| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
3
|
|
|
|
|
|
|
lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
|
4
|
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
These are functions for producing 32-bit hashes for hash table lookup. |
|
6
|
|
|
|
|
|
|
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
|
7
|
|
|
|
|
|
|
are externally useful functions. Routines to test the hash are included |
|
8
|
|
|
|
|
|
|
if SELF_TEST is defined. You can use this free for any purpose. It's in |
|
9
|
|
|
|
|
|
|
the public domain. It has no warranty. |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
You probably want to use hashlittle(). hashlittle() and hashbig() |
|
12
|
|
|
|
|
|
|
hash byte arrays. hashlittle() is is faster than hashbig() on |
|
13
|
|
|
|
|
|
|
little-endian machines. Intel and AMD are little-endian machines. |
|
14
|
|
|
|
|
|
|
On second thought, you probably want hashlittle2(), which is identical to |
|
15
|
|
|
|
|
|
|
hashlittle() except it returns two 32-bit hashes for the price of one. |
|
16
|
|
|
|
|
|
|
You could implement hashbig2() if you wanted but I haven't bothered here. |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
If you want to find a hash of, say, exactly 7 integers, do |
|
19
|
|
|
|
|
|
|
a = i1; b = i2; c = i3; |
|
20
|
|
|
|
|
|
|
mix(a,b,c); |
|
21
|
|
|
|
|
|
|
a += i4; b += i5; c += i6; |
|
22
|
|
|
|
|
|
|
mix(a,b,c); |
|
23
|
|
|
|
|
|
|
a += i7; |
|
24
|
|
|
|
|
|
|
final(a,b,c); |
|
25
|
|
|
|
|
|
|
then use c as the hash value. If you have a variable length array of |
|
26
|
|
|
|
|
|
|
4-byte integers to hash, use hashword(). If you have a byte array (like |
|
27
|
|
|
|
|
|
|
a character string), use hashlittle(). If you have several byte arrays, or |
|
28
|
|
|
|
|
|
|
a mix of things, see the comments above hashlittle(). |
|
29
|
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
|
31
|
|
|
|
|
|
|
then mix those integers. This is fast (you can do a lot more thorough |
|
32
|
|
|
|
|
|
|
mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
|
33
|
|
|
|
|
|
|
on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
|
34
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
35
|
|
|
|
|
|
|
*/ |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#ifdef linux |
|
38
|
|
|
|
|
|
|
#include /* attempt to define endianness */ |
|
39
|
|
|
|
|
|
|
#include /* attempt to define endianness */ |
|
40
|
|
|
|
|
|
|
#endif |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
/* |
|
43
|
|
|
|
|
|
|
* My best guess at if you are big-endian or little-endian. This may |
|
44
|
|
|
|
|
|
|
* need adjustment. |
|
45
|
|
|
|
|
|
|
*/ |
|
46
|
|
|
|
|
|
|
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ |
|
47
|
|
|
|
|
|
|
__BYTE_ORDER == __LITTLE_ENDIAN) || \ |
|
48
|
|
|
|
|
|
|
(defined(i386) || defined(__i386__) || defined(__i486__) || \ |
|
49
|
|
|
|
|
|
|
defined(__i586__) || defined(__i686__) || defined(vax) || defined(MIPSEL)) |
|
50
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 1 |
|
51
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 0 |
|
52
|
|
|
|
|
|
|
