| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Dumbbench::Stats; |
|
2
|
3
|
|
|
3
|
|
20
|
use strict; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
105
|
|
|
3
|
3
|
|
|
3
|
|
17
|
use warnings; |
|
|
3
|
|
|
|
|
4
|
|
|
|
3
|
|
|
|
|
74
|
|
|
4
|
3
|
|
|
3
|
|
15
|
use List::Util (); |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
36
|
|
|
5
|
3
|
|
|
3
|
|
1439
|
use Statistics::CaseResampling (); |
|
|
3
|
|
|
|
|
1961
|
|
|
|
3
|
|
|
|
|
122
|
|
|
6
|
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
use Class::XSAccessor { |
|
8
|
3
|
|
|
|
|
20
|
constructor => 'new', |
|
9
|
|
|
|
|
|
|
accessors => [qw/data name/], |
|
10
|
3
|
|
|
3
|
|
19
|
}; |
|
|
3
|
|
|
|
|
7
|
|
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
# Note: This is entirely unoptimized. There is a lot of unnecessary |
|
13
|
|
|
|
|
|
|
# stuff going on. This is to allow the user to modify the data |
|
14
|
|
|
|
|
|
|
# set in flight. If this comes back to haunt us at some point, |
|
15
|
|
|
|
|
|
|
# we can still optimize, but at this point, convenience still wins. |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
sub sorted_data { |
|
18
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
19
|
0
|
|
|
|
|
0
|
my $sorted = [sort { $a <=> $b } @{$self->data}]; |
|
|
0
|
|
|
|
|
0
|
|
|
|
0
|
|
|
|
|
0
|
|
|
20
|
0
|
|
|
|
|
0
|
return $sorted; |
|
21
|
|
|
|
|
|
|
} |
|
22
|
|
|
|
|
|
|
|
|
23
|
2
|
|
|
2
|
0
|
52
|
sub first_quartile { Statistics::CaseResampling::first_quartile($_[0]->data) } |
|
24
|
2
|
|
|
2
|
0
|
1307
|
sub second_quartile { return $_[0]->median } |
|
25
|
2
|
|
|
2
|
0
|
23
|
sub third_quartile { Statistics::CaseResampling::third_quartile($_[0]->data) } |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
|
|
28
|
17
|
|
|
17
|
0
|
23
|
sub n { scalar(@{$_[0]->data}) } |
|
|
17
|
|
|
|
|
53
|
|
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
sub sum { |
|
31
|
17
|
|
|
17
|
0
|
21
|
my $self = shift; |
|
32
|
17
|
|
|
|
|
22
|
return List::Util::sum(@{$self->data}); |
|
|
17
|
|
|
|
|
72
|
|
|
33
|
|
|
|
|
|
|
} |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
sub min { |
|
36
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
37
|
0
|
|
|
|
|
0
|
return List::Util::min(@{$self->data}); |
|
|
0
|
|
|
|
|
0
|
|
|
38
|
|
|
|
|
|
|
} |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
sub max { |
|
41
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
42
|
0
|
|
|
|
|
0
|
return List::Util::max(@{$self->data}); |
|
|
0
|
|
|
|
|
0
|
|
|
43
|
|
|
|
|
|
|
} |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
sub mean { |
|
46
|
17
|
|
|
17
|
0
|
2482
|
my $self = shift; |
|
47
|
17
|
|
|
|
|
30
|
return $self->sum / $self->n; |
|
48
|
|
|
|
|
|
|
} |
|
49
|
|
|
|
|
|
|
|
|
50
|
73
|
|
|
73
|
0
|
257
|
sub median { Statistics::CaseResampling::median($_[0]->data) } # O(n)! |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
sub median_confidence_limits { |
|
53
|
0
|
|
|
0
|
0
|
0
|
my $self = shift; |
|
54
|
0
|
|
|
|
|
0
|
my $nsigma = shift; |
|
55
|
0
|
|
|
