| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
** 2001 September 15 |
|
3
|
|
|
|
|
|
|
** |
|
4
|
|
|
|
|
|
|
** The author disclaims copyright to this source code. In place of |
|
5
|
|
|
|
|
|
|
** a legal notice, here is a blessing: |
|
6
|
|
|
|
|
|
|
** |
|
7
|
|
|
|
|
|
|
** May you do good and not evil. |
|
8
|
|
|
|
|
|
|
** May you find forgiveness for yourself and forgive others. |
|
9
|
|
|
|
|
|
|
** May you share freely, never taking more than you give. |
|
10
|
|
|
|
|
|
|
** |
|
11
|
|
|
|
|
|
|
************************************************************************* |
|
12
|
|
|
|
|
|
|
** This module contains C code that generates VDBE code used to process |
|
13
|
|
|
|
|
|
|
** the WHERE clause of SQL statements. |
|
14
|
|
|
|
|
|
|
** |
|
15
|
|
|
|
|
|
|
** $Id: where.c,v 1.1.1.1 2004/08/08 15:03:58 matt Exp $ |
|
16
|
|
|
|
|
|
|
*/ |
|
17
|
|
|
|
|
|
|
#include "sqliteInt.h" |
|
18
|
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
/* |
|
20
|
|
|
|
|
|
|
** The query generator uses an array of instances of this structure to |
|
21
|
|
|
|
|
|
|
** help it analyze the subexpressions of the WHERE clause. Each WHERE |
|
22
|
|
|
|
|
|
|
** clause subexpression is separated from the others by an AND operator. |
|
23
|
|
|
|
|
|
|
*/ |
|
24
|
|
|
|
|
|
|
typedef struct ExprInfo ExprInfo; |
|
25
|
|
|
|
|
|
|
struct ExprInfo { |
|
26
|
|
|
|
|
|
|
Expr *p; /* Pointer to the subexpression */ |
|
27
|
|
|
|
|
|
|
u8 indexable; /* True if this subexprssion is usable by an index */ |
|
28
|
|
|
|
|
|
|
short int idxLeft; /* p->pLeft is a column in this table number. -1 if |
|
29
|
|
|
|
|
|
|
** p->pLeft is not the column of any table */ |
|
30
|
|
|
|
|
|
|
short int idxRight; /* p->pRight is a column in this table number. -1 if |
|
31
|
|
|
|
|
|
|
** p->pRight is not the column of any table */ |
|
32
|
|
|
|
|
|
|
unsigned prereqLeft; /* Bitmask of tables referenced by p->pLeft */ |
|
33
|
|
|
|
|
|
|
unsigned prereqRight; /* Bitmask of tables referenced by p->pRight */ |
|
34
|
|
|
|
|
|
|
unsigned prereqAll; /* Bitmask of tables referenced by p */ |
|
35
|
|
|
|
|
|
|
}; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
/* |
|
38
|
|
|
|
|
|
|
** An instance of the following structure keeps track of a mapping |
|
39
|
|
|
|
|
|
|
** between VDBE cursor numbers and bitmasks. The VDBE cursor numbers |
|
40
|
|
|
|
|
|
|
** are small integers contained in SrcList_item.iCursor and Expr.iTable |
|
41
|
|
|
|
|
|
|
** fields. For any given WHERE clause, we want to track which cursors |
|
42
|
|
|
|
|
|
|
** are being used, so we assign a single bit in a 32-bit word to track |
|
43
|
|
|
|
|
|
|
** that cursor. Then a 32-bit integer is able to show the set of all |
|
44
|
|
|
|
|
|
|
** cursors being used. |
|
45
|
|
|
|
|
|
|
*/ |
|
46
|
|
|
|
|
|
|
typedef struct ExprMaskSet ExprMaskSet; |
|
47
|
|
|
|
|
|
|
struct ExprMaskSet { |
|
48
|
|
|
|
|
|
|
int n; /* Number of assigned cursor values */ |
|
49
|
|
|
|
|
|
|
int ix[31]; /* Cursor assigned to each bit */ |
|
50
|
|
|
|
|
|
|
}; |
|
51
|
|
|
|
|
|
|
|
|
52
|
|
|
|
|
|
|
/* |
|
53
|
|
|
|
|
|
|
** Determine the number of elements in an array. |
|
54
|
|
|
|
|
|
|
*/ |
|
55
|
|
|
|
|
|
|
#define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
/* |
|
58
|
|
|
|
|
|
|
** This routine is used to divide the WHERE expression into subexpressions |
|
59
|
|
|
|
|
|
|
** separated by the AND operator. |
|
60
|
|
|
|
|
|
|
** |
|
61
|
|
|
|
|
|
|
** aSlot[] is an array of subexpressions structures. |
|
62
|
|
|
|
|
|
|
** There are nSlot spaces left in this array. This routine attempts to |
|
63
|
|
|
|
|
|
|
** split pExpr into subexpressions and fills aSlot[] with those subexpressions. |
|
64
|
|
|
|
|
|
|
** The return value is the number of slots filled. |
|
65
|
|
|
|
|
|
|
*/ |
|
66
|
144
|
|
|
|
|
|
static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){ |
|
67
|
144
|
|
|
|
|
|
int cnt = 0; |
|
68
|
144
|
100
|
|
|
|
|
if( pExpr==0 || nSlot<1 ) return 0; |
|
|
|
50
|
|
|
|
|
|
|
69
|
36
|
50
|
|
|
|
|
if( nSlot==1 || pExpr->op!=TK_AND ){ |
|
|
|
100
|
|
|
|
|
|
|
70
|
33
|
|
|
|
|
|
aSlot[0].p = pExpr; |
|
71
|
33
|
|
|
|
|
|
return 1; |
|
72
|
|
|
|
|
|
|
} |
|
73
|
3
|
50
|
|
|
|
|
if( pExpr->pLeft->op!=TK_AND ){ |
|
74
|
3
|
|
|
|
|
|
aSlot[0].p = pExpr->pLeft; |
|
75
|
3
|
|
|
|
|
|
cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight); |
|
76
|
|
|
|
|
|
|
}else{ |
|
77
|
0
|
|
|
|
|
|
cnt = exprSplit(nSlot, aSlot, pExpr->pLeft); |
|
78
|
0
|
|
|
|
|
|
cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight); |
|
79
|
|
|
|
|
|
|
} |
|
80
|
3
|
|
|
|
|
|
return cnt; |
|
81
|
|
|
|
|
|
|
} |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
/* |
|
84
|
|
|
|
|
|
|
** Initialize an expression mask set |
|
85
|
|
|
|
|
|
|
*/ |
|
86
|
|
|
|
|
|
|
#define initMaskSet(P) memset(P, 0, sizeof(*P)) |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
/* |
|
89
|
|
|
|
|
|
|
** Return the bitmask for the given cursor. Assign a new bitmask |
|
90
|
|
|
|
|
|
|
** if this is the first time the cursor has been seen. |
|
91
|
|
|
|
|
|
|
*/ |
|
92
|
309
|
|
|
|
|
|
static int getMask(ExprMaskSet *pMaskSet, int iCursor){ |
|
93
|
|
|
|
|
|
|
int i; |
|
94
|
313
|
100
|
|
|
|
|
for(i=0; in; i++){ |
|
95
|
194
|
100
|
|
|
|
|
if( pMaskSet->ix[i]==iCursor ) return 1<
|
|
96
|
|
|
|
|
|
|
} |
|
97
|
119
|
50
|
|
|
|
|
if( i==pMaskSet->n && iix) ){ |
|
|
|
50
|
|
|
|
|
|
|
98
|
119
|
|
|
|
|
|
pMaskSet->n++; |
|
99
|
119
|
|
|
|
|
|
pMaskSet->ix[i] = iCursor; |
|
100
|
119
|
|
|
|
|
|
return 1<
|
|
101
|
|
|
|
|
|
|
} |
|
102
|
0
|
|
|
|
|
|
return 0; |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
/* |
|
106
|
|
|
|
|
|
|
** Destroy an expression mask set |
|
107
|
|
|
|
|
|
|
*/ |
|
108
|
|
|
|
|
|
|
#define freeMaskSet(P) /* NO-OP */ |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
/* |
|
111
|
|
|
|
|
|
|
** This routine walks (recursively) an expression tree and generates |
|
112
|
|
|
|
|
|
|
** a bitmask indicating which tables are used in that expression |
|
113
|
|
|
|
|
|
|
** tree. |
|
114
|
|
|
|
|
|
|
** |
|
115
|
|
|
|
|
|
|
** In order for this routine to work, the calling function must have |
|
116
|
|
|
|
|
|
|
** previously invoked sqliteExprResolveIds() on the expression. See |
|
117
|
|
|
|
|
|
|
** the header comment on that routine for additional information. |
|
118
|
|
|
|
|
|
|
** The sqliteExprResolveIds() routines looks for column names and |
|
119
|
|
|
|
|
|
|
** sets their opcodes to TK_COLUMN and their Expr.iTable fields to |
|
120
|
|
|
|
|
|
|
** the VDBE cursor number of the table. |
|
121
|
|
|
|
|
|
|
*/ |
|
122
|
182
|
|
|
|
|
|
static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ |
|
123
|
182
|
|
|
|
|
|
unsigned int mask = 0; |
|
124
|
182
|
100
|
|
|
|
|
if( p==0 ) return 0; |
|
125
|
166
|
100
|
|
|
|
|
if( p->op==TK_COLUMN ){ |
|
126
|
71
|
|
|
|
|
|
mask = getMask(pMaskSet, p->iTable); |
|
127
|
71
|
50
|
|
|
|
|
if( mask==0 ) mask = -1; |
|
128
|
71
|
|
|
|
|
|
return mask; |
|
129
|
|
|
|
|
|
|
} |
|
130
|
95
|
100
|
|
|
|
|
if( p->pRight ){ |
|
131
|
23
|
|
|
|
|
|
mask = exprTableUsage(pMaskSet, p->pRight); |
|
132
|
|
|
|
|
|
|
} |
|
133
|
95
|
100
|
|
|
|
|
if( p->pLeft ){ |
|
134
|
33
|
|
|
|
|
|
mask |= exprTableUsage(pMaskSet, p->pLeft); |
|
135
|
|
|
|
|
|
|
} |
|
136
|
95
|
100
|
|
|
|
|
if( p->pList ){ |
|
137
|
|
|
|
|
|
|
int i; |
|
138
|
27
|
100
|
|
|
|
|
for(i=0; ipList->nExpr; i++){ |
|
139
|
18
|
|
|
|
|
|
mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr); |
|
140
|
|
|
|
|
|
|
} |
|
141
|
|
|
|
|
|
|
} |
|
142
|
95
|
|
|
|
|
|
return mask; |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
/* |
|
146
|
|
|
|
|
|
|
** Return TRUE if the given operator is one of the operators that is |
|
147
|
|
|
|
|
|
|
** allowed for an indexable WHERE clause. The allowed operators are |
|
148
|
|
|
|
|
|
|
** "=", "<", ">", "<=", ">=", and "IN". |
|
149
|
|
|
|
|
|
|
*/ |
|
150
|
36
|
|
|
|
|
|
static int allowedOp(int op){ |
|
151
|
36
|
100
|
|
|
|
|
switch( op ){ |
|
152
|
|
|
|
|
|
|
case TK_LT: |
|
153
|
|
|
|
|
|
|
case TK_LE: |
|
154
|
|
|
|
|
|
|
case TK_GT: |
|
155
|
|
|
|
|
|
|
case TK_GE: |
|
156
|
|
|
|
|
|
|
case TK_EQ: |
|
157
|
|
|
|
|
|
|
case TK_IN: |
|
158
|
29
|
|
|
|
|
|
return 1; |
|
159
|
|
|
