|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package Data::Pareto;  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
52792
 | 
 use warnings;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
60
 | 
    | 
| 
4
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
11
 | 
 use strict;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
68
 | 
    | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
6
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
10
 | 
 use Scalar::Util qw( reftype );  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
242
 | 
    | 
| 
7
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
9
 | 
 use Carp;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2244
 | 
    | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 NAME  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Data::Pareto - Computing Pareto sets in Perl  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 VERSION  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Version 0.05  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
18
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 our $VERSION = '0.05';  | 
| 
20
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
21
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SYNOPSIS  | 
| 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   use Data::Pareto;  | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
25
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # only first and third columns are used in comparison  | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # the others are simply descriptive  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $set = new Data::Pareto( { columns => [0, 2] } );  | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $set->add(  | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       [ 5, "pareto", 10, 11 ],  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       [ 5, "dominated", 11, 9 ],  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       [ 4, "pareto2", 12, 12 ]   | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   );  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # this returns [ [ 5, "pareto", 10, 11 ], [ 4, "pareto2", 12, 12 ] ],  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # the other one is dominated on selected columns  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $set->get_pareto_ref;  | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 DESCRIPTION  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This module makes calculation of Pareto set. Given a set of vectors  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 (i.e. arrays of simple scalars), Pareto set is all the vectors from the given  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 set which are not dominated by any other vector of the set. A vector C is  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 said to be dominated by C, iff C<< X[i] >= Y[i] >> for all C and  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C<< X[i] > Y[i] >> for at least one C.  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Pareto sets play an important role in multiobjective optimization, where  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 each non-dominated (i.e. Pareto) vector describes objectives value of  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 "optimal" solution to the given problem.  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This module allows occurrence of duplicates in the set - this makes it  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 rather a bag than a set, but is useful in practice (e.g. when we want to  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 preserve two solutions giving the same objectives value, but structurally  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 different). This assumption influences dominance definition given above:  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 two duplicates never dominate each other and hence can be present in the Pareto  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 set. This is controlled by C option passed to L: if set  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to C value, duplicates are allowed in Pareto set; otherwise, only the  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 first found element of the subset of duplicated vectors is preserved in Pareto  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 set.  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The values are allowed to be invalid. The meaning of 'invalid' is 'the worst  | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 possible'. It's different concept than 'unknown'; unknown value make the  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 definition of domination less clear.  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 By default, the comparison of column values is numerical and the smaller  | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 value dominates the larger one. If you want to override this behaviour, pass  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 your own dominator sub in arguments to L.  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 FUNCTIONS  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 By default, a vector is passed around as a ref to array of consecutive column  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values. This means you shouldn't mess with it after passing to C method.  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 new  | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Creates a new object for calculating Pareto set.  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The first argument passed is a hashref with options; the recognized options are:  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Arrayref containing column numbers which should be used for determining  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 domination and duplication. Column numbers are C<0>-based array indexes to  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 data vectors.  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Only values at those positions will be ever compared between vectors.  | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Any other data in the vectors may be present and is not used in any way.  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 At least one column number should be passed, for obvious reasons.  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 If set to C value, duplicated vectors are all put in Pareto set (if they  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 are Pareto, of course). If set to C, duplicates of vectors already  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the Pareto set are discarded.  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The value considered invalid in pareto set. Such value is dominated by  | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 any value and dominates only invalid value.  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 However, computations of domination in presence of invalid values can be  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 considerably slower, as much as 5 times. So it probably will be faster to first  | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 parse the data and replace invalid markers with some huge-and-surely-dominated  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 values.  | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The sub(s) used to compare specific column values and determining domination  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 between them. Scalar, sub ref or hash ref. If not set, the default is that  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the numerically smaller value dominates the other one.  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 When the scalar is passed, it is assumed to be the name of a predefined  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 dominator. This is a much faster option to specifying the sub of your own.  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Recognized dominators are:  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C numerically smaller value dominates  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C numerically greater value dominates  | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C earlier in collation order value dominates (lexicographical  | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 order)   | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C later in collation order value dominates (reversed  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 lexicographical order)   | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * C standard, i.e. C dominator  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 During creation of Pareto set, the dominator sub is called with three arguments:  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 column number, first vector's value, second vector's value, and should return  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 C, when the second value dominates the first one, assuming they appeared  | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 in the specified column.  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Make sure that your sub returns C when two passed values are the same.   | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This is necessary to obey the whole Pareto set domination contract.  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 There are two approaches possible when the values in different columns are of  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 different types, in the sense of domination. First, you can use passed column  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 number to decide the domination check function. Alternatively, you can pass a  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 hash ref with mapping from the column number to the sub ref used to compare the  | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 given column:  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $lexi_dominator = sub {  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       my ($col, $dominated, $by) = @_;  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       return ($dominated ge $by);  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   };  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $min_dominator = sub {  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       my ($col, $dominated, $by) = @_;  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
       return ($dominated >= $by);  | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $set = new Data::Pareto({  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   	  columns => [0, 2],  | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   	  column_dominator => {  | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   	  	  0 => $lexi_dominator,  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   	  	  2 => $min_dominator  | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   	  }  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   });  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $set->add(['a', 'label 1', 12], ['b', 'label 2', 9]);  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The rest of arguments are assumed to be vectors, and passed to L  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 method.  | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub new {  | 
| 
178
 | 
32
 | 
 
