmax = 80;  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # If you want to use the separate functions  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # instead of a single call to Minimise1D().  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my($ax, $bx, $cx, $fa, $fb, $fc) = BracketMinimum($ax, $bx, \&sinc);  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my($x, $y) = Brent($ax, $bx, $cx, \&sinc, $tolerance, $itmax);  | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     print "Minimum is at sinc($x) = $y\n";  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In either case the output will be C  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This module has implementations of Brent's method for one-dimensional  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 minimisation of a function without using derivatives. This algorithm  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 cleverly uses both the Golden Section Search and parabolic  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 interpolation.  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Anonymous subroutines may also be used as the function reference:  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $cubic_ref = sub {my($x) = @_; return 6.25 + $x*$x*(-24 + $x*8));};  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my($x, $y) = Minimise1D(3, 1, $cubic_ref);  | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     print "Minimum of the cubic at $x = $y\n";  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 In addition to finding the minimum, there is also an implementation of the  | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Van Wijngaarden-Dekker-Brent Method, used to find a function's root without  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 using derivatives.  | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     use Math::Brent qw(Brentzero);  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $tolerance = 1e-7;  | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my $itmax = 80;  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     sub wobble  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     {  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         my($t) = @_;  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         return $t - cos($t);  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Find the zero somewhere between .5 and 1.  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $r = Brentzero(0.5, 1.0, \&wobble, $tolerance, $itmax);  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 EXPORT  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Each function can be exported by name, or all may be exported by using the tag 'all'.  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 FUNCTIONS  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The functions may be imported by name, or by using the export  | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 tag "all".  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Minimise1D()  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Provides a simple interface to the L and L  | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 routines.  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Given a function, an initial guess for the function's  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 minimum, and its scaling, this routine converges  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to the function's minimum using Brent's method.  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ($x, $y) = Minimise1D($guess, $scale, \&func);  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The minimum is reached within a certain tolerance (defaulting 1e-7), and  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 attempts to do so within a maximum number of iterations (defaulting to 100).  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You may override them by providing alternate values:  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ($x, $y) = Minimise1D($guess, $scale, \&func, 1.5e-8, 120);  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Minimise1D  | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 {  | 
| 
129
 | 
5
 | 
 
 | 
 
 | 
  
5
  
 | 
  
1
  
 | 
3519
 | 
     my ($guess, $scale, $func, $tol, $itmax) = @_;  | 
| 
130
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
26
 | 
     my ($a, $b, $c) = BracketMinimum($guess - $scale, $guess + $scale, $func);  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
132
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
     return Brent($a, $b, $c, $func, $tol, $itmax);  | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # BracketMinimum  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # BracketMinimum is MNBRAK minimum bracketing routine from section 10.1  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # of Numerical Recipies  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $GOLD = 0.5 + sqrt(1.25); # Default magnification ratio for intervals is phi.  | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $GLIMIT = 100.0; # Max magnification for parabolic fit step  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $TINY = 1E-20;  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 BracketMinimum()  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     ($ax, $bx, $cx, $fa, $fb, $fc) = BracketMinimum($ax, $bx);  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Given a function reference B<\&func> and distinct initial points B<$ax>  | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and B<$bx>, this routine searches in the downhill direction and returns  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 a list of the three points B<$ax>, B<$bx>, B<$cx> which bracket the  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 minimum of the function, along with the function values at those three  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 points, $fa, $fb, $fc.  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The points B<$ax>, B<$bx>, B<$cx> may then be used in the function Brent().  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub BracketMinimum  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 {  | 
| 
162
 | 
5
 | 
 
