| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
# |
|
2
|
|
|
|
|
|
|
# BioPerl module for Bio::Tools::Signalp::ExtendedSignalp |
|
3
|
|
|
|
|
|
|
# |
|
4
|
|
|
|
|
|
|
# Please direct questions and support issues to |
|
5
|
|
|
|
|
|
|
# |
|
6
|
|
|
|
|
|
|
# Cared for by Emmanuel Quevillon |
|
7
|
|
|
|
|
|
|
# |
|
8
|
|
|
|
|
|
|
# Copyright Emmanuel Quevillon |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# You may distribute this module under the same terms as perl itself |
|
11
|
|
|
|
|
|
|
# |
|
12
|
|
|
|
|
|
|
# POD documentation - main docs before the code |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
=head1 NAME |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
Bio::Tools::Signalp::ExtendedSignalp - enhanced parser for Signalp output |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
use Bio::Tools::Signalp::ExtendedSignalp; |
|
21
|
|
|
|
|
|
|
my $params = [qw(maxC maxY maxS meanS D)]; |
|
22
|
|
|
|
|
|
|
my $parser = new Bio::Tools::Signalp::ExtendedSignalp( |
|
23
|
|
|
|
|
|
|
-fh => $filehandle |
|
24
|
|
|
|
|
|
|
-factors => $params |
|
25
|
|
|
|
|
|
|
); |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
$parser->factors($params); |
|
28
|
|
|
|
|
|
|
while( my $sp_feat = $parser->next_feature ) { |
|
29
|
|
|
|
|
|
|
#do something |
|
30
|
|
|
|
|
|
|
#eg |
|
31
|
|
|
|
|
|
|
push @sp_feat, $sp_feat; |
|
32
|
|
|
|
|
|
|
} |
|
33
|
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
35
|
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# Please direct questions and support issues to I |
|
37
|
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
Parser module for Signalp. |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
Based on the EnsEMBL module Bio::EnsEMBL::Pipeline::Runnable::Protein::Signalp |
|
41
|
|
|
|
|
|
|
originally written by Marc Sohrmann (ms2 a sanger.ac.uk) Written in BioPipe by |
|
42
|
|
|
|
|
|
|
Balamurugan Kumarasamy (savikalpa a fugu-sg.org) Cared for by the Fugu |
|
43
|
|
|
|
|
|
|
Informatics team (fuguteam@fugu-sg.org) |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
You may distribute this module under the same terms as perl itself |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Compared to the original SignalP, this method allow the user to filter results |
|
48
|
|
|
|
|
|
|
out based on maxC maxY maxS meanS and D factor cutoff for the Neural Network (NN) |
|
49
|
|
|
|
|
|
|
method only. The HMM method does not give any filters with 'YES' or 'NO' as result. |
|
50
|
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
The user must be aware that the filters can only by applied on NN method. |
|
52
|
|
|
|
|
|
|
Also, to ensure the compatibility with original Signalp parsing module, the user |
|
53
|
|
|
|
|
|
|
must know that by default, if filters are empty, max Y and mean S filters are |
|
54
|
|
|
|
|
|
|
automatically used to filter results. |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
If the used gives a list, then the parser will only report protein having 'YES' |
|
57
|
|
|
|
|
|
|
for each factor. |
|
58
|
|
|
|
|
|
|
|
|
59
|
|
|
|
|
|
|
This module supports parsing for full, summary and short output form signalp. |
|
60
|
|
|
|
|
|
|
Actually, full and summary are equivalent in terms of filtering results. |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
=head1 FEEDBACK |
|
63
|
|
|
|
|
|
|
|
|
64
|
|
|
|
|
|
|
=head2 Mailing Lists |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
User feedback is an integral part of the evolution of this and other |
|
67
|
|
|
|
|
|
|
Bioperl modules. Send your comments and suggestions preferably to |
|
68
|
|
|
|
|
|
|
the Bioperl mailing list. Your participation is much appreciated. |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
bioperl-l@bioperl.org - General discussion |
|
71
|
|
|
|
|
|
|
http://bioperl.org/wiki/Mailing_lists - About the mailing lists |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
=head2 Support |
|
74
|