 | 
 
 | 
  
32
  
 | 
  
1
  
 | 
3769
 | 
 	my ($class, $attrs) = (shift, shift);  | 
| 
179
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
158
 | 
 	my $self = bless {  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		pareto => [ ],  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		vectorStatus => { },  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		%$attrs  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}, $class;  | 
| 
184
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
72
 | 
 	$self->_construct_subs;  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
186
 | 
32
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
82
 | 
 	$self->add(@_) if @_;  | 
| 
187
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
65
 | 
 	return $self;  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 add  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Tests vectors passed as arguments and adds the non-dominated ones to the  | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Pareto set.  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub add {	  | 
| 
198
 | 
19
 | 
 
 | 
 
 | 
  
19
  
 | 
  
1
  
 | 
85
 | 
 	my $self = shift;  | 
| 
199
 | 
19
 | 
 
 | 
 
 | 
 
 | 
 
 | 
51
 | 
 	$self->_update_pareto($_) for @_;  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 get_pareto  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns the current content of Pareto set as a list of vectors.  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub get_pareto {  | 
| 
209
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
  
1
  
 | 
8
 | 
 	my ($self) = @_;  | 
| 
210
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
 	return (@{$self->{pareto}});  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
    | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 get_pareto_ref  | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns the current content of Pareto set as a ref to array with vectors.  | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The return value references the original array, so treat it as read-only!   | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub get_pareto_ref {  | 
| 
221
 | 
17
 | 
 
 | 
 
 | 
  
17
  
 | 
  
1
  
 | 
61
 | 
 	my ($self) = @_;  | 
| 
222
 | 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
114
 | 
 	return $self->{pareto};	  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # update (potentially) the set with a new vector:  | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # check if it is Pareto, if so, remove dominated vectors   | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _update_pareto {  | 
| 
228
 | 
43
 | 
 
 | 
 
 | 
  
43
  
 | 
 
 | 
52
 | 
 	my ($self, $NV) = @_;  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# check if we already have a duplicate?  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# if so, handle it gently, so there are no mind-cracking  | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# algorithm variations after that  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
234
 | 
43
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
72
 | 
 	if ($self->_has_duplicates($NV)) {  | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		# ...then it depends on the policy  | 
| 
236
 | 
4
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
8
 | 
 		if ($self->{duplicates}) {  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# add the duplicated vector to the pareto set  | 
| 
238
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
 			push @{$self->{pareto}}, $NV;  | 
| 
 
 | 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
    | 
| 
239
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		} else {  | 
| 
240
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# simply disgard the new vector  | 
| 
241
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
242
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
12
 | 
 		return;  | 
| 
243
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
244
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
245
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
45
 | 
 	my @newP = ( );  | 
| 
246
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
62
 | 
 	my $surePareto = 0;  | 
| 
247
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
248
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	# check with every vector considered pareto so far  | 
| 
249
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
39
 | 
 	for my $o (@{$self->{pareto}}) {  | 
| 
 
