| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
/* |
|
2
|
|
|
|
|
|
|
*+ |
|
3
|
|
|
|
|
|
|
* Name: |
|
4
|
|
|
|
|
|
|
* palEl2ue |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
* Purpose: |
|
7
|
|
|
|
|
|
|
* Transform conventional elements into "universal" form |
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
* Language: |
|
10
|
|
|
|
|
|
|
* Starlink ANSI C |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
* Type of Module: |
|
13
|
|
|
|
|
|
|
* Library routine |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
* Invocation: |
|
16
|
|
|
|
|
|
|
* void palEl2ue ( double date, int jform, double epoch, double orbinc, |
|
17
|
|
|
|
|
|
|
* double anode, double perih, double aorq, double e, |
|
18
|
|
|
|
|
|
|
* double aorl, double dm, double u[13], int *jstat ); |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
* Arguments: |
|
21
|
|
|
|
|
|
|
* date = double (Given) |
|
22
|
|
|
|
|
|
|
* Epoch (TT MJD) of osculation (Note 3) |
|
23
|
|
|
|
|
|
|
* jform = int (Given) |
|
24
|
|
|
|
|
|
|
* Element set actually returned (1-3; Note 6) |
|
25
|
|
|
|
|
|
|
* epoch = double (Given) |
|
26
|
|
|
|
|
|
|
* Epoch of elements (TT MJD) |
|
27
|
|
|
|
|
|
|
* orbinc = double (Given) |
|
28
|
|
|
|
|
|
|
* inclination (radians) |
|
29
|
|
|
|
|
|
|
* anode = double (Given) |
|
30
|
|
|
|
|
|
|
* longitude of the ascending node (radians) |
|
31
|
|
|
|
|
|
|
* perih = double (Given) |
|
32
|
|
|
|
|
|
|
* longitude or argument of perihelion (radians) |
|
33
|
|
|
|
|
|
|
* aorq = double (Given) |
|
34
|
|
|
|
|
|
|
* mean distance or perihelion distance (AU) |
|
35
|
|
|
|
|
|
|
* e = double (Given) |
|
36
|
|
|
|
|
|
|
* eccentricity |
|
37
|
|
|
|
|
|
|
* aorl = double (Given) |
|
38
|
|
|
|
|
|
|
* mean anomaly or longitude (radians, JFORM=1,2 only) |
|
39
|
|
|
|
|
|
|
* dm = double (Given) |
|
40
|
|
|
|
|
|
|
* daily motion (radians, JFORM=1 only) |
|
41
|
|
|
|
|
|
|
* u = double [13] (Returned) |
|
42
|
|
|
|
|
|
|
* Universal orbital elements (Note 1) |
|
43
|
|
|
|
|
|
|
* - (0) combined mass (M+m) |
|
44
|
|
|
|
|
|
|
* - (1) total energy of the orbit (alpha) |
|
45
|
|
|
|
|
|
|
* - (2) reference (osculating) epoch (t0) |
|
46
|
|
|
|
|
|
|
* - (3-5) position at reference epoch (r0) |
|
47
|
|
|
|
|
|
|
* - (6-8) velocity at reference epoch (v0) |
|
48
|
|
|
|
|
|
|
* - (9) heliocentric distance at reference epoch |
|
49
|
|
|
|
|
|
|
* - (10) r0.v0 |
|
50
|
|
|
|
|
|
|
* - (11) date (t) |
|
51
|
|
|
|
|
|
|
* - (12) universal eccentric anomaly (psi) of date, approx |
|
52
|
|
|
|
|
|
|
* jstat = int * (Returned) |
|
53
|
|
|
|
|
|
|
* status: 0 = OK |
|
54
|
|
|
|
|
|
|
* - -1 = illegal JFORM |
|
55
|
|
|
|
|
|
|
* - -2 = illegal E |
|
56
|
|
|
|
|
|
|
* - -3 = illegal AORQ |
|
57
|
|
|
|
|
|
|
* - -4 = illegal DM |
|
58
|
|
|
|
|
|
|
* - -5 = numerical error |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
* Description: |
|
61
|
|
|
|
|
|
|
* Transform conventional osculating elements into "universal" form. |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
* Authors: |
|
64
|
|
|
|
|
|
|
* PTW: Pat Wallace (STFC) |
|
65
|
|
|
|
|
|
|
* TIMJ: Tim Jenness (JAC, Hawaii) |
|
66
|
|
|
|
|
|
|
* {enter_new_authors_here} |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
* Notes: |
|
69
|
|
|
|
|
|
|
* - The "universal" elements are those which define the orbit for the |
|
70
|
|
|
|
|
|
|
* purposes of the method of universal variables (see reference). |
|
71
|
|
|
|
|
|
|
* They consist of the combined mass of the two bodies, an epoch, |
|
72
|
|
|
|
|
|
|
* and the position and velocity vectors (arbitrary reference frame) |
|
73
|
|
|
|
|