|
|
|
|
default: |
|
160
|
7
|
|
|
|
|
|
return 0; |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
/* |
|
165
|
|
|
|
|
|
|
** The input to this routine is an ExprInfo structure with only the |
|
166
|
|
|
|
|
|
|
** "p" field filled in. The job of this routine is to analyze the |
|
167
|
|
|
|
|
|
|
** subexpression and populate all the other fields of the ExprInfo |
|
168
|
|
|
|
|
|
|
** structure. |
|
169
|
|
|
|
|
|
|
*/ |
|
170
|
36
|
|
|
|
|
|
static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){ |
|
171
|
36
|
|
|
|
|
|
Expr *pExpr = pInfo->p; |
|
172
|
36
|
|
|
|
|
|
pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); |
|
173
|
36
|
|
|
|
|
|
pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); |
|
174
|
36
|
|
|
|
|
|
pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr); |
|
175
|
36
|
|
|
|
|
|
pInfo->indexable = 0; |
|
176
|
36
|
|
|
|
|
|
pInfo->idxLeft = -1; |
|
177
|
36
|
|
|
|
|
|
pInfo->idxRight = -1; |
|
178
|
36
|
100
|
|
|
|
|
if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){ |
|
|
|
50
|
|
|
|
|
|
|
179
|
29
|
100
|
|
|
|
|
if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){ |
|
|
|
100
|
|
|
|
|
|
|
180
|
1
|
|
|
|
|
|
pInfo->idxRight = pExpr->pRight->iTable; |
|
181
|
1
|
|
|
|
|
|
pInfo->indexable = 1; |
|
182
|
|
|
|
|
|
|
} |
|
183
|
29
|
50
|
|
|
|
|
if( pExpr->pLeft->op==TK_COLUMN ){ |
|
184
|
29
|
|
|
|
|
|
pInfo->idxLeft = pExpr->pLeft->iTable; |
|
185
|
29
|
|
|
|
|
|
pInfo->indexable = 1; |
|
186
|
|
|
|
|
|
|
} |
|
187
|
|
|
|
|
|
|
} |
|
188
|
36
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
/* |
|
191
|
|
|
|
|
|
|
** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the |
|
192
|
|
|
|
|
|
|
** left-most table in the FROM clause of that same SELECT statement and |
|
193
|
|
|
|
|
|
|
** the table has a cursor number of "base". |
|
194
|
|
|
|
|
|
|
** |
|
195
|
|
|
|
|
|
|
** This routine attempts to find an index for pTab that generates the |
|
196
|
|
|
|
|
|
|
** correct record sequence for the given ORDER BY clause. The return value |
|
197
|
|
|
|
|
|
|
** is a pointer to an index that does the job. NULL is returned if the |
|
198
|
|
|
|
|
|
|
** table has no index that will generate the correct sort order. |
|
199
|
|
|
|
|
|
|
** |
|
200
|
|
|
|
|
|
|
** If there are two or more indices that generate the correct sort order |
|
201
|
|
|
|
|
|
|
** and pPreferredIdx is one of those indices, then return pPreferredIdx. |
|
202
|
|
|
|
|
|
|
** |
|
203
|
|
|
|
|
|
|
** nEqCol is the number of columns of pPreferredIdx that are used as |
|
204
|
|
|
|
|
|
|
** equality constraints. Any index returned must have exactly this same |
|
205
|
|
|
|
|
|
|
** set of columns. The ORDER BY clause only matches index columns beyond the |
|
206
|
|
|
|
|
|
|
** the first nEqCol columns. |
|
207
|
|
|
|
|
|
|
** |
|
208
|
|
|
|
|
|
|
** All terms of the ORDER BY clause must be either ASC or DESC. The |
|
209
|
|
|
|
|
|
|
** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is |
|
210
|
|
|
|
|
|
|
** set to 0 if the ORDER BY clause is all ASC. |
|
211
|
|
|
|
|
|
|
*/ |
|
212
|
4
|
|
|
|
|
|
static Index *findSortingIndex( |
|
213
|
|
|
|
|
|
|
Table *pTab, /* The table to be sorted */ |
|
214
|
|
|
|
|
|
|
int base, /* Cursor number for pTab */ |
|
215
|
|
|
|
|
|
|
ExprList *pOrderBy, /* The ORDER BY clause */ |
|
216
|
|
|
|
|
|
|
Index *pPreferredIdx, /* Use this index, if possible and not NULL */ |
|
217
|
|
|
|
|
|
|
int nEqCol, /* Number of index columns used with == constraints */ |
|
218
|
|
|
|
|
|
|
int *pbRev /* Set to 1 if ORDER BY is DESC */ |
|
219
|
|
|
|
|
|
|
){ |
|
220
|
|
|
|
|
|
|
int i, j; |
|
221
|
|
|
|
|
|
|
Index *pMatch; |
|
222
|
|
|
|
|
|
|
Index *pIdx; |
|
223
|
|
|
|
|
|
|
int sortOrder; |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
assert( pOrderBy!=0 ); |
|
226
|
|
|
|
|
|
|
assert( pOrderBy->nExpr>0 ); |
|
227
|
4
|
|
|
|
|
|
sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK; |
|
228
|
8
|
100
|
|
|
|
|
for(i=0; inExpr; i++){ |
|
229
|
|
|
|
|
|
|
Expr *p; |
|
230
|
7
|
50
|
|
|
|
|
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){ |
|
231
|
|
|
|
|
|
|
/* Indices can only be used if all ORDER BY terms are either |
|
232
|
|
|
|
|
|
|
** DESC or ASC. Indices cannot be used on a mixture. */ |
|
233
|
0
|
|
|
|
|
|
return 0; |
|
234
|
|
|
|
|
|
|
} |
|
235
|
7
|
50
|
|
|
|
|
if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){ |
|
236
|
|
|
|
|
|
|
/* Do not sort by index if there is a COLLATE clause */ |
|
237
|
0
|
|
|
|
|
|
return 0; |
|
238
|
|
|
|
|
|
|
} |
|
239
|
7
|
|
|
|
|
|
p = pOrderBy->a[i].pExpr; |
|
240
|
7
|
100
|
|
|
|
|
if( p->op!=TK_COLUMN || p->iTable!=base ){ |
|
|
|
50
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
/* Can not use an index sort on anything that is not a column in the |
|
242
|
|
|
|
|
|
|
** left-most table of the FROM clause */ |
|
243
|
3
|
|
|
|
|
|
return 0; |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
} |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
/* If we get this far, it means the ORDER BY clause consists only of |
|
248
|
|
|
|
|
|
|
** ascending columns in the left-most table of the FROM clause. Now |
|
249
|
|
|
|
|
|
|
** check for a matching index. |
|
250
|
|
|
|
|
|
|
*/ |
|
251
|
1
|
|
|
|
|
|
pMatch = 0; |
|
252
|
1
|
50
|
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
253
|
0
|
|
|
|
|
|
int nExpr = pOrderBy->nExpr; |
|
254
|
0
|
0
|
|
|
|
|
if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue; |
|
|
|
0
|
|
|
|
|
|
|
255
|
0
|
0
|
|
|
|
|
for(i=j=0; i
|
|
256
|
0
|
0
|
|
|
|
|
if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break; |
|
257
|
0
|
0
|
|
|
|
|
if( ja[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; } |
|
|
|
0
|
|
|
|
|
|
|
258
|
|
|
|
|
|
|
} |
|
259
|
0
|
0
|
|
|
|
|
if( i
|
|
260
|
0
|
0
|
|
|
|
|
for(i=0; i+j
|
|
261
|
0
|
0
|
|
|
|
|
if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break; |
|
262
|
|
|
|
|
|
|
} |
|
263
|
0
|
0
|
|
|
|
|
if( i+j>=nExpr ){ |
|
264
|
0
|
|
|
|
|
|
pMatch = pIdx; |
|
265
|
0
|
0
|
|
|
|
|
if( pIdx==pPreferredIdx ) break; |
|
266
|
|
|
|
|
|
|
} |
|
267
|
|
|
|
|
|
|
} |
|
268
|
1
|
50
|
|
|
|
|
if( pMatch && pbRev ){ |
|
|
|
0
|
|
|
|
|
|
|
269
|
0
|
|
|
|
|
|
*pbRev = sortOrder==SQLITE_SO_DESC; |
|
270
|
|
|
|
|
|
|
} |
|
271
|
1
|
|
|
|
|
|
return pMatch; |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/* |
|
275
|
|
|
|
|
|
|
** Disable a term in the WHERE clause. Except, do not disable the term |
|
276
|
|
|
|
|
|
|
** if it controls a LEFT OUTER JOIN and it did not originate in the ON |
|
277
|
|
|
|
|
|
|
** or USING clause of that join. |
|
278
|
|
|
|
|
|
|
** |
|
279
|
|
|
|
|
|
|
** Consider the term t2.z='ok' in the following queries: |
|
280
|
|
|
|
|
|
|
** |
|
281
|
|
|
|
|
|
|
** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' |
|
282
|
|
|
|
|
|
|
** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' |
|
283
|
|
|
|
|
|
|
** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' |
|
284
|
|
|
|
|
|
|
** |
|
285
|
|
|
|
|
|
|
** The t2.z='ok' is disabled in the in (2) because it did not originate |
|
286
|
|
|
|
|
|
|
** in the ON clause. The term is disabled in (3) because it is not part |
|
287
|
|
|
|
|
|
|
** of a LEFT OUTER JOIN. In (1), the term is not disabled. |
|
288
|
|
|
|
|
|
|
** |
|
289
|
|
|
|
|
|
|
** Disabling a term causes that term to not be tested in the inner loop |
|
290
|
|
|
|
|
|
|
** of the join. Disabling is an optimization. We would get the correct |
|
291
|
|
|
|
|
|
|
** results if nothing were ever disabled, but joins might run a little |
|
292
|
|
|
|
|
|
|
** slower. The trick is to disable as much as we can without disabling |
|
293
|
|
|
|
|
|
|
** too much. If we disabled in (1), we'd get the wrong answer. |
|
294
|
|
|
|
|
|
|
** See ticket #813. |
|
295
|
|
|
|
|
|
|
*/ |
|
296
|
0
|
|
|
|
|
|
static void disableTerm(WhereLevel *pLevel, Expr **ppExpr){ |
|
297
|
0
|
|
|
|
|
|
Expr *pExpr = *ppExpr; |
|
298
|
0
|
0
|
|
|
|
|
if( pLevel->iLeftJoin==0 || ExprHasProperty(pExpr, EP_FromJoin) ){ |
|
|
|
0
|
|
|
|
|
|
|
299
|
0
|
|
|
|
|
|
*ppExpr = 0; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
0
|
|
|
|
|
|
} |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
/* |
|
304
|
|
|
|
|
|
|