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
Please direct usage questions or support issues to the mailing list: |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
I |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
rather than to the module maintainer directly. Many experienced and |
|
80
|
|
|
|
|
|
|
reponsive experts will be able look at the problem and quickly |
|
81
|
|
|
|
|
|
|
address it. Please include a thorough description of the problem |
|
82
|
|
|
|
|
|
|
with code and data examples if at all possible. |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
=head2 Reporting Bugs |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
Report bugs to the Bioperl bug tracking system to help us keep track |
|
87
|
|
|
|
|
|
|
of the bugs and their resolution. Bug reports can be submitted via |
|
88
|
|
|
|
|
|
|
the web: |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
https://github.com/bioperl/bioperl-live/issues |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
=head1 AUTHOR |
|
93
|
|
|
|
|
|
|
|
|
94
|
|
|
|
|
|
|
Based on the Bio::Tools::Signalp module |
|
95
|
|
|
|
|
|
|
Emmanuel Quevillon |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
=head1 APPENDIX |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
The rest of the documentation details each of the object methods. |
|
100
|
|
|
|
|
|
|
Internal methods are usually preceded with a _ |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
=cut |
|
103
|
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
package Bio::Tools::Signalp::ExtendedSignalp; |
|
105
|
|
|
|
|
|
|
|
|
106
|
1
|
|
|
1
|
|
458
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
23
|
|
|
107
|
1
|
|
|
1
|
|
4
|
use Data::Dumper; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
52
|
|
|
108
|
1
|
|
|
1
|
|
323
|
use Bio::SeqFeature::Generic; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
28
|
|
|
109
|
|
|
|
|
|
|
# don't need Bio::Root::Root/IO (already in inheritance tree) |
|
110
|
1
|
|
|
1
|
|
6
|
use base qw(Bio::Tools::Signalp Bio::Tools::AnalysisResult); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
237
|
|
|
111
|
|
|
|
|
|
|
|
|
112
|
|
|
|
|
|
|
#Supported arguments |
|
113
|
|
|
|
|
|
|
my $FACTS = { |
|
114
|
|
|
|
|
|
|
'maxC' => 1, |
|
115
|
|
|
|
|
|
|
'maxS' => 1, |
|
116
|
|
|
|
|
|
|
'maxY' => 1, |
|
117
|
|
|
|
|
|
|
'meanS' => 1, |
|
118
|
|
|
|
|
|
|
'D' => 1, |
|
119
|
|
|
|
|
|
|
}; |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
=head2 new |
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
Title : new |
|
124
|
|
|
|
|
|
|
Usage : my $obj = new Bio::Tools::Signalp::ExtendedSignalp(); |
|
125
|
|
|
|
|
|
|
Function: Builds a new Bio::Tools::Signalp::ExtendedSignalp object |
|
126
|
|
|
|
|
|
|
Returns : Bio::Tools::Signalp::ExtendedSignalp |
|
127
|
|
|
|
|
|
|
Args : -fh/-file => $val, # for initing input, see Bio::Root::IO |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
=cut |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
sub new { |
|
133
|
10
|
|
|
10
|
1
|
122
|
my($class,@args) = @_; |
|
134
|
|
|
|
|
|
|
|
|
135
|
10
|
|
|
|
|
40
|
my $self = $class->SUPER::new(@args); |
|
136
|
10
|
|
|
|
|
26
|
$self->_initialize_io(@args); |
|
137
|
|
|
|
|
|
|
|
|
138
|
10
|
|
|
|
|
29
|
my $factors = $self->_rearrange([qw(FACTORS)], @args); |
|
139
|
|
|
|
|
|
|
#To behave like the parent module (Bio::Tools::Signalp) we default factors to these two factors |
|
140
|
10
|
100
|
100
|
|
|
34
|
if($factors && scalar(@$factors)){ |
|
141
|
4
|
|
|
|
|
7
|
$factors = $factors; |
|
142
|
|
|
|
|
|
|
} |
|
143
|
|
|
|
|
|
|
else{ |
|
144
|
6
|
|
|
|
|
14
|
$factors = [qw(maxY meanS)]; |
|
145
|
|
|
|
|
|
|
} |
|
146
|
10
|
50
|
|
|
|
29
|
$factors && $self->factors($factors); |
|
147
|
|
|
|
|
|
|
|
|
148
|
10
|
|
|
|
|
40
|
return $self; |
|
149
|
|
|
|
|
|
|
} |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head2 next_feature |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
Title : next_feature |