 | 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
66
 | 
    | 
| 
250
 | 
27
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
40
 | 
 		if ($surePareto) {  | 
| 
251
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# preserve the current vector only if it is not dominated by new (now Pareto) vector  | 
| 
252
 | 
1
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
20
 | 
 			if ($self->{_sub_is_dominated}($self, $o, $NV)) {  | 
| 
253
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
 				$self->_ban_vector($o);  | 
| 
254
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			} else {  | 
| 
255
 | 
0
 | 
 
 | 
 
 | 
 
 | 
 
 | 
0
 | 
 				push @newP, $o;  | 
| 
256
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
257
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		} else {  | 
| 
258
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# stop processing with unchanged Pareto set if the new vector is dominated by the current one  | 
| 
259
 | 
26
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
524
 | 
 			return if $self->{_sub_is_dominated}($self, $NV, $o);  | 
| 
260
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			  | 
| 
261
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# mark new vector as "sure Pareto" only if it dominates the current vector  | 
| 
262
 | 
21
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
426
 | 
 			if ($self->{_sub_is_dominated}($self, $o, $NV)) {  | 
| 
263
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
7
 | 
 				$surePareto = 1;  | 
| 
264
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				# ...and hence we don't preserve the dominated current vector  | 
| 
265
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
 				$self->_ban_vector($o);  | 
| 
266
 | 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
 				next;  | 
| 
267
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
268
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			  | 
| 
269
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# otherwise, the current vector is for sure Pareto still, so preserve it  | 
| 
270
 | 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
33
 | 
 			push @newP, $o;  | 
| 
271
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
272
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
273
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
274
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
46
 | 
 	push @newP, $NV;  | 
| 
275
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
65
 | 
 	$self->_mark_vector($NV);  | 
| 
276
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
134
 | 
 	$self->{pareto} = \@newP;  | 
| 
277
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
278
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
279
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 is_dominated  | 
| 
280
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
281
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Checks if the first vector passed is dominated by the second one.  | 
| 
282
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The comparison is made based on the values in vectors' columns, which  | 
| 
283
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 were passed to L.  | 
| 
284
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
285
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 The vectors passed are never duplicates of each other when this method is  | 
| 
286
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 called from inside this module.  | 
| 
287
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
288
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Returns C, when the first vector from arguments list  | 
| 
289
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 is dominated by the other one, and C otherwise.  | 
| 
290
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
291
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
292
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
293
 | 
22
 | 
 
 | 
 
 | 
  
22
  
 | 
  
1
  
 | 
745
 | 
 sub is_dominated { $_[0]->{_sub_is_dominated}(@_); }	# pass the whole @_, as the sub thinks it is a method  | 
| 
294
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
295
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # these are is_dominated() parts which will be composed into the function,  | 
| 
296
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # depending on the constructor options.  | 
| 
297
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 my %_is_dominated_parts = (  | 
| 
298
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	invalid => <<'_EOT_',  | 
| 
299
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			next if $self->{_sub_is_invalid}($dominated->[$col]);	# invalid dominated by anything  | 
| 
300
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			return 0 if $self->{_sub_is_invalid}($by->[$col]);	# invalid can't dominate valid  | 
| 
301
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 _EOT_  | 
| 
302
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	dominator_min => '($dominated->[$col] >= $by->[$col])',  | 
| 
303
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	dominator_max => '($dominated->[$col] <= $by->[$col])',  | 
| 
304
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	dominator_lexi => '($dominated->[$col] ge $by->[$col])',  | 
| 
305
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	dominator_lexi_rev => '($dominated->[$col] le $by->[$col])',  | 
| 
306
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
307
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	_dominator_custom => <<'_EOT_',  | 
| 
308
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			$self->{column_dominator}($col, $dominated->[$col], $by->[$col])  | 
| 
309
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 _EOT_  | 
| 
310
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	_dominator_custom_hash => <<'_EOT_',  | 
| 
311
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			$self->{column_dominator}{$col}($col, $dominated->[$col], $by->[$col])  | 
| 
312
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 _EOT_  | 
| 
313
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
314
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 );  | 
| 
315
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 $_is_dominated_parts{dominator_std} = $_is_dominated_parts{dominator_min};  | 
| 
316
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
317
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _construct_subs {  | 
| 
318
 | 
32
 | 
 
 | 
 
 | 
  
32
  
 | 
 
 | 
39
 | 
 	my ($self) = @_;  | 
| 
319
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
320
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
29
 | 
 	my $invalid_part;  | 
| 
321
 | 
32
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
66
 | 
 	if (exists $self->{invalid}) {  | 
| 
322
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
5
 | 
 		my $inv = $self->{invalid};  | 
| 
323
 | 
4
 | 
 