** Generate the beginning of the loop used for WHERE clause processing. |
|
305
|
|
|
|
|
|
|
** The return value is a pointer to an (opaque) structure that contains |
|
306
|
|
|
|
|
|
|
** information needed to terminate the loop. Later, the calling routine |
|
307
|
|
|
|
|
|
|
** should invoke sqliteWhereEnd() with the return value of this function |
|
308
|
|
|
|
|
|
|
** in order to complete the WHERE clause processing. |
|
309
|
|
|
|
|
|
|
** |
|
310
|
|
|
|
|
|
|
** If an error occurs, this routine returns NULL. |
|
311
|
|
|
|
|
|
|
** |
|
312
|
|
|
|
|
|
|
** The basic idea is to do a nested loop, one loop for each table in |
|
313
|
|
|
|
|
|
|
** the FROM clause of a select. (INSERT and UPDATE statements are the |
|
314
|
|
|
|
|
|
|
** same as a SELECT with only a single table in the FROM clause.) For |
|
315
|
|
|
|
|
|
|
** example, if the SQL is this: |
|
316
|
|
|
|
|
|
|
** |
|
317
|
|
|
|
|
|
|
** SELECT * FROM t1, t2, t3 WHERE ...; |
|
318
|
|
|
|
|
|
|
** |
|
319
|
|
|
|
|
|
|
** Then the code generated is conceptually like the following: |
|
320
|
|
|
|
|
|
|
** |
|
321
|
|
|
|
|
|
|
** foreach row1 in t1 do \ Code generated |
|
322
|
|
|
|
|
|
|
** foreach row2 in t2 do |-- by sqliteWhereBegin() |
|
323
|
|
|
|
|
|
|
** foreach row3 in t3 do / |
|
324
|
|
|
|
|
|
|
** ... |
|
325
|
|
|
|
|
|
|
** end \ Code generated |
|
326
|
|
|
|
|
|
|
** end |-- by sqliteWhereEnd() |
|
327
|
|
|
|
|
|
|
** end / |
|
328
|
|
|
|
|
|
|
** |
|
329
|
|
|
|
|
|
|
** There are Btree cursors associated with each table. t1 uses cursor |
|
330
|
|
|
|
|
|
|
** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. |
|
331
|
|
|
|
|
|
|
** And so forth. This routine generates code to open those VDBE cursors |
|
332
|
|
|
|
|
|
|
** and sqliteWhereEnd() generates the code to close them. |
|
333
|
|
|
|
|
|
|
** |
|
334
|
|
|
|
|
|
|
** If the WHERE clause is empty, the foreach loops must each scan their |
|
335
|
|
|
|
|
|
|
** entire tables. Thus a three-way join is an O(N^3) operation. But if |
|
336
|
|
|
|
|
|
|
** the tables have indices and there are terms in the WHERE clause that |
|
337
|
|
|
|
|
|
|
** refer to those indices, a complete table scan can be avoided and the |
|
338
|
|
|
|
|
|
|
** code will run much faster. Most of the work of this routine is checking |
|
339
|
|
|
|
|
|
|
** to see if there are indices that can be used to speed up the loop. |
|
340
|
|
|
|
|
|
|
** |
|
341
|
|
|
|
|
|
|
** Terms of the WHERE clause are also used to limit which rows actually |
|
342
|
|
|
|
|
|
|
** make it to the "..." in the middle of the loop. After each "foreach", |
|
343
|
|
|
|
|
|
|
** terms of the WHERE clause that use only terms in that loop and outer |
|
344
|
|
|
|
|
|
|
** loops are evaluated and if false a jump is made around all subsequent |
|
345
|
|
|
|
|
|
|
** inner loops (or around the "..." if the test occurs within the inner- |
|
346
|
|
|
|
|
|
|
** most loop) |
|
347
|
|
|
|
|
|
|
** |
|
348
|
|
|
|
|
|
|
** OUTER JOINS |
|
349
|
|
|
|
|
|
|
** |
|
350
|
|
|
|
|
|
|
** An outer join of tables t1 and t2 is conceptally coded as follows: |
|
351
|
|
|
|
|
|
|
** |
|
352
|
|
|
|
|
|
|
** foreach row1 in t1 do |
|
353
|
|
|
|
|
|
|
** flag = 0 |
|
354
|
|
|
|
|
|
|
** foreach row2 in t2 do |
|
355
|
|
|
|
|
|
|
** start: |
|
356
|
|
|
|
|
|
|
** ... |
|
357
|
|
|
|
|
|
|
** flag = 1 |
|
358
|
|
|
|
|
|
|
** end |
|
359
|
|
|
|
|
|
|
** if flag==0 then |
|
360
|
|
|
|
|
|
|
** move the row2 cursor to a null row |
|
361
|
|
|
|
|
|
|
** goto start |
|
362
|
|
|
|
|
|
|
** fi |
|
363
|
|
|
|
|
|
|
** end |
|
364
|
|
|
|
|
|
|
** |
|
365
|
|
|
|
|
|
|
** ORDER BY CLAUSE PROCESSING |
|
366
|
|
|
|
|
|
|
** |
|
367
|
|
|
|
|
|
|
** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, |
|
368
|
|
|
|
|
|
|
** if there is one. If there is no ORDER BY clause or if this routine |
|
369
|
|
|
|
|
|
|
** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. |
|
370
|
|
|
|
|
|
|
** |
|
371
|
|
|
|
|
|
|
** If an index can be used so that the natural output order of the table |
|
372
|
|
|
|
|
|
|
** scan is correct for the ORDER BY clause, then that index is used and |
|
373
|
|
|
|
|
|
|
** *ppOrderBy is set to NULL. This is an optimization that prevents an |
|
374
|
|
|
|
|
|
|
** unnecessary sort of the result set if an index appropriate for the |
|
375
|
|
|
|
|
|
|
** ORDER BY clause already exists. |
|
376
|
|
|
|
|
|
|
** |
|
377
|
|
|
|
|
|
|
** If the where clause loops cannot be arranged to provide the correct |
|
378
|
|
|
|
|
|
|
** output order, then the *ppOrderBy is unchanged. |
|
379
|
|
|
|
|
|
|
*/ |
|
380
|
141
|
|
|
|
|
|
WhereInfo *sqliteWhereBegin( |
|
381
|
|
|
|
|
|
|
Parse *pParse, /* The parser context */ |
|
382
|
|
|
|
|
|
|
SrcList *pTabList, /* A list of all tables to be scanned */ |
|
383
|
|
|
|
|
|
|
Expr *pWhere, /* The WHERE clause */ |
|
384
|
|
|
|
|
|
|
int pushKey, /* If TRUE, leave the table key on the stack */ |
|
385
|
|
|
|
|
|
|
ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ |
|
386
|
|
|
|
|
|
|
){ |
|
387
|
|
|
|
|
|
|
int i; /* Loop counter */ |
|
388
|
|
|
|
|
|
|
WhereInfo *pWInfo; /* Will become the return value of this function */ |
|
389
|
141
|
|
|
|
|
|
Vdbe *v = pParse->pVdbe; /* The virtual database engine */ |
|
390
|
141
|
|
|
|
|
|
int brk, cont = 0; /* Addresses used during code generation */ |
|
391
|
|
|
|
|
|
|
int nExpr; /* Number of subexpressions in the WHERE clause */ |
|
392
|
|
|
|
|
|
|
int loopMask; /* One bit set for each outer loop */ |
|
393
|
|
|
|
|
|
|
int haveKey; /* True if KEY is on the stack */ |
|
394
|
|
|
|
|
|
|
ExprMaskSet maskSet; /* The expression mask set */ |
|
395
|
|
|
|
|
|
|
int iDirectEq[32]; /* Term of the form ROWID==X for the N-th table */ |
|
396
|
|
|
|
|
|
|
int iDirectLt[32]; /* Term of the form ROWID
|
|
397
|
|
|
|
|
|
|
int iDirectGt[32]; /* Term of the form ROWID>X or ROWID>=X */ |
|
398
|
|
|
|
|
|
|
ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */ |
|
399
|
|
|
|
|
|
|
|
|
400
|
|
|
|
|
|
|
/* pushKey is only allowed if there is a single table (as in an INSERT or |
|
401
|
|
|
|
|
|
|
** UPDATE statement) |
|
402
|
|
|
|
|
|
|
*/ |
|
403
|
|
|
|
|
|
|
assert( pushKey==0 || pTabList->nSrc==1 ); |
|
404
|
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
/* Split the WHERE clause into separate subexpressions where each |
|
406
|
|
|
|
|
|
|
** subexpression is separated by an AND operator. If the aExpr[] |
|
407
|
|
|
|
|
|
|
** array fills up, the last entry might point to an expression which |
|
408
|
|
|
|
|
|
|
** contains additional unfactored AND operators. |
|
409
|
|
|
|
|
|
|
*/ |
|
410
|
141
|
|
|
|
|
|
initMaskSet(&maskSet); |
|
411
|
141
|
|
|
|
|
|
memset(aExpr, 0, sizeof(aExpr)); |
|
412
|
141
|
|
|
|
|
|
nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere); |
|
413
|
141
|
50
|
|
|
|
|
if( nExpr==ARRAYSIZE(aExpr) ){ |
|
414
|
0
|
|
|
|
|
|
sqliteErrorMsg(pParse, "WHERE clause too complex - no more " |
|
415
|
|
|
|
|
|
|
"than %d terms allowed", (int)ARRAYSIZE(aExpr)-1); |
|
416
|
0
|
|
|
|
|
|
return 0; |
|
417
|
|
|
|
|
|
|
} |
|
418
|
|
|
|
|
|
|
|
|
419
|
|
|
|
|
|
|
/* Allocate and initialize the WhereInfo structure that will become the |
|
420
|
|
|
|
|
|
|
** return value. |
|
421
|
|
|
|
|
|
|
*/ |
|
422
|
141
|
|
|
|
|
|
pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); |
|
423
|
141
|
50
|
|
|
|
|
if( sqlite_malloc_failed ){ |
|
424
|
0
|
|
|
|
|
|
sqliteFree(pWInfo); |
|
425
|
0
|
|
|
|
|
|
return 0; |
|
426
|
|
|
|
|
|
|
} |
|
427
|
141
|
|
|
|
|
|
pWInfo->pParse = pParse; |
|
428
|
141
|
|
|
|
|
|
pWInfo->pTabList = pTabList; |
|
429
|
141
|
|
|
|
|
|
pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab; |
|
430
|
141
|
|
|
|
|
|
pWInfo->iBreak = sqliteVdbeMakeLabel(v); |
|
431
|
|
|
|
|
|
|
|
|
432
|
|
|
|
|
|
|
/* Special case: a WHERE clause that is constant. Evaluate the |
|
433
|
|
|
|
|
|
|
** expression and either jump over all of the code or fall thru. |
|
434
|
|
|
|
|
|
|
*/ |
|
435
|
141
|
100
|
|
|
|
|
if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){ |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
436
|
0
|
|
|
|
|
|
sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); |
|
437
|
0
|
|
|
|
|
|
pWhere = 0; |
|
438
|
|
|
|
|
|
|
} |
|
439
|
|
|
|
|
|
|
|
|
440
|
|
|
|
|
|
|
/* Analyze all of the subexpressions. |
|