|
154
|
|
|
|
|
|
|
Usage : my $feat = $signalp->next_feature |
|
155
|
|
|
|
|
|
|
Function: Get the next result feature from parser data |
|
156
|
|
|
|
|
|
|
Returns : Bio::SeqFeature::Generic |
|
157
|
|
|
|
|
|
|
Args : none |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
=cut |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
sub next_feature { |
|
163
|
|
|
|
|
|
|
|
|
164
|
44
|
|
|
44
|
1
|
2767
|
my ($self) = @_; |
|
165
|
|
|
|
|
|
|
|
|
166
|
44
|
50
|
|
|
|
75
|
if(!$self->_parsed()){ |
|
167
|
44
|
|
|
|
|
69
|
$self->_parse(); |
|
168
|
|
|
|
|
|
|
} |
|
169
|
|
|
|
|
|
|
|
|
170
|
44
|
|
100
|
|
|
52
|
return shift @{$self->{_features}} || undef; |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
=head2 _filterok |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
Title : _filterok |
|
177
|
|
|
|
|
|
|
Usage : my $feat = $signalp->_filterok |
|
178
|
|
|
|
|
|
|
Function: Check if the factors required by the user are all ok. |
|
179
|
|
|
|
|
|
|
Returns : 1/0 |
|
180
|
|
|
|
|
|
|
Args : hash reference |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
=cut |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
sub _filterok { |
|
186
|
|
|
|
|
|
|
|
|
187
|
88
|
|
|
88
|
|
119
|
my($self, $hash) = @_; |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
#We hope everything will be fine ;) |
|
190
|
88
|
|
|
|
|
95
|
my $bool = 1; |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
#If the user did not give any filter, we keep eveything |
|
193
|
88
|
50
|
|
|
|
92
|
return $bool unless keys %{$self->{_factors}}; |
|
|
88
|
|
|
|
|
187
|
|
|
194
|
|
|
|
|
|
|
|
|
195
|
|
|
|
|
|
|
#If only one of the factors parsed is equal to NO based on the user factors cutoff |
|
196
|
|
|
|
|
|
|
#Then the filter is not ok. |
|
197
|
88
|
|
|
|
|
112
|
foreach my $fact (keys %{$self->factors()}){ |
|
|
88
|
|
|
|
|
114
|
|
|
198
|
146
|
100
|
100
|
|
|
474
|
if(exists($hash->{$fact}) && $hash->{$fact} =~ /^N/){ |
|
199
|
96
|
|
|
|
|
138
|
$bool = 0; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
88
|
|
|
|
|
272
|
return $bool; |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=head2 factors |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
Title : factors |
|
210
|
|
|
|
|
|
|
Usage : my $feat = $signalp->factors |
|
211
|
|
|
|
|
|
|
Function: Get/Set the filters required from the user |
|
212
|
|
|
|
|
|
|
Returns : hash |
|
213
|
|
|
|
|
|
|
Args : array reference |
|
214
|
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
=cut |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
sub factors { |
|
219
|
|
|
|
|
|
|
|
|
220
|
98
|
|
|
98
|
1
|
141
|
my($self, $array) = @_; |
|
221
|
|
|
|
|
|
|
|
|
222
|
98
|
100
|
|
|
|
136
|
if($array){ |
|
223
|
10
|
|
|
|
|
19
|
$self->{_factors} = { }; |
|
224
|
10
|
|
|
|
|
18
|
foreach my $f (@$array){ |
|
225
|
17
|
50
|
|
|
|
32
|
if(exists($FACTS->{$f})){ |
|
226
|
17
|
|
|
|
|
33
|
$self->{_factors}->{$f} = 1; |
|
227
|
|
|
|
|
|
|
} |
|
228
|
|
|
|
|
|
|
else{ |
|
229
|
0
|
|
|
|
|
0
|
$self->throw("[$f] incorrect factor. Supported:\n- ".join("\n- ", keys %$FACTS)."\n"); |
|
230
|
|
|
|
|
|
|
} |
|
231
|
|
|
|
|
|
|
} |
|
232
|
|
|
|
|
|
|
} |
|
233
|
|
|
|
|
|
|
|
|
234
|
98
|
|
|
|
|
282
|
return $self->{_factors}; |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
} |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
=head2 _parsed |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
Title : _parsed |
|
241
|
|
|
|
|
|
|
Usage : obj->_parsed() |
|
242
|
|
|
|
|
|
|
Function: Get/Set if the result is parsed or not |
|
243
|
|
|
|
|
|
|
Returns : 1/0 scalar |
|
244
|
|
|
|
|
|
|
Args : On set 1 |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
=cut |
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
sub _parsed { |
|
250
|
|
|
|
|
|
|
|
|
251
|
44
|
|
|
44
|
|
65
|
my($self, $parsed) = @_; |
|
252
|
|
|
|
|
|
|
|
|
253
|
44
|
50
|
|
|
|
85
|
if(defined($parsed)){ |
|
254
|
0
|
|
|
|
|
0
|
$self->{_parsed} = $parsed; |
