| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | =head1 NAME | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | Astro::Coord::ECI::Moon - Compute the position of the Moon. | 
| 4 |  |  |  |  |  |  |  | 
| 5 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 6 |  |  |  |  |  |  |  | 
| 7 |  |  |  |  |  |  | use Astro::Coord::ECI; | 
| 8 |  |  |  |  |  |  | use Astro::Coord::ECI::Moon; | 
| 9 |  |  |  |  |  |  | use Astro::Coord::ECI::Utils qw{deg2rad}; | 
| 10 |  |  |  |  |  |  |  | 
| 11 |  |  |  |  |  |  | # 1600 Pennsylvania Ave, Washington DC USA | 
| 12 |  |  |  |  |  |  | # latitude 38.899 N, longitude 77.038 W, | 
| 13 |  |  |  |  |  |  | # altitude 16.68 meters above sea level | 
| 14 |  |  |  |  |  |  | my $lat = deg2rad (38.899);    # Radians | 
| 15 |  |  |  |  |  |  | my $long = deg2rad (-77.038);  # Radians | 
| 16 |  |  |  |  |  |  | my $alt = 16.68 / 1000;        # Kilometers | 
| 17 |  |  |  |  |  |  | my $moon = Astro::Coord::ECI::Moon->new (); | 
| 18 |  |  |  |  |  |  | my $sta = Astro::Coord::ECI-> | 
| 19 |  |  |  |  |  |  | universal (time ())-> | 
| 20 |  |  |  |  |  |  | geodetic ($lat, $long, $alt); | 
| 21 |  |  |  |  |  |  | my ($time, $rise) = $sta->next_elevation ($moon); | 
| 22 |  |  |  |  |  |  | print "Moon @{[$rise ? 'rise' : 'set']} is ", | 
| 23 |  |  |  |  |  |  | scalar localtime $time, "\n"; | 
| 24 |  |  |  |  |  |  |  | 
| 25 |  |  |  |  |  |  | =head1 DESCRIPTION | 
| 26 |  |  |  |  |  |  |  | 
| 27 |  |  |  |  |  |  | This module implements the position of the Moon as a function of time, | 
| 28 |  |  |  |  |  |  | as described in Jean Meeus' "Astronomical Algorithms," second edition. | 
| 29 |  |  |  |  |  |  | It is a subclass of L, with the id, | 
| 30 |  |  |  |  |  |  | name, and diameter attributes initialized appropriately, and the | 
| 31 |  |  |  |  |  |  | time_set() method overridden to compute the position of the Moon at the | 
| 32 |  |  |  |  |  |  | given time. | 
| 33 |  |  |  |  |  |  |  | 
| 34 |  |  |  |  |  |  | =head2 Methods | 
| 35 |  |  |  |  |  |  |  | 
| 36 |  |  |  |  |  |  | The following methods should be considered public: | 
| 37 |  |  |  |  |  |  |  | 
| 38 |  |  |  |  |  |  | =over | 
| 39 |  |  |  |  |  |  |  | 
| 40 |  |  |  |  |  |  | =cut | 
| 41 |  |  |  |  |  |  |  | 
| 42 |  |  |  |  |  |  | package Astro::Coord::ECI::Moon; | 
| 43 |  |  |  |  |  |  |  | 
| 44 | 16 |  |  | 16 |  | 1787 | use strict; | 
|  | 16 |  |  |  |  | 37 |  | 
|  | 16 |  |  |  |  | 519 |  | 
| 45 | 16 |  |  | 16 |  | 80 | use warnings; | 
|  | 16 |  |  |  |  | 45 |  | 
|  | 16 |  |  |  |  | 730 |  | 
| 46 |  |  |  |  |  |  |  | 
| 47 |  |  |  |  |  |  | our $VERSION = '0.129'; | 
| 48 |  |  |  |  |  |  |  | 
| 49 | 16 |  |  | 16 |  | 94 | use base qw{Astro::Coord::ECI}; | 
|  | 16 |  |  |  |  | 32 |  | 
|  | 16 |  |  |  |  | 1552 |  | 
| 50 |  |  |  |  |  |  |  | 
| 51 | 16 |  |  | 16 |  | 108 | use Astro::Coord::ECI::Utils qw{ @CARP_NOT :mainstream }; | 
|  | 16 |  |  |  |  | 45 |  | 
|  | 16 |  |  |  |  | 6426 |  | 
| 52 | 16 |  |  | 16 |  | 125 | use Carp; | 
|  | 16 |  |  |  |  | 34 |  | 
|  | 16 |  |  |  |  | 977 |  | 
| 53 | 16 |  |  | 16 |  | 98 | use POSIX qw{floor strftime}; | 
|  | 16 |  |  |  |  | 46 |  | 
|  | 16 |  |  |  |  | 105 |  | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | #	Load the periodic terms from the table. | 
| 56 |  |  |  |  |  |  |  | 
| 57 |  |  |  |  |  |  | my %terms; | 
| 58 |  |  |  |  |  |  | {	# Begin local symbol block. | 
| 59 |  |  |  |  |  |  | my $where; | 
| 60 |  |  |  |  |  |  | local $_ = undef;	# while (<>) ... does not localize $_. | 
| 61 |  |  |  |  |  |  | while () { | 
| 62 |  |  |  |  |  |  | chomp; | 
| 63 |  |  |  |  |  |  | s/ \A \s+ //smx; | 
| 64 |  |  |  |  |  |  | s/ \s+ \z //smx; | 
| 65 |  |  |  |  |  |  | next unless $_; | 
| 66 |  |  |  |  |  |  | next if m/ \A \s* [#] /smx; | 
| 67 |  |  |  |  |  |  | s/^-// and do { | 
| 68 |  |  |  |  |  |  | last if $_ eq 'end'; | 
| 69 |  |  |  |  |  |  | $where = $terms{$_} ||= []; | 
| 70 |  |  |  |  |  |  | next; | 
| 71 |  |  |  |  |  |  | }; | 
| 72 |  |  |  |  |  |  | s/_//g; | 
| 73 |  |  |  |  |  |  | push @$where, [split '\s+', $_]; | 