441
|
|
|
|
|
|
|
*/ |
|
442
|
177
|
100
|
|
|
|
|
for(i=0; i
|
|
443
|
36
|
|
|
|
|
|
exprAnalyze(&maskSet, &aExpr[i]); |
|
444
|
|
|
|
|
|
|
|
|
445
|
|
|
|
|
|
|
/* If we are executing a trigger body, remove all references to |
|
446
|
|
|
|
|
|
|
** new.* and old.* tables from the prerequisite masks. |
|
447
|
|
|
|
|
|
|
*/ |
|
448
|
36
|
50
|
|
|
|
|
if( pParse->trigStack ){ |
|
449
|
|
|
|
|
|
|
int x; |
|
450
|
0
|
0
|
|
|
|
|
if( (x = pParse->trigStack->newIdx) >= 0 ){ |
|
451
|
0
|
|
|
|
|
|
int mask = ~getMask(&maskSet, x); |
|
452
|
0
|
|
|
|
|
|
aExpr[i].prereqRight &= mask; |
|
453
|
0
|
|
|
|
|
|
aExpr[i].prereqLeft &= mask; |
|
454
|
0
|
|
|
|
|
|
aExpr[i].prereqAll &= mask; |
|
455
|
|
|
|
|
|
|
} |
|
456
|
0
|
0
|
|
|
|
|
if( (x = pParse->trigStack->oldIdx) >= 0 ){ |
|
457
|
0
|
|
|
|
|
|
int mask = ~getMask(&maskSet, x); |
|
458
|
0
|
|
|
|
|
|
aExpr[i].prereqRight &= mask; |
|
459
|
0
|
|
|
|
|
|
aExpr[i].prereqLeft &= mask; |
|
460
|
0
|
|
|
|
|
|
aExpr[i].prereqAll &= mask; |
|
461
|
|
|
|
|
|
|
} |
|
462
|
|
|
|
|
|
|
} |
|
463
|
|
|
|
|
|
|
} |
|
464
|
|
|
|
|
|
|
|
|
465
|
|
|
|
|
|
|
/* Figure out what index to use (if any) for each nested loop. |
|
466
|
|
|
|
|
|
|
** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested |
|
467
|
|
|
|
|
|
|
** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner |
|
468
|
|
|
|
|
|
|
** loop. |
|
469
|
|
|
|
|
|
|
** |
|
470
|
|
|
|
|
|
|
** If terms exist that use the ROWID of any table, then set the |
|
471
|
|
|
|
|
|
|
** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table |
|
472
|
|
|
|
|
|
|
** to the index of the term containing the ROWID. We always prefer |
|
473
|
|
|
|
|
|
|
** to use a ROWID which can directly access a table rather than an |
|
474
|
|
|
|
|
|
|
** index which requires reading an index first to get the rowid then |
|
475
|
|
|
|
|
|
|
** doing a second read of the actual database table. |
|
476
|
|
|
|
|
|
|
** |
|
477
|
|
|
|
|
|
|
** Actually, if there are more than 32 tables in the join, only the |
|
478
|
|
|
|
|
|
|
** first 32 tables are candidates for indices. This is (again) due |
|
479
|
|
|
|
|
|
|
** to the limit of 32 bits in an integer bitmask. |
|
480
|
|
|
|
|
|
|
*/ |
|
481
|
141
|
|
|
|
|
|
loopMask = 0; |
|
482
|
260
|
100
|
|
|
|
|
for(i=0; inSrc && i
|
|
|
|
50
|
|
|
|
|
|
|
483
|
|
|
|
|
|
|
int j; |
|
484
|
119
|
|
|
|
|
|
int iCur = pTabList->a[i].iCursor; /* The cursor for this table */ |
|
485
|
119
|
|
|
|
|
|
int mask = getMask(&maskSet, iCur); /* Cursor mask for this table */ |
|
486
|
119
|
|
|
|
|
|
Table *pTab = pTabList->a[i].pTab; |
|
487
|
|
|
|
|
|
|
Index *pIdx; |
|
488
|
119
|
|
|
|
|
|
Index *pBestIdx = 0; |
|
489
|
119
|
|
|
|
|
|
int bestScore = 0; |
|
490
|
|
|
|
|
|
|
|
|
491
|
|
|
|
|
|
|
/* Check to see if there is an expression that uses only the |
|
492
|
|
|
|
|
|
|
** ROWID field of this table. For terms of the form ROWID==expr |
|
493
|
|
|
|
|
|
|
** set iDirectEq[i] to the index of the term. For terms of the |
|
494
|
|
|
|
|
|
|
** form ROWID
|
|
495
|
|
|
|
|
|
|
** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i]. |
|
496
|
|
|
|
|
|
|
** |
|
497
|
|
|
|
|
|
|
** (Added:) Treat ROWID IN expr like ROWID=expr. |
|
498
|
|
|
|
|
|
|
*/ |
|
499
|
119
|
|
|
|
|
|
pWInfo->a[i].iCur = -1; |
|
500
|
119
|
|
|
|
|
|
iDirectEq[i] = -1; |
|
501
|
119
|
|
|
|
|
|
iDirectLt[i] = -1; |
|
502
|
119
|
|
|
|
|
|
iDirectGt[i] = -1; |
|
503
|
156
|
100
|
|
|
|
|
for(j=0; j
|
|
504
|
37
|
100
|
|
|
|
|
if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0 |
|
|
|
50
|
|
|
|
|
|
|
505
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ |
|
506
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
|
507
|
|
|
|
|
|
|
case TK_IN: |
|
508
|
0
|
|
|
|
|
|
case TK_EQ: iDirectEq[i] = j; break; |
|
509
|
|
|
|
|
|
|
case TK_LE: |
|
510
|
0
|
|
|
|
|
|
case TK_LT: iDirectLt[i] = j; break; |
|
511
|
|
|
|
|
|
|
case TK_GE: |
|
512
|
0
|
|
|
|
|
|
case TK_GT: iDirectGt[i] = j; break; |
|
513
|
|
|
|
|
|
|
} |
|
514
|
|
|
|
|
|
|
} |
|
515
|
37
|
100
|
|
|
|
|
if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0 |
|
|
|
50
|
|
|
|
|
|
|
516
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ |
|
517
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
|
518
|
0
|
|
|
|
|
|
case TK_EQ: iDirectEq[i] = j; break; |
|
519
|
|
|
|
|
|
|
case TK_LE: |
|
520
|
0
|
|
|
|
|
|
case TK_LT: iDirectGt[i] = j; break; |
|
521
|
|
|
|
|
|
|
case TK_GE: |
|
522
|
0
|
|
|
|
|
|
case TK_GT: iDirectLt[i] = j; break; |
|
523
|
|
|
|
|
|
|
} |
|
524
|
|
|
|
|
|
|
} |
|
525
|
|
|
|
|
|
|
} |
|
526
|
119
|
50
|
|
|
|
|
if( iDirectEq[i]>=0 ){ |
|
527
|
0
|
|
|
|
|
|
loopMask |= mask; |
|
528
|
0
|
|
|
|
|
|
pWInfo->a[i].pIdx = 0; |
|
529
|
0
|
|
|
|
|
|
continue; |
|
530
|
|
|
|
|
|
|
} |
|
531
|
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
/* Do a search for usable indices. Leave pBestIdx pointing to |
|
533
|
|
|
|
|
|
|
** the "best" index. pBestIdx is left set to NULL if no indices |
|
534
|
|
|
|
|
|
|
** are usable. |
|
535
|
|
|
|
|
|
|
** |
|
536
|
|
|
|
|
|
|
** The best index is determined as follows. For each of the |
|
537
|
|
|
|
|
|
|
** left-most terms that is fixed by an equality operator, add |
|
538
|
|
|
|
|
|
|
** 8 to the score. The right-most term of the index may be |
|
539
|
|
|
|
|
|
|
** constrained by an inequality. Add 1 if for an "x<..." constraint |
|
540
|
|
|
|
|
|
|
** and add 2 for an "x>..." constraint. Chose the index that |
|
541
|
|
|
|
|
|
|
** gives the best score. |
|
542
|
|
|
|
|
|
|
** |
|
543
|
|
|
|
|
|
|
** This scoring system is designed so that the score can later be |
|
544
|
|
|
|
|
|
|
** used to determine how the index is used. If the score&7 is 0 |
|
545
|
|
|
|
|
|
|
** then all constraints are equalities. If score&1 is not 0 then |
|
546
|
|
|
|
|
|
|
** there is an inequality used as a termination key. (ex: "x<...") |
|
547
|
|
|
|
|
|
|
** If score&2 is not 0 then there is an inequality used as the |
|
548
|
|
|
|
|
|
|
** start key. (ex: "x>..."). A score or 4 is the special case |
|
549
|
|
|
|
|
|
|
** of an IN operator constraint. (ex: "x IN ..."). |
|
550
|
|
|
|
|
|
|
** |
|
551
|
|
|
|
|
|
|
** The IN operator (as in " IN (...)") is treated the same as |
|
552
|
|
|
|
|
|
|
** an equality comparison except that it can only be used on the |
|
553
|
|
|
|
|
|
|
** left-most column of an index and other terms of the WHERE clause |
|
554
|
|
|
|
|
|
|
** cannot be used in conjunction with the IN operator to help satisfy |
|
555
|
|
|
|
|
|
|
** other columns of the index. |
|
556
|
|
|
|
|
|
|
*/ |
|
557
|
120
|
100
|
|
|
|
|
for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ |
|
558
|
1
|
|
|
|
|
|
int eqMask = 0; /* Index columns covered by an x=... term */ |
|
559
|
1
|
|
|
|
|
|
int ltMask = 0; /* Index columns covered by an x<... term */ |
|
560
|
1
|
|
|
|
|
|
int gtMask = 0; /* Index columns covered by an x>... term */ |
|
561
|
1
|
|
|
|
|
|
int inMask = 0; /* Index columns covered by an x IN .. term */ |
|
562
|
|
|
|
|
|
|
int nEq, m, score; |
|
563
|
|
|
|
|
|
|
|
|
564
|
1
|
50
|
|
|
|
|
if( pIdx->nColumn>32 ) continue; /* Ignore indices too many columns */ |
|
565
|
1
|
50
|
|
|
|
|
for(j=0; j
|
|
566
|
0
|
0
|
|
|
|
|
if( aExpr[j].idxLeft==iCur |
|
567
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){ |
|
568
|
0
|
|
|
|
|
|
int iColumn = aExpr[j].p->pLeft->iColumn; |
|
569
|
|
|
|
|
|
|
int k; |
|
570
|
0
|
0
|
|
|
|
|
for(k=0; knColumn; k++){ |
|
571
|
0
|
0
|
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){ |
|
572
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
|
573
|
|
|
|
|
|
|
case TK_IN: { |
|
574
|
0
|
0
|
|
|
|
|
if( k==0 ) inMask |= 1; |
|
575
|
0
|
|
|
|
|
|
break; |
|
576
|
|
|
|
|
|
|
} |
|
577
|
|
|
|
|
|
|
case TK_EQ: { |
|
578
|
0
|
|
|
|
|
|
eqMask |= 1<
|
|
579
|
0
|
|
|
|
|
|
break; |
|
580
|
|
|
|
|
|
|
} |
|
581
|
|
|
|
|
|
|
case TK_LE: |
|
582
|
|
|
|
|
|
|
case TK_LT: { |
|
583
|
0
|
|
|
|
|
|
ltMask |= 1<
|
|
584
|
0
|
|
|
|
|
|
break; |
|
585
|
|
|
|
|
|
|
} |
|
586
|
|
|
|
|
|
|
case TK_GE: |
|
587
|
|
|
|
|
|
|
case TK_GT: { |
|
588
|
0
|
|
|
|
|
|
gtMask |= 1<
|
|
589
|
0
|
|
|
|
|
|
break; |
|
590
|
|
|
|
|
|
|
} |
|
591
|
|
|
|
|
|
|
default: { |
|
592
|
|
|
|
|
|
|
/* CANT_HAPPEN */ |
|
593
|
|
|
|
|
|
|
assert( 0 ); |
|
594
|
0
|