 | 
 
 | 
  
5
  
 | 
  
1
  
 | 
14
 | 
     my ($ax, $bx, $func) = @_;  | 
| 
163
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
     my ($fa, $fb) = (&$func($ax), &$func($bx));  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Swap the a and b values if we weren't going in  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # a downhill direction.  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
169
 | 
5
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
341448
 | 
     if ($fb > $fa)  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     {  | 
| 
171
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
 	my $t = $ax; $ax = $bx; $bx = $t;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
172
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
 	$t = $fa; $fa = $fb; $fb = $t;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
175
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
     my $cx = $bx + $GOLD * ($bx - $ax);  | 
| 
176
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
26
 | 
     my $fc = &$func($cx);  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     # Loop here until we bracket  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     #  | 
| 
181
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
72
 | 
     while ($fb >= $fc)  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     {  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Compute U by parabolic extrapolation from  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# a, b, c. TINY used to prevent div by zero  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
187
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
 	my $r = ($bx - $ax) * ($fb - $fc);  | 
| 
188
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
 	my $q = ($bx - $cx) * ($fb - $fa);  | 
| 
189
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
 	my $u = $bx - (($bx - $cx) * $q - ($bx - $ax) * $r)/  | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    (2.0 * copysign(max(abs($q - $r), $TINY), $q - $r));  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
192
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
91
 | 
 	my $ulim = $bx + $GLIMIT * ($cx - $bx); # We won't go further than this  | 
| 
193
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 	my $fu;  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Parabolic U between B and C - try it.  | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
198
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
18
 | 
 	if (($bx - $u) * ($u - $cx) > 0.0)  | 
| 
 
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
200
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $fu = &$func($u);  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
202
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    if ($fu < $fc)  | 
| 
 
 | 
 
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Minimum between B and C  | 
| 
205
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$ax = $bx; $fa = $fb; $bx = $u;  $fb = $fu;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
206
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		next;  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    elsif ($fu > $fb)  | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Minimum between A and U  | 
| 
211
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$cx = $u; $fc = $fu;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
212
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		next;  | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
215
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $u = $cx + $GOLD * ($cx - $bx);  | 
| 
216
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $fu = &$func($u);  | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	elsif (($cx - $u) * ($u - $ulim) > 0)  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # parabolic  fit between C and limit  | 
| 
221
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
 	    $fu = &$func($u);  | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
223
 | 
2
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
52
 | 
 	    if ($fu < $fc)  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
225
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$bx = $cx; $cx = $u;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
226
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$u = $cx + $GOLD * ($cx - $bx);  | 
| 
227
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$fb = $fc; $fc = $fu;  | 
| 
 
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
    | 
| 
228
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		$fu = &$func($u);  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	elsif (($u - $ulim) * ($ulim - $cx) >= 0)  | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # Limit parabolic U to maximum  | 
| 
234
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $u = $ulim;  | 
| 
235
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $fu = &$func($u);  | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	else  | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    # eject parabolic U, use default magnification  | 
| 
240
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $u = $cx + $GOLD * ($cx - $bx);  | 
| 
241
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 	    $fu = &$func($u);  | 
| 
242
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Eliminate oldest point and continue  | 
| 
245
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
 	$ax = $bx; $bx = $cx; $cx = $u;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
246
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
 	$fa = $fb; $fb = $fc; $fc = $fu;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
    | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
249
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
22
 | 
     return ($ax, $bx, $cx, $fa, $fb, $fc);  | 
| 
250
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
252
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
253
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # The complementary step is (3 - sqrt(5))/2, which resolves to 2 - phi.  | 
| 
254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
255
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $CGOLD = 2 - $GOLD;  | 
| 
256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my $ZEPS = 1e-10;  | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head3 Brent()  | 
| 
259
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Given a function and a triplet of abcissas B<$ax>, B<$bx>, B<$cx>, such that  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
262
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 4  | 
| 
263
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item 1. B<$bx> is between B<$ax> and B<$cx>, and  | 
| 
265
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
266
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item 2. B is less than both B and B),  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
270
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Brent() isolates the minimum to a fractional precision of about B<$tol>  | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 using Brent's method.  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 A maximum number of iterations B<$itmax> may be specified for this search - it  | 
| 
274
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 defaults to 100. Returned is a list consisting of the abcissa of the minum  | 
| 
275
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 and the function value there.  | 
| 
276
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Brent  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 {  | 
| 
281
 | 
5
 | 
 