| 74 |  |  |  |  |  |  | } | 
| 75 |  |  |  |  |  |  | }	# End local symbol block. | 
| 76 |  |  |  |  |  |  |  | 
| 77 |  |  |  |  |  |  | my %static = ( | 
| 78 |  |  |  |  |  |  | id => 'Moon', | 
| 79 |  |  |  |  |  |  | name => 'Moon', | 
| 80 |  |  |  |  |  |  | diameter => 3476, | 
| 81 |  |  |  |  |  |  | ); | 
| 82 |  |  |  |  |  |  |  | 
| 83 |  |  |  |  |  |  | my $weaken = eval { | 
| 84 |  |  |  |  |  |  | require Scalar::Util; | 
| 85 |  |  |  |  |  |  | Scalar::Util->can('weaken'); | 
| 86 |  |  |  |  |  |  | }; | 
| 87 |  |  |  |  |  |  |  | 
| 88 |  |  |  |  |  |  | our $Singleton = $weaken; | 
| 89 |  |  |  |  |  |  |  | 
| 90 |  |  |  |  |  |  | my %object;	# By class | 
| 91 |  |  |  |  |  |  |  | 
| 92 |  |  |  |  |  |  | =item $moon = Astro::Coord::ECI::Moon->new (); | 
| 93 |  |  |  |  |  |  |  | 
| 94 |  |  |  |  |  |  | This method instantiates an object to represent the coordinates of the | 
| 95 |  |  |  |  |  |  | Moon. This is a subclass of Astro::Coord::ECI, with the id and name | 
| 96 |  |  |  |  |  |  | attributes set to 'Moon', and the diameter attribute set to 3476 km | 
| 97 |  |  |  |  |  |  | per Jean Meeus' "Astronomical Algorithms", 2nd Edition, Appendix I, | 
| 98 |  |  |  |  |  |  | page 407. | 
| 99 |  |  |  |  |  |  |  | 
| 100 |  |  |  |  |  |  | Any arguments are passed to the set() method once the object has been | 
| 101 |  |  |  |  |  |  | instantiated. Yes, you can override the "hard-wired" id and name in | 
| 102 |  |  |  |  |  |  | this way. | 
| 103 |  |  |  |  |  |  |  | 
| 104 |  |  |  |  |  |  | If C<$Astro::Coord::ECI::Moon::Singleton> is true, you get a singleton | 
| 105 |  |  |  |  |  |  | object; that is, only one object is instantiated and subsequent calls to | 
| 106 |  |  |  |  |  |  | C just return that object. If higher-accuracy subclasses are ever | 
| 107 |  |  |  |  |  |  | implemented, there will be one singleton for each class. | 
| 108 |  |  |  |  |  |  |  | 
| 109 |  |  |  |  |  |  | The singleton logic only works if L exports | 
| 110 |  |  |  |  |  |  | C. If it does not, the setting of | 
| 111 |  |  |  |  |  |  | C<$Astro::Coord::ECI::Moon::Singleton> is silently ignored. The default | 
| 112 |  |  |  |  |  |  | is true if L can be loaded and exports | 
| 113 |  |  |  |  |  |  | C, and false otherwise. | 
| 114 |  |  |  |  |  |  |  | 
| 115 |  |  |  |  |  |  | =cut | 
| 116 |  |  |  |  |  |  |  | 
| 117 |  |  |  |  |  |  | sub new { | 
| 118 | 13 |  |  | 13 | 1 | 1455 | my ($class, @args) = @_; | 
| 119 | 13 | 50 |  |  |  | 37 | ref $class and $class = ref $class; | 
| 120 | 13 | 100 | 66 |  |  | 94 | if ( $Singleton && $weaken && __classisa( $class, __PACKAGE__ ) ) { | 
|  |  |  | 66 |  |  |  |  | 
| 121 | 11 |  |  |  |  | 21 | my $self; | 
| 122 | 11 | 100 |  |  |  | 34 | if ( $self = $object{$class} ) { | 
| 123 | 1 | 50 |  |  |  | 4 | $self->set( @args ) if @args; | 
| 124 | 1 |  |  |  |  | 5 | return $self; | 
| 125 |  |  |  |  |  |  | } else { | 
| 126 | 10 |  |  |  |  | 55 | $self = $object{$class} = $class->SUPER::new (%static, @args); | 
| 127 | 10 |  |  |  |  | 46 | $weaken->( $object{$class} ); | 
| 128 | 10 |  |  |  |  | 34 | return $self; | 
| 129 |  |  |  |  |  |  | } | 
| 130 |  |  |  |  |  |  | } else { | 
| 131 | 2 |  |  |  |  | 8 | return $class->SUPER::new (%static, @args); | 
| 132 |  |  |  |  |  |  | } | 
| 133 |  |  |  |  |  |  | } | 
| 134 |  |  |  |  |  |  |  | 
| 135 |  |  |  |  |  |  | =item @almanac = $moon->almanac ($station, $start, $end); | 
| 136 |  |  |  |  |  |  |  | 
| 137 |  |  |  |  |  |  | This method produces almanac data for the Moon for the given observing | 
| 138 |  |  |  |  |  |  | station, between the given start and end times. The station is assumed | 
| 139 |  |  |  |  |  |  | to be Earth-Fixed - that is, you can't do this for something in orbit. | 
| 140 |  |  |  |  |  |  |  | 
| 141 |  |  |  |  |  |  | The C<$station> argument may be omitted if the C attribute has | 
| 142 |  |  |  |  |  |  | been set. That is, this method can also be called as | 
| 143 |  |  |  |  |  |  |  | 
| 144 |  |  |  |  |  |  | @almanac = $moon->almanac( $start, $end ) | 
| 145 |  |  |  |  |  |  |  | 