|
|
|
|
|
break; |
|
595
|
|
|
|
|
|
|
} |
|
596
|
|
|
|
|
|
|
} |
|
597
|
0
|
|
|
|
|
|
break; |
|
598
|
|
|
|
|
|
|
} |
|
599
|
|
|
|
|
|
|
} |
|
600
|
|
|
|
|
|
|
} |
|
601
|
0
|
0
|
|
|
|
|
if( aExpr[j].idxRight==iCur |
|
602
|
0
|
0
|
|
|
|
|
&& (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){ |
|
603
|
0
|
|
|
|
|
|
int iColumn = aExpr[j].p->pRight->iColumn; |
|
604
|
|
|
|
|
|
|
int k; |
|
605
|
0
|
0
|
|
|
|
|
for(k=0; knColumn; k++){ |
|
606
|
0
|
0
|
|
|
|
|
if( pIdx->aiColumn[k]==iColumn ){ |
|
607
|
0
|
|
|
|
|
|
switch( aExpr[j].p->op ){ |
|
608
|
|
|
|
|
|
|
case TK_EQ: { |
|
609
|
0
|
|
|
|
|
|
eqMask |= 1<
|
|
610
|
0
|
|
|
|
|
|
break; |
|
611
|
|
|
|
|
|
|
} |
|
612
|
|
|
|
|
|
|
case TK_LE: |
|
613
|
|
|
|
|
|
|
case TK_LT: { |
|
614
|
0
|
|
|
|
|
|
gtMask |= 1<
|
|
615
|
0
|
|
|
|
|
|
break; |
|
616
|
|
|
|
|
|
|
} |
|
617
|
|
|
|
|
|
|
case TK_GE: |
|
618
|
|
|
|
|
|
|
case TK_GT: { |
|
619
|
0
|
|
|
|
|
|
ltMask |= 1<
|
|
620
|
0
|
|
|
|
|
|
break; |
|
621
|
|
|
|
|
|
|
} |
|
622
|
|
|
|
|
|
|
default: { |
|
623
|
|
|
|
|
|
|
/* CANT_HAPPEN */ |
|
624
|
|
|
|
|
|
|
assert( 0 ); |
|
625
|
0
|
|
|
|
|
|
break; |
|
626
|
|
|
|
|
|
|
} |
|
627
|
|
|
|
|
|
|
} |
|
628
|
0
|
|
|
|
|
|
break; |
|
629
|
|
|
|
|
|
|
} |
|
630
|
|
|
|
|
|
|
} |
|
631
|
|
|
|
|
|
|
} |
|
632
|
|
|
|
|
|
|
} |
|
633
|
|
|
|
|
|
|
|
|
634
|
|
|
|
|
|
|
/* The following loop ends with nEq set to the number of columns |
|
635
|
|
|
|
|
|
|
** on the left of the index with == constraints. |
|
636
|
|
|
|
|
|
|
*/ |
|
637
|
1
|
50
|
|
|
|
|
for(nEq=0; nEqnColumn; nEq++){ |
|
638
|
1
|
|
|
|
|
|
m = (1<<(nEq+1))-1; |
|
639
|
1
|
50
|
|
|
|
|
if( (m & eqMask)!=m ) break; |
|
640
|
|
|
|
|
|
|
} |
|
641
|
1
|
|
|
|
|
|
score = nEq*8; /* Base score is 8 times number of == constraints */ |
|
642
|
1
|
|
|
|
|
|
m = 1<
|
|
643
|
1
|
50
|
|
|
|
|
if( m & ltMask ) score++; /* Increase score for a < constraint */ |
|
644
|
1
|
50
|
|
|
|
|
if( m & gtMask ) score+=2; /* Increase score for a > constraint */ |
|
645
|
1
|
50
|
|
|
|
|
if( score==0 && inMask ) score = 4; /* Default score for IN constraint */ |
|
|
|
50
|
|
|
|
|
|
|
646
|
1
|
50
|
|
|
|
|
if( score>bestScore ){ |
|
647
|
0
|
|
|
|
|
|
pBestIdx = pIdx; |
|
648
|
0
|
|
|
|
|
|
bestScore = score; |
|
649
|
|
|
|
|
|
|
} |
|
650
|
|
|
|
|
|
|
} |
|
651
|
119
|
|
|
|
|
|
pWInfo->a[i].pIdx = pBestIdx; |
|
652
|
119
|
|
|
|
|
|
pWInfo->a[i].score = bestScore; |
|
653
|
119
|
|
|
|
|
|
pWInfo->a[i].bRev = 0; |
|
654
|
119
|
|
|
|
|
|
loopMask |= mask; |
|
655
|
119
|
50
|
|
|
|
|
if( pBestIdx ){ |
|
656
|
0
|
|
|
|
|
|
pWInfo->a[i].iCur = pParse->nTab++; |
|
657
|
0
|
|
|
|
|
|
pWInfo->peakNTab = pParse->nTab; |
|
658
|
|
|
|
|
|
|
} |
|
659
|
|
|
|
|
|
|
} |
|
660
|
|
|
|
|
|
|
|
|
661
|
|
|
|
|
|
|
/* Check to see if the ORDER BY clause is or can be satisfied by the |
|
662
|
|
|
|
|
|
|
** use of an index on the first table. |
|
663
|
|
|
|
|
|
|
*/ |
|
664
|
141
|
100
|
|
|
|
|
if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){ |
|
|
|
100
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
665
|
|
|
|
|
|
|
Index *pSortIdx; |
|
666
|
|
|
|
|
|
|
Index *pIdx; |
|
667
|
|
|
|
|
|
|
Table *pTab; |
|
668
|
4
|
|
|
|
|
|
int bRev = 0; |
|
669
|
|
|
|
|
|
|
|
|
670
|
4
|
|
|
|
|
|
pTab = pTabList->a[0].pTab; |
|
671
|
4
|
|
|
|
|
|
pIdx = pWInfo->a[0].pIdx; |
|
672
|
4
|
50
|
|
|
|
|
if( pIdx && pWInfo->a[0].score==4 ){ |
|
|
|
0
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
/* If there is already an IN index on the left-most table, |
|
674
|
|
|
|
|
|
|
** it will not give the correct sort order. |
|
675
|
|
|
|
|
|
|
** So, pretend that no suitable index is found. |
|
676
|
|
|
|
|
|
|
*/ |
|
677
|
0
|
|
|
|
|
|
pSortIdx = 0; |
|
678
|
4
|
50
|
|
|
|
|
}else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){ |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
/* If the left-most column is accessed using its ROWID, then do |
|
680
|
|
|
|
|
|
|
** not try to sort by index. |
|
681
|
|
|
|
|
|
|
*/ |
|
682
|
0
|
|
|
|
|
|
pSortIdx = 0; |
|
683
|
|
|
|
|
|
|
}else{ |
|
684
|
4
|
|
|
|
|
|
int nEqCol = (pWInfo->a[0].score+4)/8; |
|
685
|
4
|
|
|
|
|
|
pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor, |
|
686
|
|
|
|
|
|
|
*ppOrderBy, pIdx, nEqCol, &bRev); |
|
687
|
|
|
|
|
|
|
} |
|
688
|
4
|
50
|
|
|
|
|
if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
689
|
0
|
0
|
|
|
|
|
if( pIdx==0 ){ |
|
690
|
0
|
|
|
|
|
|
pWInfo->a[0].pIdx = pSortIdx; |
|
691
|
0
|
|
|
|
|
|
pWInfo->a[0].iCur = pParse->nTab++; |
|
692
|
0
|
|
|
|
|
|
pWInfo->peakNTab = pParse->nTab; |
|
693
|
|
|
|
|
|
|
} |
|
694
|
0
|
|
|
|
|
|
pWInfo->a[0].bRev = bRev; |
|
695
|
4
|
|
|
|
|
|
*ppOrderBy = 0; |
|
696
|
|
|
|
|
|
|
} |
|
697
|
|
|
|
|
|
|
} |
|
698
|
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
/* Open all tables in the pTabList and all indices used by those tables. |
|
700
|
|
|
|
|
|
|
*/ |
|
701
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
|
702
|
|
|
|
|
|
|
Table *pTab; |
|
703
|
|
|
|
|
|
|
Index *pIx; |
|
704
|
|
|
|
|
|
|
|
|
705
|
119
|
|
|
|
|
|
pTab = pTabList->a[i].pTab; |
|
706
|
119
|
100
|
|
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue; |
|
|
|
50
|
|
|
|
|
|
|
707
|
116
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0); |
|
708
|
116
|
|
|
|
|
|
sqliteVdbeOp3(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum, |
|
709
|
116
|
|
|
|
|
|
pTab->zName, P3_STATIC); |
|
710
|
116
|
|
|
|
|
|
sqliteCodeVerifySchema(pParse, pTab->iDb); |
|
711
|
116
|
50
|
|
|
|
|
if( (pIx = pWInfo->a[i].pIdx)!=0 ){ |
|
712
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, pIx->iDb, 0); |
|
713
|
0
|
|
|
|
|
|
sqliteVdbeOp3(v, OP_OpenRead, pWInfo->a[i].iCur, pIx->tnum, pIx->zName,0); |
|
714
|
|
|
|
|
|
|
} |
|
715
|
|
|
|
|
|
|
} |
|
716
|
|
|
|
|
|
|
|
|
717
|
|
|
|
|
|
|
/* Generate the code to do the search |
|
718
|
|
|
|
|
|
|
*/ |
|
719
|
141
|
|
|
|
|
|
loopMask = 0; |
|
720
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
|
721
|
|
|
|
|
|
|
int j, k; |
|
722
|
119
|
|
|
|
|
|
int iCur = pTabList->a[i].iCursor; |
|
723
|
|
|
|
|
|
|
Index *pIdx; |
|
724
|
119
|
|
|
|
|
|
WhereLevel *pLevel = &pWInfo->a[i]; |
|
725
|
|
|
|
|
|
|
|
|
726
|
|
|
|
|
|
|
/* If this is the right table of a LEFT OUTER JOIN, allocate and |
|
727
|
|
|
|
|
|
|
** initialize a memory cell that records if this table matches any |
|
728
|
|
|
|
|
|
|
** row of the left table of the join. |
|
729
|
|
|
|
|
|
|
*/ |
|
730
|
119
|
100
|
|
|
|
|
if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){ |
|
|
|
50
|
|
|
|
|
|
|
731
|
0
|
0
|
|
|
|
|
if( !pParse->nMem ) pParse->nMem++; |
|
732
|
0
|
|
|
|
|
|
pLevel->iLeftJoin = pParse->nMem++; |
|
733
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_String, 0, 0); |
|
734
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); |
|
735
|
|
|
|
|
|
|
} |
|
736
|
|
|
|
|
|
|
|
|
737
|
119
|
|
|
|
|
|
pIdx = pLevel->pIdx; |
|
738
|
119
|
|
|
|
|
|
pLevel->inOp = OP_Noop; |
|
739
|
119
|
50
|
|
|
|
|
if( i=0 ){ |
|
|
|
50
|
|
|
|
|
|
|
740
|
|
|
|
|
|
|
/* Case 1: We can directly reference a single row using an |
|
741
|
|
|
|
|
|
|
** equality comparison against the ROWID field. Or |
|
742
|
|
|
|
|
|
|
** we reference multiple rows using a "rowid IN (...)" |
|
743
|
|
|
|
|
|
|
** construct. |
|
744
|
|
|
|
|
|
|
*/ |
|
745
|
0
|
|
|
|
|
|
k = iDirectEq[i]; |
|
746
|
|
|
|
|
|
|
assert( k
|
|
747
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
|
748
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
|
749
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
|
750
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
|
751
|
0
|
|
|
|
|
|
Expr *pX = aExpr[k].p; |
|
752
|
0
|
0
|
|
|
|
|
if( pX->op!=TK_IN ){ |
|
753
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
|
754
|
0
|
0
|
|
|
|
|
}else if( pX->pList ){ |
|
755
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); |
|
756
|
0
|
|
|
|
|
|
pLevel->inOp = OP_SetNext; |
|
757
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
|
758
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v); |
|
759
|
|
|
|
|
|
|
}else{ |
|
760
|
|
|
|
|
|
|
assert( pX->pSelect ); |
|
761
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); |
|
762
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); |
|
763