|
255
|
|
|
|
|
|
|
} |
|
256
|
|
|
|
|
|
|
|
|
257
|
44
|
|
|
|
|
86
|
return $self->{_parsed}; |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
} |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=head2 _parse |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
Title : _parse |
|
264
|
|
|
|
|
|
|
Usage : obj->_parse |
|
265
|
|
|
|
|
|
|
Function: Parse the SignalP result |
|
266
|
|
|
|
|
|
|
Returns : |
|
267
|
|
|
|
|
|
|
Args : |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
|
|
270
|
|
|
|
|
|
|
=cut |
|
271
|
|
|
|
|
|
|
|
|
272
|
|
|
|
|
|
|
sub _parse { |
|
273
|
|
|
|
|
|
|
|
|
274
|
44
|
|
|
44
|
|
61
|
my($self) = @_; |
|
275
|
|
|
|
|
|
|
|
|
276
|
|
|
|
|
|
|
#Let's read the file... |
|
277
|
44
|
|
|
|
|
102
|
while (my $line = $self->_readline()) { |
|
278
|
|
|
|
|
|
|
|
|
279
|
30
|
|
|
|
|
40
|
chomp $line; |
|
280
|
|
|
|
|
|
|
#We want to be sure to catch the first non empty line to be ablte to determine |
|
281
|
|
|
|
|
|
|
#which format we are working with... |
|
282
|
30
|
100
|
|
|
|
172
|
next unless ($line =~ /^>(\S+)|^# SignalP-[NHM]+ \S+ predictions/); |
|
283
|
|
|
|
|
|
|
|
|
284
|
10
|
100
|
|
|
|
44
|
if($line =~ /^>(\S+)/){ |
|
|
|
50
|
|
|
|
|
|
|
285
|
5
|
|
|
|
|
15
|
$self->_pushback($line); |
|
286
|
5
|
|
|
|
|
12
|
$self->_parse_summary_format(); |
|
287
|
5
|
|
|
|
|
8
|
last; |
|
288
|
|
|
|
|
|
|
} |
|
289
|
|
|
|
|
|
|
elsif($line =~ /^# SignalP-[NHM]+ \S+ predictions/){ |
|
290
|
5
|
|
|
|
|
15
|
$self->_pushback($line); |
|
291
|
5
|
|
|
|
|
12
|
$self->_parse_short_format(); |
|
292
|
5
|
|
|
|
|
8
|
last; |
|
293
|
|
|
|
|
|
|
} |
|
294
|
|
|
|
|
|
|
else{ |
|
295
|
0
|
|
|
|
|
0
|
$self->throw("Unable to determine the format type."); |
|
296
|
|
|
|
|
|
|
} |
|
297
|
|
|
|
|
|
|
} |
|
298
|
|
|
|
|
|
|
|
|
299
|
44
|
|
|
|
|
59
|
return; |
|
300
|
|
|
|
|
|
|
} |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
=head2 _parse_summary_format |
|
303
|
|
|
|
|
|
|
|
|
304
|
|
|
|
|
|
|
Title : _parse_summary_format |
|
305
|
|
|
|
|
|
|
Usage : $self->_parse_summary_format |
|
306
|
|
|
|
|
|
|
Function: Method to parse summary/full format from signalp output |
|
307
|
|
|
|
|
|
|
It automatically fills filtered features. |
|
308
|
|
|
|
|
|
|
Returns : |
|
309
|
|
|
|
|
|
|
Args : |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
=cut |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
sub _parse_summary_format { |
|
314
|
|
|
|
|
|
|
|
|
315
|
5
|
|
|
5
|
|
6
|
my($self) = @_; |
|
316
|
|
|
|
|
|
|
|
|
317
|
5
|
|
|
|
|
7
|
my $feature = undef; |
|
318
|
5
|
|
|
|
|
7
|
my $ok = 0; |
|
319
|
|
|
|
|
|
|
|
|
320
|
5
|
|
|
|
|
8
|
while(my $line = $self->_readline()){ |
|
321
|
|
|
|
|
|
|
|
|
322
|
245
|
100
|
|
|
|
381
|
if($line =~ /^SignalP-NN result:/){ |
|
323
|
38
|
|
|
|
|
75
|
$self->_pushback($line); |
|
324
|
38
|
|
|
|
|
55
|
$feature = $self->_parse_nn_result($feature); |
|
325
|
|
|
|
|
|
|
} |
|
326
|
245
|
100
|
|
|
|
363
|
if($line =~ /^SignalP-HMM result:/){ |
|
327
|
27
|
|
|
|
|
55
|
$self->_pushback($line); |
|
328
|
27
|
|
|
|
|
47
|
$feature = $self->_parse_hmm_result($feature); |
|
329
|
|
|
|
|
|
|
} |
|
330
|
|
|
|
|
|
|
|
|
331
|
245
|
100
|
66
|
|
|
590
|
if($line =~ /^---------/ && $feature){ |
|
332
|
42
|
|
|
|
|
73
|
my $new_feature = $self->create_feature($feature); |
|
333
|
42
|
100
|
|
|
|
69
|
push @{$self->{_features}}, $new_feature if $new_feature; |
|
|
16
|
|
|
|
|
29
|
|
|
334
|
42
|
|
|
|
|
137
|
$feature = undef; |
|
335
|
|
|
|
|
|
|
} |
|
336
|
|
|
|
|
|
|
} |
|
337
|
|
|
|
|
|
|
|
|
338
|
5
|
|
|
|
|
14
|
return; |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=head2 _parse_nn_result |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
Title : _parse_nn_result |
|
345
|
|
|
|
|
|
|
Usage : obj->_parse_nn_result |
|
346
|
|
|
|
|
|
|
Function: Parses the Neuronal Network (NN) part of the result |
|
347
|
|
|
|
|
|
|
Returns : Hash reference |
|
348
|
|
|
|
|
|
|