| 146 |  |  |  |  |  |  | The start time defaults to the current time setting of the $moon | 
| 147 |  |  |  |  |  |  | object, and the end time defaults to a day after the start time. | 
| 148 |  |  |  |  |  |  |  | 
| 149 |  |  |  |  |  |  | The almanac data consists of a list of list references. Each list | 
| 150 |  |  |  |  |  |  | reference points to a list containing the following elements: | 
| 151 |  |  |  |  |  |  |  | 
| 152 |  |  |  |  |  |  | [0] => time | 
| 153 |  |  |  |  |  |  | [1] => event (string) | 
| 154 |  |  |  |  |  |  | [2] => detail (integer) | 
| 155 |  |  |  |  |  |  | [3] => description (string) | 
| 156 |  |  |  |  |  |  |  | 
| 157 |  |  |  |  |  |  | The @almanac list is returned sorted by time. | 
| 158 |  |  |  |  |  |  |  | 
| 159 |  |  |  |  |  |  | The following events, details, and descriptions are at least | 
| 160 |  |  |  |  |  |  | potentially returned: | 
| 161 |  |  |  |  |  |  |  | 
| 162 |  |  |  |  |  |  | horizon: 0 = Moon set, 1 = Moon rise; | 
| 163 |  |  |  |  |  |  | transit: 1 = Moon transits meridian; | 
| 164 |  |  |  |  |  |  | quarter: 0 = new moon, 1 = first quarter, | 
| 165 |  |  |  |  |  |  | 2 = full moon, 3 = last quarter. | 
| 166 |  |  |  |  |  |  |  | 
| 167 |  |  |  |  |  |  | =cut | 
| 168 |  |  |  |  |  |  |  | 
| 169 |  |  |  |  |  |  | sub __almanac_event_type_iterator { | 
| 170 | 3 |  |  | 3 |  | 10 | my ( $self, $station ) = @_; | 
| 171 |  |  |  |  |  |  |  | 
| 172 | 3 |  |  |  |  | 5 | my $inx = 0; | 
| 173 |  |  |  |  |  |  |  | 
| 174 | 3 |  |  |  |  | 14 | my $horizon = $station->__get_almanac_horizon(); | 
| 175 |  |  |  |  |  |  |  | 
| 176 | 3 |  |  |  |  | 22 | my @events = ( | 
| 177 |  |  |  |  |  |  | [ $station, next_elevation => [ $self, $horizon, 1 ], | 
| 178 |  |  |  |  |  |  | horizon	=> '__horizon_name' ], | 
| 179 |  |  |  |  |  |  | [ $station, next_meridian => [ $self ], | 
| 180 |  |  |  |  |  |  | transit	=> '__transit_name' ], | 
| 181 |  |  |  |  |  |  | [ $self, next_quarter => [], quarter => '__quarter_name' ], | 
| 182 |  |  |  |  |  |  | ); | 
| 183 |  |  |  |  |  |  |  | 
| 184 |  |  |  |  |  |  | return sub { | 
| 185 |  |  |  |  |  |  | $inx < @events | 
| 186 | 12 | 100 |  | 12 |  | 46 | and return @{ $events[$inx++] }; | 
|  | 9 |  |  |  |  | 72 |  | 
| 187 | 3 |  |  |  |  | 20 | return; | 
| 188 | 3 |  |  |  |  | 21 | }; | 
| 189 |  |  |  |  |  |  | } | 
| 190 |  |  |  |  |  |  |  | 
| 191 | 16 |  |  | 16 |  | 10355 | use Astro::Coord::ECI::Mixin qw{ almanac }; | 
|  | 16 |  |  |  |  | 50 |  | 
|  | 16 |  |  |  |  | 933 |  | 
| 192 |  |  |  |  |  |  |  | 
| 193 |  |  |  |  |  |  | =item @almanac = $moon->almanac_hash($station, $start, $end); | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | This convenience method wraps $moon->almanac(), but returns a list of | 
| 196 |  |  |  |  |  |  | hash references, sort of like Astro::Coord::ECI::TLE->pass() | 
| 197 |  |  |  |  |  |  | does. The hashes contain the following keys: | 
| 198 |  |  |  |  |  |  |  | 
| 199 |  |  |  |  |  |  | {almanac} => { | 
| 200 |  |  |  |  |  |  | {event} => the event type; | 
| 201 |  |  |  |  |  |  | {detail} => the event detail (typically 0 or 1); | 
| 202 |  |  |  |  |  |  | {description} => the event description; | 
| 203 |  |  |  |  |  |  | } | 
| 204 |  |  |  |  |  |  | {body} => the original object ($moon); | 
| 205 |  |  |  |  |  |  | {station} => the observing station; | 
| 206 |  |  |  |  |  |  | {time} => the time the quarter occurred. | 
| 207 |  |  |  |  |  |  |  | 
| 208 |  |  |  |  |  |  | The {time}, {event}, {detail}, and {description} keys correspond to | 
| 209 |  |  |  |  |  |  | elements 0 through 3 of the list returned by almanac(). | 
| 210 |  |  |  |  |  |  |  | 
| 211 |  |  |  |  |  |  | =cut | 
| 212 |  |  |  |  |  |  |  | 
| 213 | 16 |  |  | 16 |  | 100 | use Astro::Coord::ECI::Mixin qw{ almanac_hash }; | 
|  | 16 |  |  |  |  | 37 |  | 
|  | 16 |  |  |  |  | 2225 |  | 
| 214 |  |  |  |  |  |  |  | 
| 215 |  |  |  |  |  |  | =item $coord2 = $coord->clone (); | 
| 216 |  |  |  |  |  |  |  | 
| 217 |  |  |  |  |  |  | If singleton objects are enabled, this override of the superclass' | 