 | 
 
 | 
  
5
  
 | 
  
1
  
 | 
15
 | 
     my ($ax, $bx, $cx, $func, $tol, $ITMAX) = @_;  | 
| 
282
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
44
 | 
     my ($d, $u, $x, $w, $v); # ordinates  | 
| 
283
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
     my ($fu, $fx, $fw, $fv); # function evaluations  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
285
 | 
5
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
40
 | 
     $ITMAX //= 100;  | 
| 
286
 | 
5
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
28
 | 
     $tol //= 1e-8;  | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
288
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
     my $a = min($ax, $cx);  | 
| 
289
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
113
 | 
     my $b = max($ax, $cx);  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
291
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
134
 | 
     $x = $w = $v = $bx;  | 
| 
292
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
     $fx = $fw = $fv = &$func($x);  | 
| 
293
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
38
 | 
     my $e = 0.0; # will be distance moved on the step before last  | 
| 
294
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
     my $iter = 0;  | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
296
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
     while ($iter < $ITMAX)  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     {  | 
| 
298
 | 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
120
 | 
 	my $xm = 0.5 * ($a + $b);  | 
| 
299
 | 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
116
 | 
 	my $tol1 = $tol * abs($x) + $ZEPS;  | 
| 
300
 | 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
106
 | 
 	my $tol2 = 2.0 * $tol1;  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
302
 | 
49
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
205
 | 
 	last if (abs($x - $xm) <= ($tol2 - 0.5 * ($b - $a)));  | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
304
 | 
44
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
163
 | 
 	if (abs($e) > $tol1)  | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
306
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
88
 | 
 	    my $r = ($x-$w) * ($fx-$fv);  | 
| 
307
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
133
 | 
 	    my $q = ($x-$v) * ($fx-$fw);  | 
| 
308
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
100
 | 
 	    my $p = ($x-$v) * $q-($x-$w)*$r;  | 
| 
309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
310
 | 
39
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
158
 | 
 	    $p = -$p if (($q = 2 * ($q - $r)) > 0.0);  | 
| 
311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
312
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
74
 | 
 	    $q = abs($q);  | 
| 
313
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
70
 | 
 	    my $etemp = $e;  | 
| 
314
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
66
 | 
 	    $e = $d;  | 
| 
315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
316
 | 
39
 | 
  
 50
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
439
 | 
 	    unless ( (abs($p) >= abs(0.5 * $q * $etemp)) or  | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		($p <= $q * ($a - $x)) or ($p >= $q * ($b - $x)) )  | 
| 
318
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 #  | 
| 
320
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        # Parabolic step OK here - take it.  | 
| 
321
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                 #  | 
| 
322
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
64
 | 
 	        $d = $p/$q;  | 
| 
323
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62
 | 
 	        $u = $x + $d;  | 
| 
324
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
325
 | 
34
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
211
 | 
 	        if ( (($u - $a) < $tol2) or (($b - $u) < $tol2) )  | 
| 
326
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        {  | 
| 
327
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
 		    $d = copysign($tol1, $xm - $x);  | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	        }  | 
| 
329
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
429
 | 
 	        goto dcomp; # Skip the golden section step.  | 
| 
330
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
331
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
332
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
333
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #  | 
| 
334
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # Golden section step.  | 
| 
335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #  | 
| 
336
 | 
10
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
34
 | 
 	$e = (($x >= $xm) ? $a : $b) - $x;  | 
| 
337
 | 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
 	$d = $CGOLD * $e;  | 
| 
338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
339
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #  | 
| 
340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         # We arrive here with d from Golden section or parabolic step.  | 
| 
341
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
         #  | 
| 
342
 | 
44
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
156
 | 
         dcomp:  | 
| 
343
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	$u = $x + ((abs($d) >= $tol1) ? $d : copysign($tol1, $d));  | 
| 
344
 | 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
193
 | 
 	$fu = &$func($u); # 1 &$function evaluation per iteration  | 
| 
345
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
347
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# Decide what to do with &$function evaluation  | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	#  | 
| 
349
 | 
44
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
354
 | 
 	if ($fu <= $fx)  | 
| 
350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
351
 | 
31
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
86
 | 
 	    if ($u >= $x)  | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
353
 | 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
27
 | 
                 $a = $x;  | 
| 
354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    else  | 
| 
356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
357
 | 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
33
 | 
                 $b = $x;  | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
359
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
59
 | 
 	    $v = $w; $fv = $fw;  | 
| 
 
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
51
 | 
    | 
| 
360
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
57
 | 
 	    $w = $x; $fw = $fx;  | 
| 
 
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
46
 | 
    | 
| 
361
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
52
 | 
 	    $x = $u; $fx = $fu;  | 
| 
 
 | 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61
 | 
    | 
| 
362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	else  | 
| 
364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
365
 | 
13
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
54
 | 
 	    if ($u < $x)  | 
| 
366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
367
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17
 | 
 		    $a = $u;  | 
| 
368
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    else  | 
| 
370
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
371
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 		    $b = $u;  | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
374
 | 
13
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
120
 | 
 	    if ($fu <= $fw or $w == $x)  | 
| 
 
 | 
 
 | 
  
 50
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
375
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
376
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
14
 | 
 		$v = $w; $fv = $fw;  | 
| 
 