|
|
* at that epoch. The parameter set used here includes also various |
|
74
|
|
|
|
|
|
|
* quantities that can, in fact, be derived from the other |
|
75
|
|
|
|
|
|
|
* information. This approach is taken to avoiding unnecessary |
|
76
|
|
|
|
|
|
|
* computation and loss of accuracy. The supplementary quantities |
|
77
|
|
|
|
|
|
|
* are (i) alpha, which is proportional to the total energy of the |
|
78
|
|
|
|
|
|
|
* orbit, (ii) the heliocentric distance at epoch, (iii) the |
|
79
|
|
|
|
|
|
|
* outwards component of the velocity at the given epoch, (iv) an |
|
80
|
|
|
|
|
|
|
* estimate of psi, the "universal eccentric anomaly" at a given |
|
81
|
|
|
|
|
|
|
* date and (v) that date. |
|
82
|
|
|
|
|
|
|
* - The companion routine is palUe2pv. This takes the set of numbers |
|
83
|
|
|
|
|
|
|
* that the present routine outputs and uses them to derive the |
|
84
|
|
|
|
|
|
|
* object's position and velocity. A single prediction requires one |
|
85
|
|
|
|
|
|
|
* call to the present routine followed by one call to palUe2pv; |
|
86
|
|
|
|
|
|
|
* for convenience, the two calls are packaged as the routine |
|
87
|
|
|
|
|
|
|
* palPlanel. Multiple predictions may be made by again calling the |
|
88
|
|
|
|
|
|
|
* present routine once, but then calling palUe2pv multiple times, |
|
89
|
|
|
|
|
|
|
* which is faster than multiple calls to palPlanel. |
|
90
|
|
|
|
|
|
|
* - DATE is the epoch of osculation. It is in the TT timescale |
|
91
|
|
|
|
|
|
|
* (formerly Ephemeris Time, ET) and is a Modified Julian Date |
|
92
|
|
|
|
|
|
|
* (JD-2400000.5). |
|
93
|
|
|
|
|
|
|
* - The supplied orbital elements are with respect to the J2000 |
|
94
|
|
|
|
|
|
|
* ecliptic and equinox. The position and velocity parameters |
|
95
|
|
|
|
|
|
|
* returned in the array U are with respect to the mean equator and |
|
96
|
|
|
|
|
|
|
* equinox of epoch J2000, and are for the perihelion prior to the |
|
97
|
|
|
|
|
|
|
* specified epoch. |
|
98
|
|
|
|
|
|
|
* - The universal elements returned in the array U are in canonical |
|
99
|
|
|
|
|
|
|
* units (solar masses, AU and canonical days). |
|
100
|
|
|
|
|
|
|
* - Three different element-format options are available: |
|
101
|
|
|
|
|
|
|
* |
|
102
|
|
|
|
|
|
|
* Option JFORM=1, suitable for the major planets: |
|
103
|
|
|
|
|
|
|
* |
|
104
|
|
|
|
|
|
|
* EPOCH = epoch of elements (TT MJD) |
|
105
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
106
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
107
|
|
|
|
|
|
|
* PERIH = longitude of perihelion, curly pi (radians) |
|
108
|
|
|
|
|
|
|
* AORQ = mean distance, a (AU) |
|
109
|
|
|
|
|
|
|
* E = eccentricity, e (range 0 to <1) |
|
110
|
|
|
|
|
|
|
* AORL = mean longitude L (radians) |
|
111
|
|
|
|
|
|
|
* DM = daily motion (radians) |
|
112
|
|
|
|
|
|
|
* |
|
113
|
|
|
|
|
|
|
* Option JFORM=2, suitable for minor planets: |
|
114
|
|
|
|
|
|
|
* |
|
115
|
|
|
|
|
|
|
* EPOCH = epoch of elements (TT MJD) |
|
116
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
117
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
118
|
|
|
|
|
|
|
* PERIH = argument of perihelion, little omega (radians) |
|
119
|
|
|
|
|
|
|
* AORQ = mean distance, a (AU) |
|
120
|
|
|
|
|
|
|
* E = eccentricity, e (range 0 to <1) |
|
121
|
|
|
|
|
|
|
* AORL = mean anomaly M (radians) |
|
122
|
|
|
|
|
|
|
* |
|
123
|
|
|
|
|
|
|
* Option JFORM=3, suitable for comets: |
|
124
|
|
|
|
|
|
|
* |
|
125
|
|
|
|
|
|
|
* EPOCH = epoch of perihelion (TT MJD) |
|
126
|
|
|
|
|
|
|
* ORBINC = inclination i (radians) |
|
127
|
|
|
|
|
|
|
* ANODE = longitude of the ascending node, big omega (radians) |
|
128
|
|
|