| 218 |  |  |  |  |  |  | method simply returns the invocant. Otherwise it does a deep clone of an | 
| 219 |  |  |  |  |  |  | object, producing a different but identical object. | 
| 220 |  |  |  |  |  |  |  | 
| 221 |  |  |  |  |  |  | Prior to version 0.099_01 it always returned a clone. Yes, | 
| 222 |  |  |  |  |  |  | this is a change in long-standing functionality, but a long-standing bug | 
| 223 |  |  |  |  |  |  | is still a bug. | 
| 224 |  |  |  |  |  |  |  | 
| 225 |  |  |  |  |  |  | =cut | 
| 226 |  |  |  |  |  |  |  | 
| 227 |  |  |  |  |  |  | sub clone { | 
| 228 | 2 |  |  | 2 | 1 | 473 | my ( $self ) = @_; | 
| 229 | 2 | 100 | 66 |  |  | 12 | $Singleton | 
| 230 |  |  |  |  |  |  | and $weaken | 
| 231 |  |  |  |  |  |  | and return $self; | 
| 232 | 1 |  |  |  |  | 11 | return $self->SUPER::clone(); | 
| 233 |  |  |  |  |  |  | } | 
| 234 |  |  |  |  |  |  |  | 
| 235 |  |  |  |  |  |  | =item $elevation = $moon->correct_for_refraction( $elevation ) | 
| 236 |  |  |  |  |  |  |  | 
| 237 |  |  |  |  |  |  | This override of the superclass' method simply returns the elevation | 
| 238 |  |  |  |  |  |  | passed to it. Since the Moon has no atmosphere to speak of, there should | 
| 239 |  |  |  |  |  |  | be no diffraction to speak of either. | 
| 240 |  |  |  |  |  |  |  | 
| 241 |  |  |  |  |  |  | See the L C and | 
| 242 |  |  |  |  |  |  | C documentation for whether this class' | 
| 243 |  |  |  |  |  |  | C method is actually called by those methods. | 
| 244 |  |  |  |  |  |  |  | 
| 245 |  |  |  |  |  |  | =cut | 
| 246 |  |  |  |  |  |  |  | 
| 247 |  |  |  |  |  |  | sub correct_for_refraction { | 
| 248 | 0 |  |  | 0 | 1 | 0 | my ( undef, $elevation ) = @_;	# Invocant unused | 
| 249 | 0 |  |  |  |  | 0 | return $elevation; | 
| 250 |  |  |  |  |  |  | } | 
| 251 |  |  |  |  |  |  |  | 
| 252 |  |  |  |  |  |  | =item ($time, $quarter, $desc) = $moon->next_quarter ($want); | 
| 253 |  |  |  |  |  |  |  | 
| 254 |  |  |  |  |  |  | This method calculates the time of the next quarter-phase of the Moon | 
| 255 |  |  |  |  |  |  | after the current time setting of the $moon object. The returns are the | 
| 256 |  |  |  |  |  |  | time, which quarter-phase it is as a number from 0 (new moon) to | 
| 257 |  |  |  |  |  |  | 3 (last quarter), and a string describing the phase. If called in | 
| 258 |  |  |  |  |  |  | scalar context, you just get the time. | 
| 259 |  |  |  |  |  |  |  | 
| 260 |  |  |  |  |  |  | The optional $want argument says which phase you want. | 
| 261 |  |  |  |  |  |  |  | 
| 262 |  |  |  |  |  |  | As a side effect, the time of the $moon object ends up set to the | 
| 263 |  |  |  |  |  |  | returned time. | 
| 264 |  |  |  |  |  |  |  | 
| 265 |  |  |  |  |  |  | The method of calculation is successive approximation, and actually | 
| 266 |  |  |  |  |  |  | returns the second B the quarter. | 
| 267 |  |  |  |  |  |  |  | 
| 268 |  |  |  |  |  |  | =cut | 
| 269 |  |  |  |  |  |  |  | 
| 270 | 16 |  |  | 16 |  | 116 | use constant NEXT_QUARTER_INCREMENT => 86400 * 6;	# 6 days. | 
|  | 16 |  |  |  |  | 35 |  | 
|  | 16 |  |  |  |  | 1246 |  | 
| 271 |  |  |  |  |  |  |  | 
| 272 |  |  |  |  |  |  | *__next_quarter_coordinate = __PACKAGE__->can( | 
| 273 |  |  |  |  |  |  | 'phase' ); | 
| 274 |  |  |  |  |  |  |  | 
| 275 | 16 |  |  | 16 |  | 104 | use Astro::Coord::ECI::Mixin qw{ next_quarter }; | 
|  | 16 |  |  |  |  | 33 |  | 
|  | 16 |  |  |  |  | 1339 |  | 
| 276 |  |  |  |  |  |  |  | 
| 277 |  |  |  |  |  |  | =item $hash_reference = $moon->next_quarter_hash($want); | 
| 278 |  |  |  |  |  |  |  | 
| 279 |  |  |  |  |  |  | This convenience method wraps $moon->next_quarter(), but returns the | 
| 280 |  |  |  |  |  |  | data in a hash reference, sort of like Astro::Coord::ECI::TLE->pass() | 
| 281 |  |  |  |  |  |  | does. The hash contains the following keys: | 
| 282 |  |  |  |  |  |  |  | 
| 283 |  |  |  |  |  |  | {body} => the original object ($moon); | 
| 284 |  |  |  |  |  |  | {almanac} => { | 
| 285 |  |  |  |  |  |  | {event} => 'quarter', | 
| 286 |  |  |  |  |  |  | {detail} => the quarter number (0 through 3); | 
| 287 |  |  |  |  |  |  | {description} => the quarter description; | 
| 288 |  |  |  |  |  |  | } | 