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
    | 
| 
377
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 		$w = $u; $fw = $fu;  | 
| 
 
 | 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
16
 | 
    | 
| 
378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    elsif ( $fu <= $fv or $v == $x or $v == $w )  | 
| 
380
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    {  | 
| 
381
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
 		    $v = $u; $fv = $fu;  | 
| 
 
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
14
 | 
    | 
| 
382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	    }  | 
| 
383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
385
 | 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
160
 | 
 	$iter++;  | 
| 
386
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     }  | 
| 
387
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
388
 | 
5
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
27
 | 
     carp "Brent Exceed Maximum Iterations.\n" if ($iter >= $ITMAX);  | 
| 
389
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
31
 | 
     return ($x, $fx);  | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub Brentzero  | 
| 
393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 {  | 
| 
394
 | 
9
 | 
 
 | 
 
 | 
  
9
  
 | 
  
0
  
 | 
3208
 | 
 	my($a, $b, $func, $tol, $ITMAX) = @_;  | 
| 
395
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
26
 | 
 	my $fa = &$func($a);  | 
| 
396
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
264
 | 
 	my $fb = &$func($b);  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
398
 | 
9
 | 
  
 50
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
267
 | 
 	if (($fa > 0.0 and $fb > 0.0) or ($fa < 0.0 and $fb < 0.0))  | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 33
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
400
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		carp "Brentzero(): root was not bracketed by [$a, $b].";  | 
| 
401
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 		return undef;  | 
| 
402
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
403
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
404
 | 
9
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
36
 | 
 	$ITMAX //= 100;  | 
| 
405
 | 
9
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
39
 | 
 	$tol //= 1e-8;  | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
407
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 	my($c, $fc) = ($b, $fb);  | 
| 
408
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
 	my($d, $e);  | 
| 
409
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
 	my $iter = 0;  | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
411
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
29
 | 
 	while ($iter < $ITMAX)  | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	{  | 
| 
413
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
414
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Adjust bounding interval $d.  | 
| 
415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
416
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### iteration: $iter  | 
| 
417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### a: $a  | 
| 
418
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### b: $b  | 
| 
419
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fa: $fa  | 
| 
420
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fb: $fb  | 
| 
421
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fc: $fc  | 
| 
422
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
423
 | 
75
 | 
  