|
|
0
|
my $alpha = Statistics::CaseResampling::nsigma_to_alpha($nsigma); |
|
56
|
|
|
|
|
|
|
# note: The 1000 here is kind of a lower limit for reasonable accuracy. |
|
57
|
|
|
|
|
|
|
# But if the data set is small, that's more significant. If the data |
|
58
|
|
|
|
|
|
|
# set is VERY large, then running much more than 1k resamplings |
|
59
|
|
|
|
|
|
|
# is VERY expensive. So 1k is probably a reasonable default. |
|
60
|
0
|
|
|
|
|
0
|
return Statistics::CaseResampling::median_simple_confidence_limits($self->data, 1-$alpha, 1000) |
|
61
|
|
|
|
|
|
|
} |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub mad { |
|
64
|
26
|
|
|
26
|
0
|
45
|
my $self = shift; |
|
65
|
26
|
|
|
|
|
37
|
my $median = $self->median; |
|
66
|
26
|
|
|
|
|
30
|
my @val = map {abs($_ - $median)} @{$self->data}; |
|
|
114
|
|
|
|
|
172
|
|
|
|
26
|
|
|
|
|
42
|
|
|
67
|
26
|
|
|
|
|
81
|
return ref($self)->new(data => \@val)->median; |
|
68
|
|
|
|
|
|
|
} |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
sub mad_dev { |
|
71
|
1
|
|
|
1
|
0
|
4
|
my $self = shift; |
|
72
|
1
|
|
|
|
|
2
|
return $self->mad()*1.4826; |
|
73
|
|
|
|
|
|
|
} |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
sub std_dev { |
|
76
|
2
|
|
|
2
|
0
|
23
|
my $self = shift; |
|
77
|
2
|
|
|
|
|
4
|
my $data = $self->data; |
|
78
|
2
|
|
|
|
|
20
|
my $mean = $self->mean; |
|
79
|
2
|
|
|
|
|
3
|
my $var = 0; |
|
80
|
2
|
|
|
|
|
42
|
$var += ($_-$mean)**2 for @$data; |
|
81
|
2
|
|
|
|
|
5
|
$var /= @$data - 1; |
|
82
|
2
|
|
|
|
|
9
|
return sqrt($var); |
|
83
|
|
|
|
|
|
|
} |
|
84
|
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
sub filter_outliers { |
|
86
|
14
|
|
|
14
|
0
|
1173
|
my $self = shift; |
|
87
|
14
|
|
|
|
|
39
|
my %opt = @_; |
|
88
|
14
|
|
100
|
|
|
38
|
my $var_measure = $opt{variability_measure} || 'mad'; |
|
89
|
14
|
|
|
|
|
18
|
my $n_sigma = $opt{nsigma_outliers}; |
|
90
|
|
|
|
|
|
|
|
|
91
|
|
|
|
|
|
|
# If outlier rejection is turned off... |
|
92
|
14
|
100
|
|
|
|
47
|
if (not $n_sigma) { |
|
|
|
50
|
|
|
|
|
|
|
93
|
1
|
|
|
|
|
8
|
return ($self->data, []); |
|
94
|
|
|
|
|
|
|
} |
|
95
|
|
|
|
|
|
|
elsif ($n_sigma < 0) { |
|
96
|
0
|
|
|
|
|
0
|
Carp::croak("A negative value for the number of 'sigmas' makes no sense"); |
|
97
|
|
|
|
|
|
|
} |
|
98
|
|
|
|
|
|
|
|
|
99
|
13
|
|
|
|
|
26
|
my $data = $self->data; |
|
100
|
|
|
|
|
|
|
|
|
101
|
13
|
|
|
|
|
20
|
my $median = $self->median; |
|
102
|
13
|
|
|
|
|
38
|
my $variability = $self->$var_measure; |
|
103
|
13
|
|
|
|
|
35
|
my @good; |
|
104
|
|
|
|
|
|
|
my @outliers; |
|
105
|
13
|
|
|
|
|
23
|
foreach my $x (@$data) { |
|
106
|
55
|
100
|
|
|
|
90
|
if (abs($x-$median) <= $variability*$n_sigma) { |
|
107
|
43
|
|
|
|
|
64
|
push @good, $x; |
|
108
|
|
|
|
|
|
|
} |
|
109
|
|
|
|
|
|
|
else { |
|
110
|
12
|
|
|
|
|
20
|
push @outliers, $x; |
|
111
|
|
|
|
|
|
|
} |
|
112
|
|
|
|
|
|
|
} |
|
113
|
|
|
|
|
|
|
|
|
114
|
13
|
|
|
|
|
43
|
return(\@good, \@outliers); |
|
115
|
|
|
|
|
|
|
} |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
1; |