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ |
|
53
|
|
|
|
|
|
|
__BYTE_ORDER == __BIG_ENDIAN) || \ |
|
54
|
|
|
|
|
|
|
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
|
55
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 0 |
|
56
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 1 |
|
57
|
|
|
|
|
|
|
#else |
|
58
|
|
|
|
|
|
|
# define HASH_LITTLE_ENDIAN 0 |
|
59
|
|
|
|
|
|
|
# define HASH_BIG_ENDIAN 0 |
|
60
|
|
|
|
|
|
|
#endif |
|
61
|
|
|
|
|
|
|
|
|
62
|
|
|
|
|
|
|
#define hashsize(n) ((uint32_t)1<<(n)) |
|
63
|
|
|
|
|
|
|
#define hashmask(n) (hashsize(n)-1) |
|
64
|
|
|
|
|
|
|
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) |
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
/* |
|
67
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
68
|
|
|
|
|
|
|
mix -- mix 3 32-bit values reversibly. |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
This is reversible, so any information in (a,b,c) before mix() is |
|
71
|
|
|
|
|
|
|
still in (a,b,c) after mix(). |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through |
|
74
|
|
|
|
|
|
|
mix() in reverse, there are at least 32 bits of the output that |
|
75
|
|
|
|
|
|
|
are sometimes the same for one pair and different for another pair. |
|
76
|
|
|
|
|
|
|
This was tested for: |
|
77
|
|
|
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination |
|
78
|
|
|
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
|
79
|
|
|
|
|
|
|
(a,b,c). |
|
80
|
|
|
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
|
81
|
|
|
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
|
82
|
|
|
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit |
|
83
|
|
|
|
|
|
|
difference. |
|
84
|
|
|
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or |
|
85
|
|
|
|
|
|
|
all zero plus a counter that starts at zero. |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
|
88
|
|
|
|
|
|
|
satisfy this are |
|
89
|
|
|
|
|
|
|
4 6 8 16 19 4 |
|
90
|
|
|
|
|
|
|
9 15 3 18 27 15 |
|
91
|
|
|
|
|
|
|
14 9 3 7 17 3 |
|
92
|
|
|
|
|
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
|
93
|
|
|
|
|
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I |
|
94
|
|
|
|
|
|
|
used http://burtleburtle.net/bob/hash/avalanche.html to choose |
|
95
|
|
|
|
|
|
|
the operations, constants, and arrangements of the variables. |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
This does not achieve avalanche. There are input bits of (a,b,c) |
|
98
|
|
|
|
|
|
|
that fail to affect some output bits of (a,b,c), especially of a. The |
|
99
|
|
|
|
|
|
|
most thoroughly mixed value is c, but it doesn't really even achieve |
|
100
|
|
|
|
|
|
|
avalanche in c. |
|
101
|
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
This allows some parallelism. Read-after-writes are good at doubling |
|
103
|
|
|
|
|
|
|
the number of bits affected, so the goal of mixing pulls in the opposite |
|
104
|
|
|
|
|
|
|
direction as the goal of parallelism. I did what I could. Rotates |
|
105
|
|
|
|
|
|
|
seem to cost as much as shifts on every machine I could lay my hands |
|
106
|
|
|
|
|
|
|