 | 
 
 | 
  
23
  
 | 
 
 | 
14
 | 
 		$self->{_sub_is_invalid} = sub { $_[0] eq $inv };  | 
| 
 
 | 
23
 | 
 
 | 
 
 | 
 
 | 
 
 | 
378
 | 
    | 
| 
324
 | 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
9
 | 
 		$invalid_part = $_is_dominated_parts{invalid};  | 
| 
325
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
326
 | 
28
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
91
 | 
 		$self->{_sub_is_invalid} = sub { 0 };  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
    | 
| 
327
 | 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
 		$invalid_part = '';  | 
| 
328
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
329
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
330
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
32
 | 
 	my $cmp_part;  | 
| 
331
 | 
32
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
69
 | 
 	if (exists $self->{column_dominator}) {  | 
| 
332
 | 
10
 | 
 
 | 
  
 50
  
 | 
 
 | 
 
 | 
26
 | 
 		my $dom = $self->{column_dominator} || '';  | 
| 
333
 | 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
25
 | 
 		my $type = reftype $dom;  | 
| 
334
 | 
10
 | 
  
100
  
 | 
  
 66
  
 | 
 
 | 
 
 | 
25
 | 
 		if (!defined $type) {  | 
| 
 
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
335
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			# builtin  | 
| 
336
 | 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
18
 | 
 			$cmp_part = $_is_dominated_parts{"dominator_$dom"};  | 
| 
337
 | 
8
 | 
  
 50
  
 | 
 
 | 
 
 | 
 
 | 
18
 | 
 			croak "Unrecognized dominator builtin '$dom'" unless $cmp_part;  | 
| 
338
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		} elsif ($type && $type eq 'HASH') {  | 
| 
339
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
2
 | 
 			$cmp_part = $_is_dominated_parts{_dominator_custom_hash};  | 
| 
340
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		} else {  | 
| 
341
 | 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
 			$cmp_part = $_is_dominated_parts{_dominator_custom};  | 
| 
342
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
343
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	} else {  | 
| 
344
 | 
22
 | 
 
 | 
 
 | 
 
 | 
 
 | 
36
 | 
 		$cmp_part = $_is_dominated_parts{dominator_std};  | 
| 
345
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
346
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
347
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
77
 | 
 	my $sub_str = <<'_EOT_'  | 
| 
348
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		sub {  | 
| 
349
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			my ($self, $dominated, $by) = @_;  | 
| 
350
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			for my $col (@{$self->{columns}}) {  | 
| 
351
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 _EOT_  | 
| 
352
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 . <<_EOT_  | 
| 
353
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				$invalid_part  | 
| 
354
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 				return 0 unless $cmp_part;  | 
| 
355
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			}  | 
| 
356
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 			1;  | 
| 
357
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 		}  | 
| 
358
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 _EOT_  | 
| 
359
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 ;  | 
| 
360
 | 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3282
 | 
 	$self->{_sub_is_dominated} = eval $sub_str;  | 
| 
361
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
362
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
363
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head2 is_invalid  | 
| 
364
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
365
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Checks if the given value is considered invalid for the current object.  | 
| 
366
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Every value is valid by default.  | 
| 
367
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
368
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
369
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
370
 | 
6
 | 
 
 | 
 
 | 
  
6
  
 | 
  
1
  
 | 
51
 | 
 sub is_invalid { return $_[0]->{_sub_is_invalid}($_[1]); }  | 
| 
371
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
372
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # calculate the string repr. of a vector; to be used as a hash key  | 
| 
373
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _vector_key {  | 
| 
374
 | 
83
 | 
 
 | 
 
 | 
  
83
  
 | 
 
 | 
86
 | 
 	my ($self, $v) = @_;  | 
| 
375
 | 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
94
 | 
 	my @cols = ( );  | 
| 
376
 | 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
71
 | 
 	for my $c (@{$self->{columns}}) {  | 
| 
 