| 289 |  |  |  |  |  |  | {time} => the time the quarter occurred. | 
| 290 |  |  |  |  |  |  |  | 
| 291 |  |  |  |  |  |  | The {time}, {detail}, and {description} keys correspond to elements 0 | 
| 292 |  |  |  |  |  |  | through 2 of the list returned by next_quarter(). | 
| 293 |  |  |  |  |  |  |  | 
| 294 |  |  |  |  |  |  | =cut | 
| 295 |  |  |  |  |  |  |  | 
| 296 | 16 |  |  | 16 |  | 111 | use Astro::Coord::ECI::Mixin qw{ next_quarter_hash }; | 
|  | 16 |  |  |  |  | 32 |  | 
|  | 16 |  |  |  |  | 14812 |  | 
| 297 |  |  |  |  |  |  |  | 
| 298 |  |  |  |  |  |  | =item $period = $moon->period () | 
| 299 |  |  |  |  |  |  |  | 
| 300 |  |  |  |  |  |  | This method returns the sidereal period of the Moon, per Appendix I | 
| 301 |  |  |  |  |  |  | (pg 408) of Jean Meeus' "Astronomical Algorithms," 2nd edition. | 
| 302 |  |  |  |  |  |  |  | 
| 303 |  |  |  |  |  |  | =cut | 
| 304 |  |  |  |  |  |  |  | 
| 305 | 18 |  |  | 18 | 1 | 72 | sub period {return 2360591.5968}	# 27.321662 * 86400 | 
| 306 |  |  |  |  |  |  |  | 
| 307 |  |  |  |  |  |  | sub __horizon_name_tplt { | 
| 308 | 6 |  |  | 6 |  | 17 | my ( $self ) = @_; | 
| 309 | 6 | 50 |  |  |  | 34 | return $self->__object_is_self_named() ? | 
| 310 |  |  |  |  |  |  | [ '%s set', '%s rise' ] : | 
| 311 |  |  |  |  |  |  | $self->SUPER::__horizon_name_tplt(); | 
| 312 |  |  |  |  |  |  | } | 
| 313 |  |  |  |  |  |  |  | 
| 314 |  |  |  |  |  |  | sub __quarter_name { | 
| 315 | 4 |  |  | 4 |  | 16 | my ( $self, $event, $tplt ) = @_; | 
| 316 | 4 |  | 50 |  |  | 32 | $tplt ||= [ 'New %s', 'First quarter %s', 'Full %s', 'Last quarter %s' ]; | 
| 317 | 4 |  |  |  |  | 23 | return $self->__event_name( $event, $tplt ); | 
| 318 |  |  |  |  |  |  | } | 
| 319 |  |  |  |  |  |  |  | 
| 320 |  |  |  |  |  |  | =item ($phase, $illum) = $moon->phase ($time); | 
| 321 |  |  |  |  |  |  |  | 
| 322 |  |  |  |  |  |  | This method calculates the current phase of the moon and its illuminated | 
| 323 |  |  |  |  |  |  | fraction. If the time is omitted, the current time of the $moon object | 
| 324 |  |  |  |  |  |  | is used. | 
| 325 |  |  |  |  |  |  |  | 
| 326 |  |  |  |  |  |  | The phase is returned as a number from C<0> to C<2 * PI> radians, with | 
| 327 |  |  |  |  |  |  | C<0> being New Moon, C being First Quarter, and so on. The | 
| 328 |  |  |  |  |  |  | illuminated fraction is a number from C<0> (New Moon) to C<1> (Full | 
| 329 |  |  |  |  |  |  | Moon). | 
| 330 |  |  |  |  |  |  |  | 
| 331 |  |  |  |  |  |  | If called in scalar context, you get the phase. | 
| 332 |  |  |  |  |  |  |  | 
| 333 |  |  |  |  |  |  | This can be called as a class method, but if you do this the time | 
| 334 |  |  |  |  |  |  | must be specified. | 
| 335 |  |  |  |  |  |  |  | 
| 336 |  |  |  |  |  |  | Jean Meeus' "Astronomical Algorithms", 2nd Edition, Chapter 49 page | 
| 337 |  |  |  |  |  |  | 349, defines the phases of the moon in terms of the difference between | 
| 338 |  |  |  |  |  |  | the geocentric longitudes of the Moon and Sun - specifically, that | 
| 339 |  |  |  |  |  |  | new, first quarter, full, and last quarter are the moments when this | 
| 340 |  |  |  |  |  |  | difference is 0, 90, 180, and 270 degrees respectively. | 
| 341 |  |  |  |  |  |  |  | 
| 342 |  |  |  |  |  |  | Not quite above reproach, this module simply defines the phase of the | 
| 343 |  |  |  |  |  |  | Moon as the difference between these two quantities, even if it is not | 
| 344 |  |  |  |  |  |  | a multiple of 90 degrees. This is different than the "phase angle" of | 
| 345 |  |  |  |  |  |  | the Moon, which Meeus defines as the elongation of the Earth from the | 
| 346 |  |  |  |  |  |  | Sun, as seen from the Moon. Because we take the "phase angle" as just | 
| 347 |  |  |  |  |  |  | pi - the phase (in radians), we introduce an error of about 0.3% in | 
| 348 |  |  |  |  |  |  | the illumination calculation. | 
| 349 |  |  |  |  |  |  |  | 
| 350 |  |  |  |  |  |  | =cut | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  | sub phase { | 
| 353 | 122 |  |  | 122 | 1 | 272 | my ($self, $time) = @_; | 
| 354 |  |  |  |  |  |  |  | 