on, and rotates are much kinder to the top and bottom bits, so I used |
|
107
|
|
|
|
|
|
|
rotates. |
|
108
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
109
|
|
|
|
|
|
|
*/ |
|
110
|
|
|
|
|
|
|
#define mix(a,b,c) \ |
|
111
|
|
|
|
|
|
|
{ \ |
|
112
|
|
|
|
|
|
|
a -= c; a ^= rot(c, 4); c += b; \ |
|
113
|
|
|
|
|
|
|
b -= a; b ^= rot(a, 6); a += c; \ |
|
114
|
|
|
|
|
|
|
c -= b; c ^= rot(b, 8); b += a; \ |
|
115
|
|
|
|
|
|
|
a -= c; a ^= rot(c,16); c += b; \ |
|
116
|
|
|
|
|
|
|
b -= a; b ^= rot(a,19); a += c; \ |
|
117
|
|
|
|
|
|
|
c -= b; c ^= rot(b, 4); b += a; \ |
|
118
|
|
|
|
|
|
|
} |
|
119
|
|
|
|
|
|
|
|
|
120
|
|
|
|
|
|
|
/* |
|
121
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
122
|
|
|
|
|
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
Pairs of (a,b,c) values differing in only a few bits will usually |
|
125
|
|
|
|
|
|
|
produce values of c that look totally different. This was tested for |
|
126
|
|
|
|
|
|
|
* pairs that differed by one bit, by two bits, in any combination |
|
127
|
|
|
|
|
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
|
128
|
|
|
|
|
|
|
(a,b,c). |
|
129
|
|
|
|
|
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
|
130
|
|
|
|
|
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
|
131
|
|
|
|
|
|
|
is commonly produced by subtraction) look like a single 1-bit |
|
132
|
|
|
|
|
|
|
difference. |
|
133
|
|
|
|
|
|
|
* the base values were pseudorandom, all zero but one bit set, or |
|
134
|
|
|
|
|
|
|
all zero plus a counter that starts at zero. |
|
135
|
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
These constants passed: |
|
137
|
|
|
|
|
|
|
14 11 25 16 4 14 24 |
|
138
|
|
|
|
|
|
|
12 14 25 16 4 14 24 |
|
139
|
|
|
|
|
|
|
and these came close: |
|
140
|
|
|
|
|
|
|
4 8 15 26 3 22 24 |
|
141
|
|
|
|
|
|
|
10 8 15 26 3 22 24 |
|
142
|
|
|
|
|
|
|
11 8 15 26 3 22 24 |
|
143
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
144
|
|
|
|
|
|
|
*/ |
|
145
|
|
|
|
|
|
|
#define final(a,b,c) \ |
|
146
|
|
|
|
|
|
|
{ \ |
|
147
|
|
|
|
|
|
|
c ^= b; c -= rot(b,14); \ |
|
148
|
|
|
|
|
|
|
a ^= c; a -= rot(c,11); \ |
|
149
|
|
|
|
|
|
|
b ^= a; b -= rot(a,25); \ |
|
150
|
|
|
|
|
|
|
c ^= b; c -= rot(b,16); \ |
|
151
|
|
|
|
|
|
|
a ^= c; a -= rot(c,4); \ |
|
152
|
|
|
|
|
|
|
b ^= a; b -= rot(a,14); \ |
|
153
|
|
|
|
|
|
|
c ^= b; c -= rot(b,24); \ |
|
154
|
|
|
|
|
|
|
} |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
/* |
|
158
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
159
|
|
|
|
|
|
|
hashlittle() -- hash a variable-length key into a 32-bit value |
|
160
|
|
|
|
|
|
|
k : the key (the unaligned variable-length array of bytes) |
|
161
|
|
|
|
|
|
|
length : the length of the key, counting by bytes |
|
162
|
|
|
|
|
|
|
initval : can be any 4-byte value |
|
163
|
|
|
|
|
|
|
Returns a 32-bit value. Every bit of the key affects every bit of |
|
164
|
|
|
|
|
|
|
the return value. Two keys differing by one or two bits will have |
|
165
|
|
|
|
|
|
|
totally different hash values. |
|
166
|
|
|
|
|
|
|
|
|
167
|
|
|
|
|
|
|
The best hash table sizes are powers of 2. There is no need to do |