Args : |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
=cut |
|
352
|
|
|
|
|
|
|
|
|
353
|
|
|
|
|
|
|
sub _parse_nn_result { |
|
354
|
|
|
|
|
|
|
|
|
355
|
38
|
|
|
38
|
|
52
|
my($self, $feature) = @_; |
|
356
|
|
|
|
|
|
|
|
|
357
|
38
|
|
|
|
|
41
|
my $ok = 0; |
|
358
|
38
|
|
|
|
|
41
|
my %facts; |
|
359
|
|
|
|
|
|
|
|
|
360
|
|
|
|
|
|
|
#SignalP-NN result: |
|
361
|
|
|
|
|
|
|
#>MGG_11635.5 length = 100 |
|
362
|
|
|
|
|
|
|
## Measure Position Value Cutoff signal peptide? |
|
363
|
|
|
|
|
|
|
# max. C 37 0.087 0.32 NO |
|
364
|
|
|
|
|
|
|
# max. Y 37 0.042 0.33 NO |
|
365
|
|
|
|
|
|
|
# max. S 3 0.062 0.87 NO |
|
366
|
|
|
|
|
|
|
# mean S 1-36 0.024 0.48 NO |
|
367
|
|
|
|
|
|
|
# D 1-36 0.033 0.43 NO |
|
368
|
|
|
|
|
|
|
|
|
369
|
38
|
|
|
|
|
51
|
while(my $line = $self->_readline()){ |
|
370
|
|
|
|
|
|
|
|
|
371
|
350
|
|
|
|
|
414
|
chomp $line; |
|
372
|
|
|
|
|
|
|
|
|
373
|
350
|
100
|
|
|
|
497
|
if($line =~ /^SignalP-NN result:/){ |
|
374
|
38
|
|
|
|
|
40
|
$ok = 1; |
|
375
|
38
|
|
|
|
|
75
|
next; |
|
376
|
|
|
|
|
|
|
} |
|
377
|
|
|
|
|
|
|
|
|
378
|
312
|
50
|
|
|
|
393
|
$self->throw("Wrong line for parsing NN results.") unless $ok; |
|
379
|
|
|
|
|
|
|
|
|
380
|
312
|
100
|
|
|
|
1281
|
if ($line=~/^\>(\S+)\s+length/) { |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
381
|
38
|
|
|
|
|
82
|
$self->seqname($1); |
|
382
|
38
|
|
|
|
|
41
|
%facts = (); |
|
383
|
38
|
|
|
|
|
68
|
next; |
|
384
|
|
|
|
|
|
|
} |
|
385
|
|
|
|
|
|
|
elsif($line =~ /max\.\s+C\s+(\S+)\s+\S+\s+\S+\s+(\S+)/) { |
|
386
|
38
|
|
|
|
|
84
|
$feature->{maxCprob} = $1; |
|
387
|
38
|
|
|
|
|
57
|
$facts{maxC} = $2; |
|
388
|
38
|
|
|
|
|
66
|
next; |
|
389
|
|
|
|
|
|
|
} |
|
390
|
|
|
|
|
|
|
elsif ($line =~ /max\.\s+Y\s+(\S+)\s+\S+\s+\S+\s+(\S+)/) { |
|
391
|
38
|
|
|
|
|
67
|
$feature->{maxYprob} = $1; |
|
392
|
38
|
|
|
|
|
62
|
$facts{maxY} = $2; |
|
393
|
38
|
|
|
|
|
79
|
next; |
|
394
|
|
|
|
|
|
|
} |
|
395
|
|
|
|
|
|
|
elsif($line =~ /max\.\s+S\s+(\S+)\s+\S+\s+\S+\s+(\S+)/) { |
|
396
|
38
|
|
|
|
|
73
|
$feature->{maxSprob} = $1; |
|
397
|
38
|
|
|
|
|
45
|
$facts{maxS} = $2; |
|
398
|
38
|
|
|
|
|
71
|
next; |
|
399
|
|
|
|
|
|
|
} |
|
400
|
|
|
|
|
|
|
elsif ($line=~/mean\s+S\s+(\S+)\s+\S+\s+\S+\s+(\S+)/) { |
|
401
|
38
|
|
|
|
|
66
|
$feature->{meanSprob} = $1; |
|
402
|
38
|
|
|
|
|
54
|
$facts{meanS} = $2; |
|
403
|
38
|
|
|
|
|
67
|
next; |
|
404
|
|
|
|
|
|
|
} |
|
405
|
|
|
|
|
|
|
elsif ($line=~/\s+D\s+(\S+)\s+\S+\s+\S+\s+(\S+)/) { |
|
406
|
38
|
|
|
|
|
68
|
$feature->{Dprob} = $1; |
|
407
|
38
|
|
|
|
|
55
|
$facts{D} = $2; |
|
408
|
38
|
|
|
|
|
88
|
next; |
|
409
|
|
|
|
|
|
|
} |
|
410
|
|
|
|
|
|
|
#If we don't have this line it means that all the factors cutoff are equal to 'NO' |
|
411
|
|
|
|
|
|
|
elsif ($line =~ /Most likely cleavage site between pos\.\s+(\d+)/) { |
|
412
|
|
|
|
|
|
|
#if($self->_filterok(\%facts)){ |
|
413
|
|
|
|
|
|
|
#$feature->{name} = $self->seqname(); |
|
414
|
|
|
|
|
|
|
#$feature->{start} = 1; |
|
415
|
8
|
|
|
|
|
29
|
$feature->{end} = $1 + 1; #To be consistent with end given in short format |
|
416
|
|
|
|
|
|
|
#} |
|
417
|
|
|
|
|
|
|
#return $feature; |
|
418
|
|
|
|
|
|
|
} |
|
419
|
|
|
|
|
|
|
elsif($line =~ /^\s*$/){ |
|
420
|
38
|
|
|
|
|
48
|
last; |
|
421
|
|
|
|
|
|
|
} |
|
422
|
|
|
|
|
|
|
} |
|
423
|
|
|
|
|
|
|
|
|
424
|
38
|
100
|
|
|
|
68
|
if($self->_filterok(\%facts)){ |
|
425
|
10
|
|
|
|
|
16
|
$feature->{name} = $self->seqname(); |
|
426
|
10
|
|
|
|
|
20
|
$feature->{start} = 1; |
|
427
|
10
|
|
|
|
|
14
|
$feature->{nnPrediction} = 'signal-peptide'; |
|
428
|
|
|
|
|
|
|
} |
|
429
|
|
|
|
|
|
|
|
|
430
|
38
|
|
|
|
|
73
|
return $feature; |
|
431
|
|
|
|
|
|
|
} |
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
|
|
434
|
|
|
|
|
|
|
=head2 _parse_hmm_result |
|
435
|
|
|
|
|
|
|
|
|
436
|
|
|
|
|
|
|
Title : _parse_hmm_result |
|
437
|
|
|
|
|
|
|
Usage : obj->_parse_hmm_result |
|
438
|
|
|
|
|
|
|
Function: Parses the Hiden Markov Model (HMM) part of the result |