| 355 | 122 | 50 | 33 |  |  | 286 | (ref $self || $time) or croak < | 
| 356 |  |  |  |  |  |  | Error - You must specify a time if you call phase() as a class method. | 
| 357 |  |  |  |  |  |  | eod | 
| 358 |  |  |  |  |  |  |  | 
| 359 | 122 | 50 |  |  |  | 266 | $self = $self->new () unless ref $self; | 
| 360 |  |  |  |  |  |  |  | 
| 361 | 122 | 50 |  |  |  | 236 | $self->universal ($time) if $time; | 
| 362 |  |  |  |  |  |  |  | 
| 363 | 122 |  |  |  |  | 285 | my $sun = $self->get( 'sun' )->universal( $self->universal() ); | 
| 364 |  |  |  |  |  |  |  | 
| 365 | 122 |  |  |  |  | 281 | my (undef, $longs) = $sun->ecliptic (); | 
| 366 | 122 |  |  |  |  | 343 | my (undef, $longm) = $self->ecliptic (); | 
| 367 |  |  |  |  |  |  |  | 
| 368 | 122 |  |  |  |  | 323 | my $phase = mod2pi ($longm - $longs); | 
| 369 | 122 | 100 |  |  |  | 514 | return wantarray ? ($phase, (1 + cos ($self->PI - $phase)) / 2) : $phase; | 
| 370 |  |  |  |  |  |  | } | 
| 371 |  |  |  |  |  |  |  | 
| 372 |  |  |  |  |  |  | =item $moon->time_set () | 
| 373 |  |  |  |  |  |  |  | 
| 374 |  |  |  |  |  |  | This method sets coordinates of the object to the coordinates of the | 
| 375 |  |  |  |  |  |  | Moon at the object's currently-set universal time.  The velocity | 
| 376 |  |  |  |  |  |  | components are arbitrarily set to 0, since Meeus' algorithm does not | 
| 377 |  |  |  |  |  |  | provide this information. The 'equinox_dynamical' attribute is set to | 
| 378 |  |  |  |  |  |  | the currently-set dynamical time. | 
| 379 |  |  |  |  |  |  |  | 
| 380 |  |  |  |  |  |  | Although there's no reason this method can't be called directly, it | 
| 381 |  |  |  |  |  |  | exists to take advantage of the hook in the B | 
| 382 |  |  |  |  |  |  | object, to allow the position of the Moon to be computed when the | 
| 383 |  |  |  |  |  |  | object's time is set. | 
| 384 |  |  |  |  |  |  |  | 
| 385 |  |  |  |  |  |  | The computation comes from Jean Meeus' "Astronomical Algorithms", 2nd | 
| 386 |  |  |  |  |  |  | Edition, Chapter 47, pages 337ff. Meeus gives the accuracy as 10 | 
| 387 |  |  |  |  |  |  | seconds of arc in latitude, and 4 seconds of arc in longitude. He | 
| 388 |  |  |  |  |  |  | credits the algorithm to M. Chalpront-Touze and J. Chalpront, "The | 
| 389 |  |  |  |  |  |  | Lunar Ephemeris ELP 2000" from I volume | 
| 390 |  |  |  |  |  |  | 124, pp 50-62 (1983), but the formulae for the mean arguments to | 
| 391 |  |  |  |  |  |  | J. Chalpront, M. Chalpront-Touze, and G. Francou, I | 
| 392 |  |  |  |  |  |  | ELP 2000-82B de nouvelles valeurs des parametres orbitaux de la Lune | 
| 393 |  |  |  |  |  |  | et du barycentre Terre-Lune>, Paris, January 1998. | 
| 394 |  |  |  |  |  |  |  | 
| 395 |  |  |  |  |  |  | =cut | 
| 396 |  |  |  |  |  |  |  | 
| 397 |  |  |  |  |  |  | sub time_set { | 
| 398 | 675 |  |  | 675 | 1 | 1067 | my $self = shift; | 
| 399 |  |  |  |  |  |  |  | 
| 400 | 675 |  |  |  |  | 1463 | my $time = $self->dynamical; | 
| 401 |  |  |  |  |  |  |  | 
| 402 | 675 |  |  |  |  | 1685 | my $T = jcent2000 ($time);			# Meeus (22.1) | 
| 403 |  |  |  |  |  |  |  | 
| 404 |  |  |  |  |  |  | #	Moon's mean longitude. | 
| 405 |  |  |  |  |  |  |  | 
| 406 | 675 |  |  |  |  | 2074 | my $Lprime = mod2pi (deg2rad (			# Meeus (47.1) | 
| 407 |  |  |  |  |  |  | (((- ($T / 65_194_000) + | 
| 408 |  |  |  |  |  |  | 1 / 538_841) * $T - 0.0015786) * $T + | 
| 409 |  |  |  |  |  |  | 481267.88123421) * $T + 218.3164477)); | 
| 410 |  |  |  |  |  |  |  | 
| 411 |  |  |  |  |  |  | #	Moon's mean elongation. | 
| 412 |  |  |  |  |  |  |  | 
| 413 | 675 |  |  |  |  | 1903 | my $D = mod2pi (deg2rad (((($T / 113_065_000 +	# Meeus (47.2) | 
| 414 |  |  |  |  |  |  | 1 / 545_868) * $T - 0.0018819) * $T + | 
| 415 |  |  |  |  |  |  | 445267.1114034) * $T + 297.8501921)); | 
| 416 |  |  |  |  |  |  |  | 
| 417 |  |  |  |  |  |  | #	Sun's mean anomaly. | 
| 418 |  |  |  |  |  |  |  | 
| 419 | 675 |  |  |  |  | 1553 | my $M = mod2pi (deg2rad ((($T / 24_490_000 -		# Meeus (47.3) | 
| 420 |  |  |  |  |  |  | 0.000_1536) * $T + 35999.050_2909) * $T + | 
| 421 |  |  |  |  |  |  | 357.5291092)); | 
| 422 |  |  |  |  |  |  |  | 