|
168
|
|
|
|
|
|
|
mod a prime (mod is sooo slow!). If you need less than 32 bits, |
|
169
|
|
|
|
|
|
|
use a bitmask. For example, if you need only 10 bits, do |
|
170
|
|
|
|
|
|
|
h = (h & hashmask(10)); |
|
171
|
|
|
|
|
|
|
In which case, the hash table should have hashsize(10) elements. |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
If you are hashing n strings (uint8_t **)k, do it like this: |
|
174
|
|
|
|
|
|
|
for (i=0, h=0; i
|
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
|
177
|
|
|
|
|
|
|
code any way you wish, private, educational, or commercial. It's free. |
|
178
|
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
Use for hash table lookup, or anything where one collision in 2^^32 is |
|
180
|
|
|
|
|
|
|
acceptable. Do NOT use for cryptographic purposes. |
|
181
|
|
|
|
|
|
|
------------------------------------------------------------------------------- |
|
182
|
|
|
|
|
|
|
*/ |
|
183
|
|
|
|
|
|
|
|
|
184
|
187
|
|
|
|
|
|
uint32_t hashlittle( const void *key, size_t length, uint32_t initval) |
|
185
|
|
|
|
|
|
|
{ |
|
186
|
|
|
|
|
|
|
uint32_t a,b,c; /* internal state */ |
|
187
|
|
|
|
|
|
|
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */ |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
/* Set up the internal state */ |
|
190
|
187
|
|
|
|
|
|
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
|
191
|
|
|
|
|
|
|
|
|
192
|
187
|
|
|
|
|
|
u.ptr = key; |
|
193
|
187
|
50
|
|
|
|
|
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
|
194
|
187
|
|
|
|
|
|
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
|
195
|
|
|
|
|
|
|
const uint8_t *k8; |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
|
198
|
1220
|
100
|
|
|
|
|
while (length > 12) |
|
199
|
|
|
|
|
|
|
{ |
|
200
|
1033
|
|
|
|
|
|
a += k[0]; |
|
201
|
1033
|
|
|
|
|
|
b += k[1]; |
|
202
|
1033
|
|
|
|
|
|
c += k[2]; |
|
203
|
1033
|
|
|
|
|
|
mix(a,b,c); |
|
204
|
1033
|
|
|
|
|
|
length -= 12; |
|
205
|
1033
|
|
|
|
|
|
k += 3; |
|
206
|
|
|
|
|
|
|
} |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */ |
|
209
|
|
|
|
|
|
|
/* |
|
210
|
|
|
|
|
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but |
|
211
|
|
|
|
|
|
|
* then masks off the part it's not allowed to read. Because the |
|
212
|
|
|
|
|
|
|
* string is aligned, the masked-off tail is in the same word as the |
|
213
|
|
|
|
|
|
|
* rest of the string. Every machine with memory protection I've seen |
|
214
|
|
|
|
|
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will |
|
215
|
|
|
|
|
|
|
* still catch it and complain. The masking trick does make the hash |
|
216
|
|
|
|
|
|
|
* noticably faster for short strings (like English words). |
|
217
|
|
|
|
|
|
|
*/ |
|
218
|
|
|
|
|
|
|
#ifndef VALGRIND |
|
219
|
|
|
|
|
|
|
|
|
220
|
187
|
|
|
|
|
|
switch(length) |
|
221
|
|
|
|
|
|
|
{ |
|
222
|
9
|
|
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|
223
|
16
|
|
|
|
|
|
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
|
224
|
14
|
|
|
|
|
|
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
|
225
|
19
|
|
|
|
|
|