|
439
|
|
|
|
|
|
|
Returns : Hash reference |
|
440
|
|
|
|
|
|
|
Args : |
|
441
|
|
|
|
|
|
|
|
|
442
|
|
|
|
|
|
|
=cut |
|
443
|
|
|
|
|
|
|
|
|
444
|
|
|
|
|
|
|
sub _parse_hmm_result { |
|
445
|
|
|
|
|
|
|
|
|
446
|
27
|
|
|
27
|
|
37
|
my ($self, $feature_hash) = @_; |
|
447
|
|
|
|
|
|
|
|
|
448
|
27
|
|
|
|
|
31
|
my $ok = 0; |
|
449
|
|
|
|
|
|
|
|
|
450
|
|
|
|
|
|
|
#SignalP-HMM result: |
|
451
|
|
|
|
|
|
|
#>MGG_11635.5 |
|
452
|
|
|
|
|
|
|
#Prediction: Non-secretory protein |
|
453
|
|
|
|
|
|
|
#Signal peptide probability: 0.000 |
|
454
|
|
|
|
|
|
|
#Signal anchor probability: 0.000 |
|
455
|
|
|
|
|
|
|
#Max cleavage site probability: 0.000 between pos. -1 and 0 |
|
456
|
|
|
|
|
|
|
|
|
457
|
27
|
|
|
|
|
42
|
while(my $line = $self->_readline()){ |
|
458
|
|
|
|
|
|
|
|
|
459
|
213
|
|
|
|
|
253
|
chomp $line; |
|
460
|
213
|
100
|
|
|
|
461
|
next if $line =~ /^\s*$/o; |
|
461
|
|
|
|
|
|
|
|
|
462
|
202
|
100
|
|
|
|
312
|
if($line =~ /^SignalP-HMM result:/){ |
|
463
|
30
|
|
|
|
|
32
|
$ok = 1; |
|
464
|
30
|
|
|
|
|
60
|
next; |
|
465
|
|
|
|
|
|
|
} |
|
466
|
|
|
|
|
|
|
|
|
467
|
172
|
50
|
|
|
|
205
|
$self->throw("Wrong line for parsing HMM result.") unless $ok; |
|
468
|
|
|
|
|
|
|
|
|
469
|
172
|
100
|
|
|
|
553
|
if($line =~ /^>(\S+)/){ |
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
470
|
|
|
|
|
|
|
#In case we already seen a name with NN results |
|
471
|
35
|
100
|
|
|
|
63
|
$feature_hash->{name} = $1 unless $self->seqname(); |
|
472
|
|
|
|
|
|
|
} |
|
473
|
|
|
|
|
|
|
elsif($line =~ /Prediction: (.+)$/){ |
|
474
|
30
|
|
|
|
|
84
|
$feature_hash->{hmmPrediction} = $1; |
|
475
|
|
|
|
|
|
|
} |
|
476
|
|
|
|
|
|
|
elsif($line =~ /Signal peptide probability: ([0-9\.]+)/){ |
|
477
|
30
|
|
|
|
|
87
|
$feature_hash->{peptideProb} = $1; |
|
478
|
|
|
|
|
|
|
} |
|
479
|
|
|
|
|
|
|
elsif($line =~ /Signal anchor probability: ([0-9\.]+)/){ |
|
480
|
30
|
|
|
|
|
98
|
$feature_hash->{anchorProb} = $1; |
|
481
|
|
|
|
|
|
|
} |
|
482
|
|
|
|
|
|
|
elsif($line =~ /Max cleavage site probability: (\S+) between pos. \S+ and (\S+)/){ |
|
483
|
24
|
|
|
|
|
48
|
$feature_hash->{cleavageSiteProb} = $1; |
|
484
|
|
|
|
|
|
|
#Strange case, if we don't have an end value in NN result (no nn method launched) |
|
485
|
|
|
|
|
|
|
#We try anyway to get an end value, unless this value is lower than 1 which is |
|
486
|
|
|
|
|
|
|
#the start |
|
487
|
24
|
100
|
66
|
|
|
103
|
$feature_hash->{end} = $2 if($2 > 1 && !$feature_hash->{end}); |
|
488
|
24
|
100
|
|
|
|
56
|
$feature_hash->{start} = 1 unless $feature_hash->{start}; |
|
489
|
24
|
|
|
|
|
30
|
last; |
|
490
|
|
|
|
|
|
|
} |
|
491
|
|
|
|
|
|
|
} |
|
492
|
|
|
|
|
|
|
|
|
493
|
27
|
|
|
|
|
49
|
return $feature_hash; |
|
494
|
|
|
|
|
|
|
} |
|
495
|
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
=head2 _parse_short_format |
|
497
|
|
|
|
|
|
|
|
|
498
|
|
|
|
|
|
|
Title : _parse_short_format |
|
499
|
|
|
|
|
|
|
Usage : $self->_parse_short_format |
|
500
|
|
|
|
|
|
|
Function: Method to parse short format from signalp output |
|
501
|
|
|
|
|
|
|
It automatically fills filtered features. |
|
502
|
|
|
|
|
|
|
Returns : |
|
503
|
|
|
|
|
|
|
Args : |
|
504
|
|
|
|
|
|
|
|
|
505
|
|
|
|
|
|
|
=cut |
|
506
|
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
sub _parse_short_format { |
|
508
|
|
|
|
|
|
|
|
|
509
|
5
|
|
|
5
|
|
8
|
my($self) = @_; |
|
510
|
|
|
|
|
|
|
|
|
511
|
5
|
|
|
|
|
8
|
my $ok = 0; |
|
512
|
5
|
|
|
|
|
6
|
my $method = undef; |
|
513
|
5
|
|
|
|
|
15
|
$self->{_oformat} = 'short'; |
|
514
|
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
#Output example |
|
516
|
|
|
|
|
|
|
# SignalP-NN euk predictions # SignalP-HMM euk predictions |
|
517
|
|
|
|
|
|
|
# name Cmax pos ? Ymax pos ? Smax pos ? Smean ? D ? # name ! Cmax pos ? Sprob ? |
|
518
|
|
|
|
|
|
|
#Q5A8M1_CANAL 0.085 27 N 0.190 35 N 0.936 27 Y 0.418 N 0.304 N Q5A8M1_CANAL Q 0.001 35 N 0.002 N |
|
519
|
|
|
|
|
|
|