| 423 |  |  |  |  |  |  | #	Moon's mean anomaly. | 
| 424 |  |  |  |  |  |  |  | 
| 425 | 675 |  |  |  |  | 1663 | my $Mprime = mod2pi (deg2rad ((((- $T / 14_712_000 +	# Meeus (47.4) | 
| 426 |  |  |  |  |  |  | 1 / 69_699) * $T + 0.008_7414) * $T + | 
| 427 |  |  |  |  |  |  | 477198.867_5055) * $T + 134.963_3964)); | 
| 428 |  |  |  |  |  |  |  | 
| 429 |  |  |  |  |  |  | #	Moon's argument of latitude (mean distance | 
| 430 |  |  |  |  |  |  | #	from ascending node). | 
| 431 |  |  |  |  |  |  |  | 
| 432 | 675 |  |  |  |  | 1608 | my $F = mod2pi (deg2rad (((($T / 863_310_000 -	# Meeus (47.5) | 
| 433 |  |  |  |  |  |  | 1 / 3_526_000) * $T - 0.003_6539) * $T + | 
| 434 |  |  |  |  |  |  | 483202.017_5233) * $T + 93.272_0950)); | 
| 435 |  |  |  |  |  |  |  | 
| 436 |  |  |  |  |  |  | #	Eccentricity correction factor. | 
| 437 |  |  |  |  |  |  |  | 
| 438 | 675 |  |  |  |  | 1248 | my $E = (- 0.000_0074 * $T - 0.002_516) * $T + 1;	# Meeus (47.6) | 
| 439 | 675 |  |  |  |  | 1268 | my @efac = (1, $E, $E * $E); | 
| 440 |  |  |  |  |  |  |  | 
| 441 |  |  |  |  |  |  | #	Compute "further arguments". | 
| 442 |  |  |  |  |  |  |  | 
| 443 | 675 |  |  |  |  | 1315 | my $A1 = mod2pi (deg2rad (131.849 * $T + 119.75));		# Venus | 
| 444 | 675 |  |  |  |  | 1359 | my $A2 = mod2pi (deg2rad (479264.290 * $T + 53.09));	# Jupiter | 
| 445 | 675 |  |  |  |  | 1506 | my $A3 = mod2pi (deg2rad (481266.484 * $T + 313.45));	# undocumented | 
| 446 |  |  |  |  |  |  |  | 
| 447 |  |  |  |  |  |  | #	Compute periodic terms for longitude (sigma l) and | 
| 448 |  |  |  |  |  |  | #	distance (sigma r). | 
| 449 |  |  |  |  |  |  |  | 
| 450 | 675 |  |  |  |  | 1315 | my ($sigmal, $sigmar) = (0, 0); | 
| 451 | 675 |  |  |  |  | 921 | foreach (@{$terms{lr}}) { | 
|  | 675 |  |  |  |  | 1505 |  | 
| 452 | 40500 |  |  |  |  | 74502 | my ($mulD, $mulM, $mulMprime, $mulF, $sincof, $coscof) = @$_; | 
| 453 | 40500 | 100 |  |  |  | 65248 | if ($mulM) { | 
| 454 | 18900 |  | 33 |  |  | 33699 | my $corr = $efac[abs $mulM] || confess < | 
| 455 |  |  |  |  |  |  | Programming error - M multiple greater than 2. | 
| 456 |  |  |  |  |  |  | eod | 
| 457 | 18900 |  |  |  |  | 29347 | $sincof *= $corr; | 
| 458 | 18900 |  |  |  |  | 27281 | $coscof *= $corr; | 
| 459 |  |  |  |  |  |  | } | 
| 460 | 40500 |  |  |  |  | 69256 | my $arg = $D * $mulD + $M * $mulM + $Mprime * $mulMprime + | 
| 461 |  |  |  |  |  |  | $F * $mulF; | 
| 462 | 40500 |  |  |  |  | 64384 | $sigmal += $sincof * sin ($arg); | 
| 463 | 40500 |  |  |  |  | 68469 | $sigmar += $coscof * cos ($arg); | 
| 464 |  |  |  |  |  |  | } | 
| 465 |  |  |  |  |  |  |  | 
| 466 |  |  |  |  |  |  | #	Compute periodic terms for latitude (sigma b). | 
| 467 |  |  |  |  |  |  |  | 
| 468 | 675 |  |  |  |  | 1078 | my $sigmab = 0; | 
| 469 | 675 |  |  |  |  | 883 | foreach (@{$terms{b}}) { | 
|  | 675 |  |  |  |  | 1472 |  | 
| 470 | 40500 |  |  |  |  | 71088 | my ($mulD, $mulM, $mulMprime, $mulF, $sincof) = @$_; | 
| 471 | 40500 | 100 |  |  |  | 64982 | if ($mulM) { | 
| 472 | 17550 |  | 33 |  |  | 31279 | my $corr = $efac[abs $mulM] || confess < | 
| 473 |  |  |  |  |  |  | Programming error - M multiple greater than 2. | 
| 474 |  |  |  |  |  |  | eod | 
| 475 | 17550 |  |  |  |  | 27332 | $sincof *= $corr; | 
| 476 |  |  |  |  |  |  | } | 
| 477 | 40500 |  |  |  |  | 68835 | my $arg = $D * $mulD + $M * $mulM + $Mprime * $mulMprime + | 
| 478 |  |  |  |  |  |  | $F * $mulF; | 
| 479 | 40500 |  |  |  |  | 71252 | $sigmab += $sincof * sin ($arg); | 
| 480 |  |  |  |  |  |  | } | 
| 481 |  |  |  |  |  |  |  | 
| 482 |  |  |  |  |  |  | #	Add other terms | 
| 483 |  |  |  |  |  |  |  | 
| 484 | 675 |  |  |  |  | 1625 | $sigmal += 3958 * sin ($A1) + 1962 * sin ($Lprime - $F) + | 
| 485 |  |  |  |  |  |  | 318 * sin ($A2); | 
| 486 | 675 |  |  |  |  | 1852 | $sigmab += - 2235 * sin ($Lprime) + 382 * sin ($A3) + | 
| 487 |  |  |  |  |  |  | 175 * sin ($A1 - $F) + 175 * sin ($A1 + $F) + | 
| 488 |  |  |  |  |  |  | 127 * sin ($Lprime - $Mprime) - 115 * sin ($Lprime + $Mprime); | 
| 489 |  |  |  |  |  |  |  | 
| 490 |  |  |  |  |  |  | #	Coordinates of Moon (finally!) | 
| 491 |  |  |  |  |  |  |  | 