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
|
226
|
14
|
|
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break; |
|
227
|
15
|
|
|
|
|
|
case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
|
228
|
18
|
|
|
|
|
|
case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
|
229
|
20
|
|
|
|
|
|
case 5 : b+=k[1]&0xff; a+=k[0]; break; |
|
230
|
23
|
|
|
|
|
|
case 4 : a+=k[0]; break; |
|
231
|
13
|
|
|
|
|
|
case 3 : a+=k[0]&0xffffff; break; |
|
232
|
16
|
|
|
|
|
|
case 2 : a+=k[0]&0xffff; break; |
|
233
|
10
|
|
|
|
|
|
case 1 : a+=k[0]&0xff; break; |
|
234
|
187
|
|
|
|
|
|
case 0 : return c; /* zero length strings require no mixing */ |
|
235
|
|
|
|
|
|
|
} |
|
236
|
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
#else /* make valgrind happy */ |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
k8 = (const uint8_t *)k; |
|
240
|
|
|
|
|
|
|
switch(length) |
|
241
|
|
|
|
|
|
|
{ |
|
242
|
|
|
|
|
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
|
243
|
|
|
|
|
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
|
244
|
|
|
|
|
|
|
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
|
245
|
|
|
|
|
|
|
case 9 : c+=k8[8]; /* fall through */ |
|
246
|
|
|
|
|
|
|
case 8 : b+=k[1]; a+=k[0]; break; |
|
247
|
|
|
|
|
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
|
248
|
|
|
|
|
|
|
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
|
249
|
|
|
|
|
|
|
case 5 : b+=k8[4]; /* fall through */ |
|
250
|
|
|
|
|
|
|
case 4 : a+=k[0]; break; |
|
251
|
|
|
|
|
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
|
252
|
|
|
|
|
|
|
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
|
253
|
|
|
|
|
|
|
case 1 : a+=k8[0]; break; |
|
254
|
|
|
|
|
|
|
case 0 : return c; |
|
255
|
|
|
|
|
|
|
} |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
#endif /* !valgrind */ |
|
258
|
|
|
|
|
|
|
|
|
259
|
0
|
0
|
|
|
|
|
} else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { |
|
260
|
0
|
|
|
|
|
|
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
|
261
|
|
|
|
|
|
|
const uint8_t *k8; |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
/*--------------- all but last block: aligned reads and different mixing */ |
|
264
|
0
|
0
|
|
|
|
|
while (length > 12) |
|
265
|
|
|
|
|
|
|
{ |
|
266
|
0
|
|
|
|
|
|
a += k[0] + (((uint32_t)k[1])<<16); |
|
267
|
0
|
|
|
|
|
|
b += k[2] + (((uint32_t)k[3])<<16); |
|
268
|
0
|
|
|
|
|
|
c += k[4] + (((uint32_t)k[5])<<16); |
|
269
|
0
|
|
|
|
|
|
mix(a,b,c); |
|
270
|
0
|
|
|
|
|
|
length -= 12; |
|
271
|
0
|
|
|
|
|
|
k += 6; |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
|
|
274
|
|
|
|
|
|
|
/*----------------------------- handle the last (probably partial) block */ |
|
275
|
0
|
|
|
|
|
|
k8 = (const uint8_t *)k; |
|
276
|
0
|
|
|
|
|
|
switch(length) |
|
277
|
|
|
|
|
|
|
{ |
|
278
|
0
|
|
|
|
|
|
case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
|
279
|
0
|
|
|
|
|
|
b+=k[2]+(((uint32_t)k[3])<<16); |
|
280
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
|
281
|
0
|
|
|
|
|
|
break; |
|
282
|
0
|
|
|
|
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
|
283
|
0
|
|
|
|