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); |
|
764
|
0
|
|
|
|
|
|
pLevel->inOp = OP_Next; |
|
765
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
|
766
|
|
|
|
|
|
|
} |
|
767
|
|
|
|
|
|
|
}else{ |
|
768
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
|
769
|
|
|
|
|
|
|
} |
|
770
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
771
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
|
772
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk); |
|
773
|
0
|
|
|
|
|
|
haveKey = 0; |
|
774
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotExists, iCur, brk); |
|
775
|
0
|
|
|
|
|
|
pLevel->op = OP_Noop; |
|
776
|
119
|
50
|
|
|
|
|
}else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){ |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
/* Case 2: There is an index and all terms of the WHERE clause that |
|
778
|
|
|
|
|
|
|
** refer to the index use the "==" or "IN" operators. |
|
779
|
|
|
|
|
|
|
*/ |
|
780
|
|
|
|
|
|
|
int start; |
|
781
|
|
|
|
|
|
|
int testOp; |
|
782
|
0
|
|
|
|
|
|
int nColumn = (pLevel->score+4)/8; |
|
783
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
|
784
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
785
|
0
|
0
|
|
|
|
|
for(k=0; k
|
|
786
|
0
|
|
|
|
|
|
Expr *pX = aExpr[k].p; |
|
787
|
0
|
0
|
|
|
|
|
if( pX==0 ) continue; |
|
788
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
|
789
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
|
790
|
0
|
0
|
|
|
|
|
&& pX->pLeft->iColumn==pIdx->aiColumn[j] |
|
791
|
|
|
|
|
|
|
){ |
|
792
|
0
|
0
|
|
|
|
|
if( pX->op==TK_EQ ){ |
|
793
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pX->pRight); |
|
794
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
795
|
0
|
|
|
|
|
|
break; |
|
796
|
|
|
|
|
|
|
} |
|
797
|
0
|
0
|
|
|
|
|
if( pX->op==TK_IN && nColumn==1 ){ |
|
|
|
0
|
|
|
|
|
|
|
798
|
0
|
0
|
|
|
|
|
if( pX->pList ){ |
|
799
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk); |
|
800
|
0
|
|
|
|
|
|
pLevel->inOp = OP_SetNext; |
|
801
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
|
802
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeCurrentAddr(v); |
|
803
|
|
|
|
|
|
|
}else{ |
|
804
|
|
|
|
|
|
|
assert( pX->pSelect ); |
|
805
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk); |
|
806
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1); |
|
807
|
0
|
|
|
|
|
|
pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0); |
|
808
|
0
|
|
|
|
|
|
pLevel->inOp = OP_Next; |
|
809
|
0
|
|
|
|
|
|
pLevel->inP1 = pX->iTable; |
|
810
|
|
|
|
|
|
|
} |
|
811
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
812
|
0
|
|
|
|
|
|
break; |
|
813
|
|
|
|
|
|
|
} |
|
814
|
|
|
|
|
|
|
} |
|
815
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
|
816
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
|
817
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
|
818
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] |
|
819
|
|
|
|
|
|
|
){ |
|
820
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
|
821
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
822
|
0
|
|
|
|
|
|
break; |
|
823
|
|
|
|
|
|
|
} |
|
824
|
|
|
|
|
|
|
} |
|
825
|
|
|
|
|
|
|
} |
|
826
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
|
827
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
|
828
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nColumn, sqliteVdbeCurrentAddr(v)+3); |
|
829
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nColumn, 0); |
|
830
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
|
831
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0); |
|
832
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
|
833
|
0
|
0
|
|
|
|
|
if( nColumn==pIdx->nColumn || pLevel->bRev ){ |
|
|
|
0
|
|
|
|
|
|
|
834
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); |
|
835
|
0
|
|
|
|
|
|
testOp = OP_IdxGT; |
|
836
|
|
|
|
|
|
|
}else{ |
|
837
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, 0, 0); |
|
838
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
|
839
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
840
|
0
|
|
|
|
|
|
testOp = OP_IdxGE; |
|
841
|
|
|
|
|
|
|
} |
|
842
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
|
843
|
|
|
|
|
|
|
/* Scan in reverse order */ |
|
844
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
|
845
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); |
|
846
|
0
|
|
|
|
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
847
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk); |
|
848
|
0
|
|
|
|
|
|
pLevel->op = OP_Prev; |
|
849
|
|
|
|
|
|
|
}else{ |
|
850
|
|
|
|
|
|
|
/* Scan in the forward order */ |
|
851
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); |
|
852
|
0
|
|
|
|
|
|
start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
853
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); |
|
854
|
0
|
|
|
|
|
|
pLevel->op = OP_Next; |
|
855
|
|
|
|
|
|
|
} |
|
856
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); |
|
857
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxIsNull, nColumn, cont); |
|
858
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); |
|
859
|
0
|
0
|
|
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){ |
|
|
|
0
|
|
|
|
|
|
|
860
|
0
|
|
|
|
|
|
haveKey = 1; |
|
861
|
|
|
|
|
|
|
}else{ |
|
862
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
|
863
|
0
|
|
|
|
|
|
haveKey = 0; |
|
864
|
|
|
|
|
|
|
} |
|
865
|
0
|
|
|
|
|
|
pLevel->p1 = pLevel->iCur; |
|
866
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
|
867
|
119
|
50
|
|
|
|
|
}else if( i=0 || iDirectGt[i]>=0) ){ |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
868
|
|
|
|
|
|
|
/* Case 3: We have an inequality comparison against the ROWID field. |
|
869
|
|
|
|
|
|
|
*/ |
|
870
|
0
|
|
|
|
|
|
int testOp = OP_Noop; |
|
871
|
|
|
|
|
|
|
int start; |
|
872
|
|
|
|
|
|
|
|
|
873
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
|
874
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
|
875
|
0
|
0
|
|
|
|
|
if( iDirectGt[i]>=0 ){ |
|
876
|
0
|
|
|
|
|
|
k = iDirectGt[i]; |
|
877
|
|
|
|
|
|
|
assert( k
|
|
878
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
|
879
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
|
880
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
|
881
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
|
882
|
|
|
|
|
|
|
}else{ |
|
883
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
|
884
|
|
|
|
|
|
|
} |
|
885
|
0
|
0
|
|
|
|
|
sqliteVdbeAddOp(v, OP_ForceInt, |
|
|
|
0
|
|
|
|
|
|
|
886
|
0
|
|
|
|
|
|
aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT, brk); |
|
887
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk); |
|
888
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
889
|
|
|
|
|
|
|
}else{ |
|
890
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); |
|
891
|
|
|
|
|
|
|
} |
|
892
|
0
|
0
|
|
|
|
|
if( iDirectLt[i]>=0 ){ |
|
893
|
0
|
|
|
|
|
|
k = iDirectLt[i]; |
|
894
|
|
|
|
|
|
|
assert( k
|
|
895
|
|
|
|
|
|
|
assert( aExpr[k].p!=0 ); |
|
896
|
|
|
|
|
|
|
assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur ); |
|
897
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur ){ |
|
898
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
|
899
|
|
|
|
|
|
|
}else{ |
|
900
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
|
901
|
|
|
|
|
|
|
} |
|
902
|
|
|
|
|
|
|
/* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */ |
|
903
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
|
904
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
905
|
0
|
0
|
|
|
|
|
if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){ |
|
|
|
0
|
|
|
|
|
|
|
906
|
0
|
|
|
|
|
|
testOp = OP_Ge; |
|
907
|
|
|
|
|
|
|
}else{ |
|
908
|
0
|
|
|
|
|
|
testOp = OP_Gt; |
|
909
|
|
|
|
|
|
|
} |
|
910
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
911
|
|
|
|
|
|
|
} |
|
912
|
0
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
|
913
|
0
|
|
|
|
|
|
pLevel->op = OP_Next; |
|
914
|
0
|
|
|
|
|
|
pLevel->p1 = iCur; |
|
915
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
|
916
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
|
917
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Recno, iCur, 0); |
|
918
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
919
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, 0, brk); |