| 492 | 675 |  |  |  |  | 1958 | my $lambda = deg2rad ($sigmal / 1_000_000) + $Lprime; | 
| 493 | 675 |  |  |  |  | 1471 | my $beta = deg2rad ($sigmab / 1_000_000); | 
| 494 | 675 |  |  |  |  | 1156 | my $delta = $sigmar / 1000 + 385_000.56; | 
| 495 |  |  |  |  |  |  |  | 
| 496 |  |  |  |  |  |  | #	Correct longitude for nutation (from Chapter 22, pg 144). | 
| 497 |  |  |  |  |  |  |  | 
| 498 | 675 |  |  |  |  | 1857 | $lambda += ( $self->nutation( $time ) )[0]; | 
| 499 |  |  |  |  |  |  |  | 
| 500 | 675 |  |  |  |  | 1450 | $self->ecliptic ($beta, mod2pi( $lambda ), $delta); | 
| 501 |  |  |  |  |  |  | ## $self->set (equinox_dynamical => $time); | 
| 502 | 675 |  |  |  |  | 2124 | $self->equinox_dynamical ($time); | 
| 503 | 675 |  |  |  |  | 1477 | return $self; | 
| 504 |  |  |  |  |  |  | } | 
| 505 |  |  |  |  |  |  |  | 
| 506 |  |  |  |  |  |  | # The moon is normally positioned in inertial coordinates. | 
| 507 |  |  |  |  |  |  |  | 
| 508 | 12 |  |  | 12 |  | 38 | sub __initial_inertial { return 1 } | 
| 509 |  |  |  |  |  |  |  | 
| 510 |  |  |  |  |  |  | 1; | 
| 511 |  |  |  |  |  |  |  | 
| 512 |  |  |  |  |  |  | =back | 
| 513 |  |  |  |  |  |  |  | 
| 514 |  |  |  |  |  |  | =head2 Historical Calculations | 
| 515 |  |  |  |  |  |  |  | 
| 516 |  |  |  |  |  |  | This class was written for the purpose of calculating whether the Moon | 
| 517 |  |  |  |  |  |  | was visible from given point on the Earth (or in space) at a given time | 
| 518 |  |  |  |  |  |  | in or reasonably close to the present. I can not say how accurate it is | 
| 519 |  |  |  |  |  |  | at times far from the present. | 
| 520 |  |  |  |  |  |  |  | 
| 521 |  |  |  |  |  |  | See | 
| 522 |  |  |  |  |  |  | L | 
| 523 |  |  |  |  |  |  | in the L documentation | 
| 524 |  |  |  |  |  |  | for a discussion of input and output time conversion. | 
| 525 |  |  |  |  |  |  |  | 
| 526 |  |  |  |  |  |  | =head1 ACKNOWLEDGMENTS | 
| 527 |  |  |  |  |  |  |  | 
| 528 |  |  |  |  |  |  | The author wishes to acknowledge Jean Meeus, whose book "Astronomical | 
| 529 |  |  |  |  |  |  | Algorithms" (second edition) formed the basis for this module. | 
| 530 |  |  |  |  |  |  |  | 
| 531 |  |  |  |  |  |  | =head1 SEE ALSO | 
| 532 |  |  |  |  |  |  |  | 
| 533 |  |  |  |  |  |  | The L | 
| 534 |  |  |  |  |  |  | documentation for a discussion of how the pieces/parts of this | 
| 535 |  |  |  |  |  |  | distribution go together and how to use them. | 
| 536 |  |  |  |  |  |  |  | 
| 537 |  |  |  |  |  |  | L by Brett Hamilton, which contains a | 
| 538 |  |  |  |  |  |  | function-based module to compute the current phase, distance and angular | 
| 539 |  |  |  |  |  |  | diameter of the Moon, as well as the angular diameter and distance of | 
| 540 |  |  |  |  |  |  | the Sun. | 
| 541 |  |  |  |  |  |  |  | 
| 542 |  |  |  |  |  |  | =head1 SUPPORT | 
| 543 |  |  |  |  |  |  |  | 
| 544 |  |  |  |  |  |  | Support is by the author. Please file bug reports at | 
| 545 |  |  |  |  |  |  | L, | 
| 546 |  |  |  |  |  |  | L, or in | 
| 547 |  |  |  |  |  |  | electronic mail to the author. | 
| 548 |  |  |  |  |  |  |  | 
| 549 |  |  |  |  |  |  | =head1 AUTHOR | 
| 550 |  |  |  |  |  |  |  | 
| 551 |  |  |  |  |  |  | Thomas R. Wyant, III (F) | 
| 552 |  |  |  |  |  |  |  | 
| 553 |  |  |  |  |  |  | =head1 COPYRIGHT AND LICENSE | 
| 554 |  |  |  |  |  |  |  | 
| 555 |  |  |  |  |  |  | Copyright (C) 2005-2023 by Thomas R. Wyant, III | 
| 556 |  |  |  |  |  |  |  | 
| 557 |  |  |  |  |  |  | This program is free software; you can redistribute it and/or modify it | 
| 558 |  |  |  |  |  |  | under the same terms as Perl 5.10.0. For more details, see the full text | 
| 559 |  |  |  |  |  |  | of the licenses in the directory LICENSES. | 
| 560 |  |  |  |  |  |  |  | 
| 561 |  |  |  |  |  |  | This program is distributed in the hope that it will be useful, but | 
| 562 |  |  |  |  |  |  | without any warranty; without even the implied warranty of | 
| 563 |  |  |  |  |  |  | merchantability or fitness for a particular purpose. | 
| 564 |  |  |  |  |  |  |  | 
| 565 |  |  |  |  |  |  | =cut | 
| 566 |  |  |  |  |  |  |  | 
| 567 |  |  |  |  |  |  | __DATA__ |