|
|
case 10: c+=k[4]; |
|
284
|
0
|
|
|
|
|
|
b+=k[2]+(((uint32_t)k[3])<<16); |
|
285
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
|
286
|
0
|
|
|
|
|
|
break; |
|
287
|
0
|
|
|
|
|
|
case 9 : c+=k8[8]; /* fall through */ |
|
288
|
0
|
|
|
|
|
|
case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
|
289
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
|
290
|
0
|
|
|
|
|
|
break; |
|
291
|
0
|
|
|
|
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
|
292
|
0
|
|
|
|
|
|
case 6 : b+=k[2]; |
|
293
|
0
|
|
|
|
|
|
a+=k[0]+(((uint32_t)k[1])<<16); |
|
294
|
0
|
|
|
|
|
|
break; |
|
295
|
0
|
|
|
|
|
|
case 5 : b+=k8[4]; /* fall through */ |
|
296
|
0
|
|
|
|
|
|
case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
|
297
|
0
|
|
|
|
|
|
break; |
|
298
|
0
|
|
|
|
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
|
299
|
0
|
|
|
|
|
|
case 2 : a+=k[0]; |
|
300
|
0
|
|
|
|
|
|
break; |
|
301
|
0
|
|
|
|
|
|
case 1 : a+=k8[0]; |
|
302
|
0
|
|
|
|
|
|
break; |
|
303
|
0
|
|
|
|
|
|
case 0 : return c; /* zero length requires no mixing */ |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
} else { /* need to read the key one byte at a time */ |
|
307
|
0
|
|
|
|
|
|
const uint8_t *k = (const uint8_t *)key; |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
|
310
|
0
|
0
|
|
|
|
|
while (length > 12) |
|
311
|
|
|
|
|
|
|
{ |
|
312
|
0
|
|
|
|
|
|
a += k[0]; |
|
313
|
0
|
|
|
|
|
|
a += ((uint32_t)k[1])<<8; |
|
314
|
0
|
|
|
|
|
|
a += ((uint32_t)k[2])<<16; |
|
315
|
0
|
|
|
|
|
|
a += ((uint32_t)k[3])<<24; |
|
316
|
0
|
|
|
|
|
|
b += k[4]; |
|
317
|
0
|
|
|
|
|
|
b += ((uint32_t)k[5])<<8; |
|
318
|
0
|
|
|
|
|
|
b += ((uint32_t)k[6])<<16; |
|
319
|
0
|
|
|
|
|
|
b += ((uint32_t)k[7])<<24; |
|
320
|
0
|
|
|
|
|
|
c += k[8]; |
|
321
|
0
|
|
|
|
|
|
c += ((uint32_t)k[9])<<8; |
|
322
|
0
|
|
|
|
|
|
c += ((uint32_t)k[10])<<16; |
|
323
|
0
|
|
|
|
|
|
c += ((uint32_t)k[11])<<24; |
|
324
|
0
|
|
|
|
|
|
mix(a,b,c); |
|
325
|
0
|
|
|
|
|
|
length -= 12; |
|
326
|
0
|
|
|
|
|
|
k += 12; |
|
327
|
|
|
|
|
|
|
} |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */ |
|
330
|
0
|
|
|
|
|
|
switch(length) /* all the case statements fall through */ |
|
331
|
|
|
|
|
|
|
{ |
|
332
|
0
|
|
|
|
|
|
case 12: c+=((uint32_t)k[11])<<24; |
|
333
|
0
|
|
|
|
|
|
case 11: c+=((uint32_t)k[10])<<16; |
|
334
|
0
|
|
|
|
|
|
case 10: c+=((uint32_t)k[9])<<8; |
|
335
|
0
|
|
|
|
|
|
case 9 : c+=k[8]; |
|
336
|
0
|
|
|
|
|
|
case 8 : b+=((uint32_t)k[7])<<24; |
|
337
|
0
|
|
|
|
|
|
case 7 : b+=((uint32_t)k[6])<<16; |
|
338
|
0
|
|
|
|
|
|
case 6 : b+=((uint32_t)k[5])<<8; |
|
339
|
0
|
|
|
|
|
|
case 5 : b+=k[4]; |
|
340
|
0
|
|
|
|
|
|
case 4 : a+=((uint32_t)k[3])<<24; |
|
341
|
0
|
|
|
|
|
|
case 3 : a+=((uint32_t)k[2])<<16; |
|
342
|
0
|
|
|
|
|
|
case 2 : a+=((uint32_t)k[1])<<8; |
|
343
|
0
|
|
|
|
|
|
case 1 : a+=k[0]; |
|
344
|
0
|
|
|
|
|
|
break; |
|
345
|
0
|
|
|
|
|
|
case 0 : return c; |
|
346
|
|
|
|
|
|
|
} |
|
347
|
|
|
|
|
|
|
} |
|
348
|
|
|
|
|
|
|
|
|
349
|
187
|
|
|
|
|
|
final(a,b,c); |
|
350
|
187
|
|
|
|
|
|
return c; |
|
351
|
|
|
|
|
|
|
} |