#O74127_YARLI 0.121 21 N 0.284 21 N 0.953 11 Y 0.826 Y 0.555 Y O74127_YARLI S 0.485 23 N 0.668 Y |
|
520
|
|
|
|
|
|
|
#Q5VJ86_9PEZI 0.355 24 Y 0.375 24 Y 0.798 12 N 0.447 N 0.411 N Q5VJ86_9PEZI Q 0.180 23 N 0.339 N |
|
521
|
|
|
|
|
|
|
#Q5A8U5_CANAL 0.085 27 N 0.190 35 N 0.936 27 Y 0.418 N 0.304 N Q5A8U5_CANAL Q 0.001 35 N 0.002 N |
|
522
|
|
|
|
|
|
|
|
|
523
|
5
|
|
|
|
|
11
|
while(my $line = $self->_readline()){ |
|
524
|
|
|
|
|
|
|
|
|
525
|
60
|
|
|
|
|
80
|
chomp $line; |
|
526
|
60
|
100
|
|
|
|
520
|
next if $line =~ /^\s*$|^# name/; |
|
527
|
|
|
|
|
|
|
|
|
528
|
55
|
100
|
|
|
|
102
|
if($line =~ /^#/){ |
|
529
|
5
|
100
|
|
|
|
22
|
$method = $line =~ /SignalP-NN .+ SignalP-HMM/ ? |
|
|
|
100
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
'both' : $line =~ /SignalP-NN/ ? |
|
531
|
|
|
|
|
|
|
'nn' : 'hmm'; |
|
532
|
5
|
|
|
|
|
15
|
next; |
|
533
|
|
|
|
|
|
|
} |
|
534
|
|
|
|
|
|
|
|
|
535
|
|
|
|
|
|
|
#$self->throw("It looks like the format is not 'short' format.") unless($ok); |
|
536
|
|
|
|
|
|
|
|
|
537
|
50
|
|
|
|
|
333
|
my @data = split(/\s+/, $line); |
|
538
|
50
|
|
|
|
|
126
|
$self->seqname($data[0]); |
|
539
|
|
|
|
|
|
|
|
|
540
|
50
|
|
|
|
|
69
|
my $factors = { }; |
|
541
|
50
|
|
|
|
|
67
|
my $feature = { }; |
|
542
|
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
#NN results gives more fields than HMM |
|
544
|
50
|
100
|
100
|
|
|
142
|
if($method eq 'both' || $method eq 'nn'){ |
|
|
|
50
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
|
|
546
|
40
|
|
|
|
|
73
|
$feature->{maxCprob} = $data[1]; |
|
547
|
40
|
|
|
|
|
55
|
$factors->{maxC} = $data[3]; |
|
548
|
40
|
|
|
|
|
48
|
$feature->{maxYprob} = $data[4]; |
|
549
|
40
|
|
|
|
|
55
|
$factors->{maxY} = $data[6]; |
|
550
|
40
|
|
|
|
|
49
|
$feature->{maxSprob} = $data[7]; |
|
551
|
40
|
|
|
|
|
50
|
$factors->{maxS} = $data[9]; |
|
552
|
40
|
|
|
|
|
45
|
$feature->{meanSprob}= $data[10]; |
|
553
|
40
|
|
|
|
|
51
|
$factors->{meanS} = $data[11]; |
|
554
|
40
|
|
|
|
|
45
|
$feature->{Dprob} = $data[12]; |
|
555
|
40
|
|
|
|
|
45
|
$factors->{D} = $data[13]; |
|
556
|
|
|
|
|
|
|
#It looks like the max Y position is reported as the most likely cleavage position |
|
557
|
40
|
|
|
|
|
50
|
$feature->{end} = $data[5]; |
|
558
|
40
|
|
|
|
|
42
|
$feature->{nnPrediction} = 'signal-peptide'; |
|
559
|
|
|
|
|
|
|
|
|
560
|
40
|
100
|
|
|
|
57
|
if($method eq 'both'){ |
|
561
|
20
|
100
|
|
|
|
45
|
$feature->{hmmPrediction} = $data[15] eq 'Q' ? 'Non-secretory protein' : 'Signal peptide'; |
|
562
|
20
|
|
|
|
|
25
|
$feature->{cleavageSiteProb} = $data[16]; |
|
563
|
20
|
|
|
|
|
23
|
$feature->{peptideProb} = $data[19]; |
|
564
|
|
|
|
|
|
|
} |
|
565
|
|
|
|
|
|
|
} |
|
566
|
|
|
|
|
|
|
elsif($method eq 'hmm'){ |
|
567
|
|
|
|
|
|
|
#In short output anchor probability is not given |
|
568
|
10
|
100
|
|
|
|
34
|
$feature->{hmmPrediction} = $data[1] eq 'Q' ? 'Non-secretory protein' : 'Signal peptide'; |
|
569
|
10
|
|
|
|
|
20
|
$feature->{cleavageSiteProb} = $data[2]; |
|
570
|
10
|
|
|
|
|
16
|
$feature->{peptideProb} = $data[5]; |
|
571
|
|
|
|
|
|
|
#It looks like the max cleavage probability position is given by the Cmax proability |
|
572
|
10
|
|
|
|
|
21
|
$feature->{end} = $data[3]; |
|
573
|
|
|
|
|
|
|
} |
|
574
|
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
#Unfortunately, we cannot parse the filters for hmm method. |
|
576
|
50
|
100
|
|
|
|
84
|
if($self->_filterok($factors)){ |
|
577
|
20
|
|
|
|
|
39
|
$feature->{name} = $self->seqname(); |
|
578
|
20
|
|
|
|
|
33
|
$feature->{start} = 1; |
|
579
|
20
|
|
|
|
|
28
|
$feature->{source} = 'Signalp'; |
|
580
|
20
|
|
|
|
|
43
|
$feature->{primary} = 'signal_peptide'; |
|
581
|
20
|
|
|
|
|
31
|
$feature->{program} = 'Signalp'; |
|
582
|
20
|
|
|
|
|
31
|
$feature->{logic_name} = 'signal_peptide'; |
|
583
|
|
|
|
|
|
|
|
|
584
|
20
|
|
|
|
|
40
|
my $new_feat = $self->create_feature($feature); |
|
585
|
20
|
100
|
|
|
|
57
|
push @{$self->{_features}}, $new_feat if $new_feat; |