100
  
 | 
  
100
  
 | 
 
 | 
 
 | 
491
 | 
 		if (($fb > 0.0 and $fc > 0.0) or ($fb < 0.0 and $fc < 0.0))  | 
| 
 
 | 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
 
 | 
 
 | 
 
 | 
  
 66
  
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		{  | 
| 
425
 | 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62
 | 
 			$fc = $fa;  | 
| 
426
 | 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
68
 | 
 			$c = $a;  | 
| 
427
 | 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
 			$d = $b - $a;  | 
| 
428
 | 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
70
 | 
 			$e = $d;  | 
| 
429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
430
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
431
 | 
75
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
176
 | 
 		if (abs($fc) < abs($fb))  | 
| 
432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		{  | 
| 
433
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
 			$a = $b;  | 
| 
434
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
 			$b = $c;  | 
| 
435
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
20
 | 
 			$c = $a;  | 
| 
436
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
19
 | 
 			$fa = $fb;  | 
| 
437
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
17
 | 
 			$fb = $fc;  | 
| 
438
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
23
 | 
 			$fc = $fa;  | 
| 
439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Convergence check.  | 
| 
443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### a: $a  | 
| 
445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### b: $b  | 
| 
446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### c: $c  | 
| 
447
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### d: $d  | 
| 
448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fa: $fa  | 
| 
449
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fb: $fb  | 
| 
450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### fc: $fc  | 
| 
451
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
452
 | 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
107
 | 
 		my $xm = ($c - $b) * 0.5;  | 
| 
453
 | 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
124
 | 
 		my $tol1 = 2.0 * $ZEPS * abs($b) + ($tol * 0.5);  | 
| 
454
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
455
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
456
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### tol1: $tol1  | 
| 
457
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		### xm: $xm  | 
| 
458
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
459
 | 
75
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
323
 | 
 		return $b if (abs($xm) <= $tol1 or $fb == 0.0);  | 
| 
460
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
461
 | 
66
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
305
 | 
 		if (abs($e) >= $tol1 and abs($fa) > abs($fb))  | 
| 
462
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		{  | 
| 
463
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
464
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# Attempt inverse quadratic interpolation.  | 
| 
465
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
466
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#### Branch (abs(e) >= tol1 and abs(fa) > abs(fb))  | 
| 
467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
468
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62
 | 
 			my($p, $q);  | 
| 
469
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
71
 | 
 			my $s = $fb/$fa;  | 
| 
470
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
471
 | 
57
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
94
 | 
 			if ($a == $c)  | 
| 
472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			{  | 
| 
473
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#### Branch (a == c)  | 
| 
474
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
53
 | 
 				$p = 2.0 * $xm * $s;  | 
| 
475
 | 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
48
 | 
 				$q = 1.0 - $s;  | 
| 
476
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
477
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			else  | 
| 
478
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			{  | 
| 
479
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#### Branch (a != c)  | 
| 
480
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
21
 | 
 				my $r = $fb/$fc;  | 
| 
481
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
24
 | 
 				$q = $fa/$fc;  | 
| 
482
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
 				$p = $s * (2.0 * $xm * $q * ($q - $r) -  | 
| 
483
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 					($b - $a) * ($r - 1.0));  | 
| 
484
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
54
 | 
 				$q = ($q - 1.0) * ($r - 1.0) * ($s - 1.0);  | 
| 
485
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
486
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
487
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
488
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# Check if in bounds.  | 
| 
489
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
490
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			### q: $q  | 
| 
491
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			### p: $p  | 
| 
492
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			### s: $s  | 
| 
493
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			### e: $e  | 
| 
494
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
495
 | 
57
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
123
 | 
 			$q = - $q if ($p > 0.0);  | 
| 
496
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
61
 | 
 			$p = abs($p);  | 
| 
497
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
96
 | 
 			my $min1 = 3.0 * $xm * $q - abs($tol1 * $q);  | 
| 
498
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
72
 | 
 			my $min2 = abs($e * $q);  | 
| 
499
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
500
 | 
57
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
144
 | 
 			if (2.0 * $p < min($min1, $min2))  | 
| 
501
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			{  | 
| 
502
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
503
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				# Interpolation worked, use it.  | 
| 
504
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
505
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#### Branch (2.0 * p < min(min1, min2))  | 
| 
506
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
507
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
667
 | 
 				$e = $d;  | 
| 
508
 | 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
96
 | 
 				$d = $p/$q;  | 
| 
509
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
510
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			else  | 
| 
511
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			{  | 
| 
512
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
513
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				# Interpolation failed, use bisection.  | 
| 
514
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
515
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#### Branch (2.0 * p >= min(min1, min2))  | 
| 
516
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				#  | 
| 
517
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				$d = $xm;  | 
| 
518
 | 
  
0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				$e = $d;  | 
| 
519
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
520
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
521
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		else  | 
| 
522
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		{  | 
| 
523
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
524
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# Bounds decreasing too slowly for  | 
| 
525
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# quadratic interpolation, use bisection.  | 
| 
526
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			#  | 
| 
527
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
 			$d = $xm;  | 
| 
528
 | 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
13
 | 
 			$e = $d;  | 
| 
529
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
530
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
531
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
532
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Move last best guess to $a.  | 
| 
533
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
534
 | 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
85
 | 
 		$a = $b;  | 
| 
535
 | 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
67
 | 
 		$fa = $fb;  | 
| 
536
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
537
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
538
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# Calculate the next guess.  | 
| 
539
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		#  | 
| 
540
 | 
66
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
143
 | 
 		$b += (abs($d) > $tol1)? $d: copysign($tol1, $xm);  | 
| 
541
 | 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
175
 | 
 		$fb = &$func($b);  | 
| 
542
 | 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2767
 | 
 		$iter++;  | 
| 
543
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
544
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
545
 | 
  
0
  
 | 
  
  0
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	carp "Brentzero Exceed Maximum Iterations.\n" if ($iter >= $ITMAX);  | 
| 
546
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	return $a;  | 
| 
547
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
548
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
549
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  | 
| 
550
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 __END__  |