 | 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
146
 | 
    | 
| 
377
 | 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
273
 | 
 		push @cols, $v->[$c];  | 
| 
378
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	}  | 
| 
379
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 	  | 
| 
380
 | 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
267
 | 
 	return join ';', @cols;  | 
| 
381
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
382
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
383
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # checks if the given vector has duplicates in Pareto  | 
| 
384
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _has_duplicates {  | 
| 
385
 | 
43
 | 
 
 | 
 
 | 
  
43
  
 | 
 
 | 
44
 | 
 	my ($self, $v) = @_;  | 
| 
386
 | 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
73
 | 
 	my $key = $self->_vector_key($v);  | 
| 
387
 | 
43
 | 
 
 | 
  
100
  
 | 
 
 | 
 
 | 
169
 | 
 	return (exists $self->{vectorStatus}{$key} && $self->{vectorStatus}{$key} > 0);  | 
| 
388
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
389
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
390
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # mark the vector as not present in Pareto.  | 
| 
391
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # In the future it can be used to ban the vector from trying to return  | 
| 
392
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # to the Pareto set.  | 
| 
393
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _ban_vector {  | 
| 
394
 | 
6
 | 
 
 | 
 
 | 
  
6
  
 | 
 
 | 
8
 | 
 	my ($self, $v) = @_;  | 
| 
395
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
10
 | 
 	my $key = $self->_vector_key($v);  | 
| 
396
 | 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
 	$self->{vectorStatus}{$key} = 0;  | 
| 
397
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
398
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
399
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # mark vector as present in the Pareto set.  | 
| 
400
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub _mark_vector {  | 
| 
401
 | 
34
 | 
 
 | 
 
 | 
  
34
  
 | 
 
 | 
38
 | 
 	my ($self, $v) = @_;  | 
| 
402
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
56
 | 
 	my $key = $self->_vector_key($v);  | 
| 
403
 | 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
84
 | 
 	$self->{vectorStatus}{$key} = 1;  | 
| 
404
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
405
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
406
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 TODO  | 
| 
407
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
408
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Allow specifying built-in dominators inside dominator hash.  | 
| 
409
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
410
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 For large data sets calculations become time-intensive. There are a couple  | 
| 
411
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 of techniques which might be applied to improve the performance:  | 
| 
412
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
413
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over  | 
| 
414
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
415
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * defer the phase of removing vectors dominated by newly added vectors  | 
| 
416
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 to L call; this results in smaller number of arrays  | 
| 
417
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 rewritings.  | 
| 
418
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
419
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * split the set of vectors being added into smaller subsets, calculate  | 
| 
420
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Pareto sets for such subsets, and then apply insertion of resulting Pareto  | 
| 
421
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 subsets to the main set; this results in smaller number of useless tries of  | 
| 
422
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 adding dominated vectors into the set.  | 
| 
423
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
424
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
425
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
426
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 AUTHOR  | 
| 
427
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
428
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Przemyslaw Wesolek, C<<  >>  | 
| 
429
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
430
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 BUGS  | 
| 
431
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
432
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Please report any bugs or feature requests to C, or through  | 
| 
433
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 the web interface at L.  I will be notified, and then you'll  | 
| 
434
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 automatically be notified of progress on your bug as I make changes.  | 
| 
435
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
436
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 SUPPORT  | 
| 
437
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
438
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can find documentation for this module with the perldoc command.  | 
| 
439
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
440
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     perldoc Data::Pareto  | 
| 
441
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
442
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
443
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 You can also look for information at:  | 
| 
444
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
445
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =over 4  | 
| 
446
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
447
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * RT: CPAN's request tracker  | 
| 
448
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
449
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
450
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
451
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * AnnoCPAN: Annotated CPAN documentation  | 
| 
452
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
453
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
454
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
455
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * CPAN Ratings  | 
| 
456
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
457
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
458
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
459
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =item * Search CPAN  | 
| 
460
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
461
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 L  | 
| 
462
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
463
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =back  | 
| 
464
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
465
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =head1 COPYRIGHT & LICENSE  | 
| 
466
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
467
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
468
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 Copyright 2009 Przemyslaw Wesolek  | 
| 
469
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
470
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 This program is free software; you can redistribute it and/or modify it  | 
| 
471
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 under the terms of the Artistic License 2.0. For details, see the full  | 
| 
472
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 text of the license in the file LICENSE.  | 
| 
473
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
474
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 =cut  | 
| 
475
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
476
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1; # End of Data::Pareto  |