|
|
18
|
|
|
|
|
121
|
|
|
586
|
|
|
|
|
|
|
} |
|
587
|
|
|
|
|
|
|
} |
|
588
|
|
|
|
|
|
|
|
|
589
|
5
|
|
|
|
|
10
|
return; |
|
590
|
|
|
|
|
|
|
} |
|
591
|
|
|
|
|
|
|
|
|
592
|
|
|
|
|
|
|
=head2 create_feature |
|
593
|
|
|
|
|
|
|
|
|
594
|
|
|
|
|
|
|
Title : create_feature |
|
595
|
|
|
|
|
|
|
Usage : obj->create_feature(\%feature) |
|
596
|
|
|
|
|
|
|
Function: Internal(not to be used directly) |
|
597
|
|
|
|
|
|
|
Returns : |
|
598
|
|
|
|
|
|
|
Args : |
|
599
|
|
|
|
|
|
|
|
|
600
|
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
=cut |
|
602
|
|
|
|
|
|
|
|
|
603
|
|
|
|
|
|
|
sub create_feature { |
|
604
|
|
|
|
|
|
|
|
|
605
|
62
|
|
|
62
|
1
|
76
|
my ($self, $feat) = @_; |
|
606
|
|
|
|
|
|
|
|
|
607
|
|
|
|
|
|
|
#If we don't have neither start nor end, we return. |
|
608
|
62
|
100
|
66
|
|
|
224
|
unless($feat->{name} && $feat->{start} && $feat->{end}){ |
|
|
|
|
66
|
|
|
|
|
|
609
|
28
|
|
|
|
|
62
|
return; |
|
610
|
|
|
|
|
|
|
} |
|
611
|
|
|
|
|
|
|
|
|
612
|
|
|
|
|
|
|
# create feature object |
|
613
|
|
|
|
|
|
|
my $feature = Bio::SeqFeature::Generic->new( |
|
614
|
|
|
|
|
|
|
-seq_id => $feat->{name}, |
|
615
|
|
|
|
|
|
|
-start => $feat->{start}, |
|
616
|
|
|
|
|
|
|
-end => $feat->{end}, |
|
617
|
34
|
100
|
|
|
|
205
|
-score => defined($feat->{peptideProb}) ? $feat->{peptideProb} : '', |
|
618
|
|
|
|
|
|
|
-source => 'Signalp', |
|
619
|
|
|
|
|
|
|
-primary => 'signal_peptide', |
|
620
|
|
|
|
|
|
|
-logic_name => 'signal_peptide', |
|
621
|
|
|
|
|
|
|
); |
|
622
|
|
|
|
|
|
|
|
|
623
|
34
|
|
|
|
|
108
|
$feature->add_tag_value('peptideProb', $feat->{peptideProb}); |
|
624
|
34
|
|
|
|
|
108
|
$feature->add_tag_value('anchorProb', $feat->{anchorProb}); |
|
625
|
34
|
|
|
|
|
116
|
$feature->add_tag_value('evalue',$feat->{anchorProb}); |
|
626
|
34
|
|
|
|
|
76
|
$feature->add_tag_value('percent_id','NULL'); |
|
627
|
34
|
|
|
|
|
87
|
$feature->add_tag_value("hid",$feat->{primary}); |
|
628
|
34
|
|
|
|
|
86
|
$feature->add_tag_value('signalpPrediction', $feat->{hmmPrediction}); |
|
629
|
34
|
100
|
|
|
|
99
|
$feature->add_tag_value('cleavageSiteProb', $feat->{cleavageSiteProb}) if($feat->{cleavageSiteProb}); |
|
630
|
34
|
100
|
|
|
|
83
|
$feature->add_tag_value('nnPrediction', $feat->{nnPrediction}) if($feat->{nnPrediction}); |
|
631
|
34
|
100
|
|
|
|
81
|
$feature->add_tag_value('maxCprob', $feat->{maxCprob}) if(defined($feat->{maxCprob})); |
|
632
|
34
|
100
|
|
|
|
92
|
$feature->add_tag_value('maxSprob', $feat->{maxSprob}) if(defined($feat->{maxSprob})); |
|
633
|
34
|
100
|
|
|
|
83
|
$feature->add_tag_value('maxYprob', $feat->{maxYprob}) if(defined($feat->{maxYprob})); |
|
634
|
34
|
100
|
|
|
|
77
|
$feature->add_tag_value('meanSprob', $feat->{meanSprob}) if(defined($feat->{meanSprob})); |
|
635
|
34
|
100
|
|
|
|
72
|
$feature->add_tag_value('Dprob', $feat->{Dprob}) if(defined($feat->{Dprob})); |
|
636
|
|
|
|
|
|
|
|
|
637
|
34
|
|
|
|
|
54
|
return $feature; |
|
638
|
|
|
|
|
|
|
|
|
639
|
|
|
|
|
|
|
} |
|
640
|
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
=head2 seqname |
|
642
|
|
|
|
|
|
|
|
|
643
|
|
|
|
|
|
|
Title : seqname |
|
644
|
|
|
|
|
|
|
Usage : obj->seqname($name) |
|
645
|
|
|
|
|
|
|
Function: Internal(not to be used directly) |
|
646
|
|
|
|
|
|
|
Returns : |
|
647
|
|
|
|
|
|
|
Args : |
|
648
|
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
|
|
650
|
|
|
|
|
|
|
=cut |
|
651
|
|
|
|
|
|
|
|
|
652
|
|
|
|
|
|
|
sub seqname{ |
|
653
|
153
|
|
|
153
|
1
|
262
|
my ($self,$seqname)=@_; |
|
654
|
|
|
|
|
|
|
|
|
655
|
153
|
100
|
|
|
|
238
|
if (defined($seqname)){ |
|
656
|
88
|
|
|
|
|
126
|
$self->{'seqname'} = $seqname; |
|
657
|
|
|
|
|
|
|
} |
|
658
|
|
|
|
|
|
|
|
|
659
|
153
|
|
|
|
|
276
|
return $self->{'seqname'}; |
|
660
|
|
|
|
|
|
|
|
|
661
|
|
|
|
|
|
|
} |
|
662
|
|
|
|
|
|
|
|
|
663
|
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
1; |
|
665
|
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
|