|
920
|
|
|
|
|
|
|
} |
|
921
|
0
|
|
|
|
|
|
haveKey = 0; |
|
922
|
119
|
50
|
|
|
|
|
}else if( pIdx==0 ){ |
|
923
|
|
|
|
|
|
|
/* Case 4: There is no usable index. We must do a complete |
|
924
|
|
|
|
|
|
|
** scan of the entire database table. |
|
925
|
|
|
|
|
|
|
*/ |
|
926
|
|
|
|
|
|
|
int start; |
|
927
|
|
|
|
|
|
|
|
|
928
|
119
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
|
929
|
119
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
|
930
|
119
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, iCur, brk); |
|
931
|
119
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
|
932
|
119
|
|
|
|
|
|
pLevel->op = OP_Next; |
|
933
|
119
|
|
|
|
|
|
pLevel->p1 = iCur; |
|
934
|
119
|
|
|
|
|
|
pLevel->p2 = start; |
|
935
|
119
|
|
|
|
|
|
haveKey = 0; |
|
936
|
|
|
|
|
|
|
}else{ |
|
937
|
|
|
|
|
|
|
/* Case 5: The WHERE clause term that refers to the right-most |
|
938
|
|
|
|
|
|
|
** column of the index is an inequality. For example, if |
|
939
|
|
|
|
|
|
|
** the index is on (x,y,z) and the WHERE clause is of the |
|
940
|
|
|
|
|
|
|
** form "x=5 AND y<10" then this case is used. Only the |
|
941
|
|
|
|
|
|
|
** right-most column can be an inequality - the rest must |
|
942
|
|
|
|
|
|
|
** use the "==" operator. |
|
943
|
|
|
|
|
|
|
** |
|
944
|
|
|
|
|
|
|
** This case is also used when there are no WHERE clause |
|
945
|
|
|
|
|
|
|
** constraints but an index is selected anyway, in order |
|
946
|
|
|
|
|
|
|
** to force the output order to conform to an ORDER BY. |
|
947
|
|
|
|
|
|
|
*/ |
|
948
|
0
|
|
|
|
|
|
int score = pLevel->score; |
|
949
|
0
|
|
|
|
|
|
int nEqColumn = score/8; |
|
950
|
|
|
|
|
|
|
int start; |
|
951
|
|
|
|
|
|
|
int leFlag, geFlag; |
|
952
|
|
|
|
|
|
|
int testOp; |
|
953
|
|
|
|
|
|
|
|
|
954
|
|
|
|
|
|
|
/* Evaluate the equality constraints |
|
955
|
|
|
|
|
|
|
*/ |
|
956
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
957
|
0
|
0
|
|
|
|
|
for(k=0; k
|
|
958
|
0
|
0
|
|
|
|
|
if( aExpr[k].p==0 ) continue; |
|
959
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
|
960
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
|
961
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
|
962
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j] |
|
963
|
|
|
|
|
|
|
){ |
|
964
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pRight); |
|
965
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
966
|
0
|
|
|
|
|
|
break; |
|
967
|
|
|
|
|
|
|
} |
|
968
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
|
969
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->op==TK_EQ |
|
970
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
|
971
|
0
|
0
|
|
|
|
|
&& aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j] |
|
972
|
|
|
|
|
|
|
){ |
|
973
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, aExpr[k].p->pLeft); |
|
974
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
975
|
0
|
|
|
|
|
|
break; |
|
976
|
|
|
|
|
|
|
} |
|
977
|
|
|
|
|
|
|
} |
|
978
|
|
|
|
|
|
|
} |
|
979
|
|
|
|
|
|
|
|
|
980
|
|
|
|
|
|
|
/* Duplicate the equality term values because they will all be |
|
981
|
|
|
|
|
|
|
** used twice: once to make the termination key and once to make the |
|
982
|
|
|
|
|
|
|
** start key. |
|
983
|
|
|
|
|
|
|
*/ |
|
984
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
985
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0); |
|
986
|
|
|
|
|
|
|
} |
|
987
|
|
|
|
|
|
|
|
|
988
|
|
|
|
|
|
|
/* Labels for the beginning and end of the loop |
|
989
|
|
|
|
|
|
|
*/ |
|
990
|
0
|
|
|
|
|
|
cont = pLevel->cont = sqliteVdbeMakeLabel(v); |
|
991
|
0
|
|
|
|
|
|
brk = pLevel->brk = sqliteVdbeMakeLabel(v); |
|
992
|
|
|
|
|
|
|
|
|
993
|
|
|
|
|
|
|
/* Generate the termination key. This is the key value that |
|
994
|
|
|
|
|
|
|
** will end the search. There is no termination key if there |
|
995
|
|
|
|
|
|
|
** are no equality terms and no "X<..." term. |
|
996
|
|
|
|
|
|
|
** |
|
997
|
|
|
|
|
|
|
** 2002-Dec-04: On a reverse-order scan, the so-called "termination" |
|
998
|
|
|
|
|
|
|
** key computed here really ends up being the start key. |
|
999
|
|
|
|
|
|
|
*/ |
|
1000
|
0
|
0
|
|
|
|
|
if( (score & 1)!=0 ){ |
|
1001
|
0
|
0
|
|
|
|
|
for(k=0; k
|
|
1002
|
0
|
|
|
|
|
|
Expr *pExpr = aExpr[k].p; |
|
1003
|
0
|
0
|
|
|
|
|
if( pExpr==0 ) continue; |
|
1004
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
|
1005
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE) |
|
|
|
0
|
|
|
|
|
|
|
1006
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
|
1007
|
0
|
0
|
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j] |
|
1008
|
|
|
|
|
|
|
){ |
|
1009
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight); |
|
1010
|
0
|
|
|
|
|
|
leFlag = pExpr->op==TK_LE; |
|
1011
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
1012
|
0
|
|
|
|
|
|
break; |
|
1013
|
|
|
|
|
|
|
} |
|
1014
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
|
1015
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE) |
|
|
|
0
|
|
|
|
|
|
|
1016
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
|
1017
|
0
|
0
|
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j] |
|
1018
|
|
|
|
|
|
|
){ |
|
1019
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft); |
|
1020
|
0
|
|
|
|
|
|
leFlag = pExpr->op==TK_GE; |
|
1021
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
1022
|
0
|
|
|
|
|
|
break; |
|
1023
|
|
|
|
|
|
|
} |
|
1024
|
|
|
|
|
|
|
} |
|
1025
|
0
|
|
|
|
|
|
testOp = OP_IdxGE; |
|
1026
|
|
|
|
|
|
|
}else{ |
|
1027
|
0
|
0
|
|
|
|
|
testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop; |
|
1028
|
0
|
|
|
|
|
|
leFlag = 1; |
|
1029
|
|
|
|
|
|
|
} |
|
1030
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
|
1031
|
0
|
|
|
|
|
|
int nCol = nEqColumn + (score & 1); |
|
1032
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
|
1033
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); |
|
1034
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nCol, 0); |
|
1035
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
|
1036
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); |
|
1037
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
|
1038
|
0
|
0
|
|
|
|
|
if( leFlag ){ |
|
1039
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
|
1040
|
|
|
|
|
|
|
} |
|
1041
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
|
1042
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk); |
|
1043
|
|
|
|
|
|
|
}else{ |
|
1044
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
1045
|
|
|
|
|
|
|
} |
|
1046
|
0
|
0
|
|
|
|
|
}else if( pLevel->bRev ){ |
|
1047
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk); |
|
1048
|
|
|
|
|
|
|
} |
|
1049
|
|
|
|
|
|
|
|
|
1050
|
|
|
|
|
|
|
/* Generate the start key. This is the key that defines the lower |
|
1051
|
|
|
|
|
|
|
** bound on the search. There is no start key if there are no |
|
1052
|
|
|
|
|
|
|
** equality terms and if there is no "X>..." term. In |
|
1053
|
|
|
|
|
|
|
** that case, generate a "Rewind" instruction in place of the |
|
1054
|
|
|
|
|
|
|
** start key search. |
|
1055
|
|
|
|
|
|
|
** |
|
1056
|
|
|
|
|
|
|
** 2002-Dec-04: In the case of a reverse-order search, the so-called |
|
1057
|
|
|
|
|
|
|
** "start" key really ends up being used as the termination key. |
|
1058
|
|
|
|
|
|
|
*/ |
|
1059
|
0
|
0
|
|
|
|
|
if( (score & 2)!=0 ){ |
|
1060
|
0
|
0
|
|
|
|
|
for(k=0; k
|
|
1061
|
0
|
|
|
|
|
|
Expr *pExpr = aExpr[k].p; |
|
1062
|
0
|
0
|
|
|
|
|
if( pExpr==0 ) continue; |
|
1063
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxLeft==iCur |
|
1064
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_GT || pExpr->op==TK_GE) |
|
|
|
0
|
|
|
|
|
|
|
1065
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight |
|
1066
|
0
|
0
|
|
|
|
|
&& pExpr->pLeft->iColumn==pIdx->aiColumn[j] |
|
1067
|
|
|
|
|
|
|
){ |
|
1068
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pRight); |
|
1069
|
0
|
|
|
|
|
|
geFlag = pExpr->op==TK_GE; |
|
1070
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
1071
|
0
|
|
|
|
|
|
break; |
|
1072
|
|
|
|
|
|
|
} |
|
1073
|
0
|
0
|
|
|
|
|
if( aExpr[k].idxRight==iCur |
|
1074
|
0
|
0
|
|
|
|
|
&& (pExpr->op==TK_LT || pExpr->op==TK_LE) |
|
|
|
0
|
|
|
|
|
|
|
1075
|
0
|
0
|
|
|
|
|
&& (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft |
|
1076
|
0
|
0
|
|
|
|
|
&& pExpr->pRight->iColumn==pIdx->aiColumn[j] |
|
1077
|
|
|
|
|
|
|
){ |
|
1078
|
0
|
|
|
|
|
|
sqliteExprCode(pParse, pExpr->pLeft); |
|
1079
|
0
|
|
|
|
|
|
geFlag = pExpr->op==TK_LE; |
|
1080
|
0
|
|
|
|
|
|
disableTerm(pLevel, &aExpr[k].p); |
|
1081
|
0
|
|
|
|
|
|
break; |
|
1082
|
|
|
|
|
|
|
} |
|
1083
|
|
|
|
|
|
|
} |
|
1084
|
|
|
|
|
|
|
}else{ |
|
1085
|
0
|
|
|
|
|
|
geFlag = 1; |
|
1086
|
|
|
|
|
|
|
} |
|
1087
|
0
|
0
|
|
|
|
|
if( nEqColumn>0 || (score&2)!=0 ){ |
|
|
|
0
|
|
|
|
|
|
|
1088
|
0
|
|
|
|
|
|
int nCol = nEqColumn + ((score&2)!=0); |
|
1089
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, -nCol, sqliteVdbeCurrentAddr(v)+3); |
|
1090
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Pop, nCol, 0); |
|
1091
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, brk); |
|
1092
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MakeKey, nCol, 0); |
|
1093
|
0
|
|
|
|
|
|
sqliteAddIdxKeyType(v, pIdx); |
|
1094
|
0
|
0
|
|
|
|
|
if( !geFlag ){ |
|
1095
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IncrKey, 0, 0); |
|
1096
|
|
|
|
|
|
|
} |
|
1097
|
0
|
0
|
|
|
|
|
if( pLevel->bRev ){ |
|
1098
|
0
|
|
|
|
|
|
pLevel->iMem = pParse->nMem++; |
|
1099
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); |
|
1100
|
0
|
|
|
|
|
|
testOp = OP_IdxLT; |
|
1101
|
|
|
|
|
|
|
}else{ |
|
1102
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk); |
|
1103
|
|
|
|
|
|
|
} |
|
1104
|
0
|
0
|
|
|
|
|
}else if( pLevel->bRev ){ |
|
1105
|
0
|
|
|
|
|
|
testOp = OP_Noop; |
|
1106
|
|
|
|
|
|
|
}else{ |
|
1107
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk); |
|
1108
|
|
|
|
|
|
|
} |
|
1109
|
|
|
|
|
|
|
|
|
1110
|
|
|
|
|
|
|
/* Generate the the top of the loop. If there is a termination |
|
1111
|
|
|
|
|
|
|
** key we have to test for that key and abort at the top of the |
|
1112
|
|
|
|
|
|
|
** loop. |
|
1113
|
|
|
|
|
|
|
*/ |
|
1114
|
0
|
|
|
|
|
|
start = sqliteVdbeCurrentAddr(v); |
|
1115
|
0
|
0
|
|
|
|
|
if( testOp!=OP_Noop ){ |
|
1116
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); |
|
1117
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk); |
|
1118
|
|
|
|
|
|
|
} |
|
1119
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_RowKey, pLevel->iCur, 0); |
|
1120
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxIsNull, nEqColumn + (score & 1), cont); |
|
1121
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0); |
|
1122
|
0
|
0
|
|
|
|
|
if( i==pTabList->nSrc-1 && pushKey ){ |
|
|
|
0
|
|
|
|
|
|
|
1123
|
0
|
|
|
|
|
|
haveKey = 1; |
|
1124
|
|
|
|
|
|
|
}else{ |
|
1125
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
|
1126
|
0
|
|
|
|
|
|
haveKey = 0; |
|
1127
|
|
|
|
|
|
|
} |
|
1128
|
|
|
|
|
|
|
|
|
1129
|
|
|
|
|
|
|
/* Record the instruction used to terminate the loop. |
|
1130
|
|
|
|
|
|
|
*/ |
|
1131
|
0
|
0
|
|
|
|
|
pLevel->op = pLevel->bRev ? OP_Prev : OP_Next; |
|
1132
|
0
|
|
|
|
|
|
pLevel->p1 = pLevel->iCur; |
|
1133
|
0
|
|
|
|
|
|
pLevel->p2 = start; |
|
1134
|
|
|
|
|
|
|
} |
|
1135
|
119
|
|
|
|
|
|
loopMask |= getMask(&maskSet, iCur); |
|
1136
|
|
|
|
|
|
|
|
|
1137
|
|
|
|
|
|
|
/* Insert code to test every subexpression that can be completely |
|
1138
|
|
|
|
|
|
|
** computed using the current set of tables. |
|
1139
|
|
|
|
|
|
|
*/ |
|
1140
|
156
|
100
|
|
|
|
|
for(j=0; j
|
|
1141
|
37
|
50
|
|
|
|
|
if( aExpr[j].p==0 ) continue; |
|
1142
|
37
|
100
|
|
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; |
|
1143
|
36
|
50
|
|
|
|
|
if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){ |
|
|
|
0
|
|
|
|
|
|
|
1144
|
0
|
|
|
|
|
|
continue; |
|
1145
|
|
|
|
|
|
|
} |
|
1146
|
36
|
50
|
|
|
|
|
if( haveKey ){ |
|
1147
|
0
|
|
|
|
|
|
haveKey = 0; |
|
1148
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
|
1149
|
|
|
|
|
|
|
} |
|
1150
|
36
|
|
|
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); |
|
1151
|
36
|
|
|
|
|
|
aExpr[j].p = 0; |
|
1152
|
|
|
|
|
|
|
} |
|
1153
|
119
|
|
|
|
|
|
brk = cont; |
|
1154
|
|
|
|
|
|
|
|
|
1155
|
|
|
|
|
|
|
/* For a LEFT OUTER JOIN, generate code that will record the fact that |
|
1156
|
|
|
|
|
|
|
** at least one row of the right table has matched the left table. |
|
1157
|
|
|
|
|
|
|
*/ |
|
1158
|
119
|
50
|
|
|
|
|
if( pLevel->iLeftJoin ){ |
|
1159
|
0
|
|
|
|
|
|
pLevel->top = sqliteVdbeCurrentAddr(v); |
|
1160
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Integer, 1, 0); |
|
1161
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); |
|
1162
|
0
|
0
|
|
|
|
|
for(j=0; j
|
|
1163
|
0
|
0
|
|
|
|
|
if( aExpr[j].p==0 ) continue; |
|
1164
|
0
|
0
|
|
|
|
|
if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue; |
|
1165
|
0
|
0
|
|
|
|
|
if( haveKey ){ |
|
1166
|
|
|
|
|
|
|
/* Cannot happen. "haveKey" can only be true if pushKey is true |
|
1167
|
|
|
|
|
|
|
** an pushKey can only be true for DELETE and UPDATE and there are |
|
1168
|
|
|
|
|
|
|
** no outer joins with DELETE and UPDATE. |
|
1169
|
|
|
|
|
|
|
*/ |
|
1170
|
0
|
|
|
|
|
|
haveKey = 0; |
|
1171
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0); |
|
1172
|
|
|
|
|
|
|
} |
|
1173
|
0
|
|
|
|
|
|
sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1); |
|
1174
|
0
|
|
|
|
|
|
aExpr[j].p = 0; |
|
1175
|
|
|
|
|
|
|
} |
|
1176
|
|
|
|
|
|
|
} |
|
1177
|
|
|
|
|
|
|
} |
|
1178
|
141
|
|
|
|
|
|
pWInfo->iContinue = cont; |
|
1179
|
141
|
100
|
|
|
|
|
if( pushKey && !haveKey ){ |
|
|
|
50
|
|
|
|
|
|
|
1180
|
6
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0); |
|
1181
|
|
|
|
|
|
|
} |
|
1182
|
|
|
|
|
|
|
freeMaskSet(&maskSet); |
|
1183
|
141
|
|
|
|
|
|
return pWInfo; |
|
1184
|
|
|
|
|
|
|
} |
|
1185
|
|
|
|
|
|
|
|
|
1186
|
|
|
|
|
|
|
/* |
|
1187
|
|
|
|
|
|
|
** Generate the end of the WHERE loop. See comments on |
|
1188
|
|
|
|
|
|
|
** sqliteWhereBegin() for additional information. |
|
1189
|
|
|
|
|
|
|
*/ |
|
1190
|
141
|
|
|
|
|
|
void sqliteWhereEnd(WhereInfo *pWInfo){ |
|
1191
|
141
|
|
|
|
|
|
Vdbe *v = pWInfo->pParse->pVdbe; |
|
1192
|
|
|
|
|
|
|
int i; |
|
1193
|
|
|
|
|
|
|
WhereLevel *pLevel; |
|
1194
|
141
|
|
|
|
|
|
SrcList *pTabList = pWInfo->pTabList; |
|
1195
|
|
|
|
|
|
|
|
|
1196
|
260
|
100
|
|
|
|
|
for(i=pTabList->nSrc-1; i>=0; i--){ |
|
1197
|
119
|
|
|
|
|
|
pLevel = &pWInfo->a[i]; |
|
1198
|
119
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->cont); |
|
1199
|
119
|
50
|
|
|
|
|
if( pLevel->op!=OP_Noop ){ |
|
1200
|
119
|
|
|
|
|
|
sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); |
|
1201
|
|
|
|
|
|
|
} |
|
1202
|
119
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pLevel->brk); |
|
1203
|
119
|
50
|
|
|
|
|
if( pLevel->inOp!=OP_Noop ){ |
|
1204
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2); |
|
1205
|
|
|
|
|
|
|
} |
|
1206
|
119
|
50
|
|
|
|
|
if( pLevel->iLeftJoin ){ |
|
1207
|
|
|
|
|
|
|
int addr; |
|
1208
|
0
|
|
|
|
|
|
addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); |
|
1209
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0)); |
|
1210
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); |
|
1211
|
0
|
0
|
|
|
|
|
if( pLevel->iCur>=0 ){ |
|
1212
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0); |
|
1213
|
|
|
|
|
|
|
} |
|
1214
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top); |
|
1215
|
|
|
|
|
|
|
} |
|
1216
|
|
|
|
|
|
|
} |
|
1217
|
141
|
|
|
|
|
|
sqliteVdbeResolveLabel(v, pWInfo->iBreak); |
|
1218
|
260
|
100
|
|
|
|
|
for(i=0; inSrc; i++){ |
|
1219
|
119
|
|
|
|
|
|
Table *pTab = pTabList->a[i].pTab; |
|
1220
|
|
|
|
|
|
|
assert( pTab!=0 ); |
|
1221
|
119
|
100
|
|
|
|
|
if( pTab->isTransient || pTab->pSelect ) continue; |
|
|
|
50
|
|
|
|
|
|
|
1222
|
116
|
|
|
|
|
|
pLevel = &pWInfo->a[i]; |
|
1223
|
116
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0); |
|
1224
|
116
|
50
|
|
|
|
|
if( pLevel->pIdx!=0 ){ |
|
1225
|
0
|
|
|
|
|
|
sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0); |
|
1226
|
|
|
|
|
|
|
} |
|
1227
|
|
|
|
|
|
|
} |
|
1228
|
|
|
|
|
|
|
#if 0 /* Never reuse a cursor */ |
|
1229
|
|
|
|
|
|
|
if( pWInfo->pParse->nTab==pWInfo->peakNTab ){ |
|
1230
|
|
|
|
|
|
|
pWInfo->pParse->nTab = pWInfo->savedNTab; |
|
1231
|
|
|
|
|
|
|
} |
|
1232
|
|
|
|
|
|
|
#endif |
|
1233
|
141
|
|
|
|
|
|
sqliteFree(pWInfo); |
|
1234
|
141
|
|
|
|
|
|
return; |
|
1235
|
|
|
|
|
|
|
} |