|
|
|
|
* PERIH = argument of perihelion, little omega (radians) |
|
129
|
|
|
|
|
|
|
* AORQ = perihelion distance, q (AU) |
|
130
|
|
|
|
|
|
|
* E = eccentricity, e (range 0 to 10) |
|
131
|
|
|
|
|
|
|
* |
|
132
|
|
|
|
|
|
|
* - Unused elements (DM for JFORM=2, AORL and DM for JFORM=3) are |
|
133
|
|
|
|
|
|
|
* not accessed. |
|
134
|
|
|
|
|
|
|
* - The algorithm was originally adapted from the EPHSLA program of |
|
135
|
|
|
|
|
|
|
* D.H.P.Jones (private communication, 1996). The method is based |
|
136
|
|
|
|
|
|
|
* on Stumpff's Universal Variables. |
|
137
|
|
|
|
|
|
|
* |
|
138
|
|
|
|
|
|
|
* See Also: |
|
139
|
|
|
|
|
|
|
* Everhart & Pitkin, Am.J.Phys. 51, 712 (1983). |
|
140
|
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
* History: |
|
142
|
|
|
|
|
|
|
* 2012-03-12 (TIMJ): |
|
143
|
|
|
|
|
|
|
* Initial version taken directly from SLA/F. |
|
144
|
|
|
|
|
|
|
* Adapted with permission from the Fortran SLALIB library. |
|
145
|
|
|
|
|
|
|
* {enter_further_changes_here} |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
* Copyright: |
|
148
|
|
|
|
|
|
|
* Copyright (C) 2005 Patrick T. Wallace |
|
149
|
|
|
|
|
|
|
* Copyright (C) 2012 Science and Technology Facilities Council. |
|
150
|
|
|
|
|
|
|
* All Rights Reserved. |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
* Licence: |
|
153
|
|
|
|
|
|
|
* This program is free software; you can redistribute it and/or |
|
154
|
|
|
|
|
|
|
* modify it under the terms of the GNU General Public License as |
|
155
|
|
|
|
|
|
|
* published by the Free Software Foundation; either version 3 of |
|
156
|
|
|
|
|
|
|
* the License, or (at your option) any later version. |
|
157
|
|
|
|
|
|
|
* |
|
158
|
|
|
|
|
|
|
* This program is distributed in the hope that it will be |
|
159
|
|
|
|
|
|
|
* useful, but WITHOUT ANY WARRANTY; without even the implied |
|
160
|
|
|
|
|
|
|
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR |
|
161
|
|
|
|
|
|
|
* PURPOSE. See the GNU General Public License for more details. |
|
162
|
|
|
|
|
|
|
* |
|
163
|
|
|
|
|
|
|
* You should have received a copy of the GNU General Public License |
|
164
|
|
|
|
|
|
|
* along with this program; if not, write to the Free Software |
|
165
|
|
|
|
|
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, |
|
166
|
|
|
|
|
|
|
* MA 02110-1301, USA. |
|
167
|
|
|
|
|
|
|
|
|
168
|
|
|
|
|
|
|
* Bugs: |
|
169
|
|
|
|
|
|
|
* {note_any_bugs_here} |
|
170
|
|
|
|
|
|
|
*- |
|
171
|
|
|
|
|
|
|
*/ |
|
172
|
|
|
|
|
|
|
|
|
173
|
|
|
|
|
|
|
#include |
|
174
|
|
|
|
|
|
|
|
|
175
|
|
|
|
|
|
|
#include "pal.h" |
|
176
|
|
|
|
|
|
|
#include "palmac.h" |
|
177
|
|
|
|
|
|
|
|
|
178
|
3
|
|
|
|
|
|
void palEl2ue ( double date, int jform, double epoch, double orbinc, |
|
179
|
|
|
|
|
|
|
double anode, double perih, double aorq, double e, |
|
180
|
|
|
|
|
|
|
double aorl, double dm, double u[13], int *jstat ) { |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
/* Sin and cos of J2000 mean obliquity (IAU 1976) */ |
|
183
|
|
|
|
|
|
|
const double SE=0.3977771559319137; |
|
184
|
|
|
|
|
|
|
const double CE=0.9174820620691818; |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
int J; |
|
187
|
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
double PHT,ARGPH,Q,W,CM,ALPHA,PHS,SW,CW,SI,CI,SO,CO, |
|
189
|
|
|
|
|
|
|
X,Y,Z,PX,PY,PZ,VX,VY,VZ,DT,FC,FP,PSI, |
|
190
|
|
|
|
|
|
|
UL[13],PV[6]; |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
/* Validate arguments. */ |
|
193
|
3
|
50
|
|
|
|
|
if (jform < 1 || jform > 3) { |
|
194
|
0
|
|
|
|
|
|
*jstat = -1; |
|
195
|
0
|
|
|
|
|
|
return; |
|
196
|
|
|
|
|
|
|
} |
|
197
|
3
|
50
|
|
|
|
|
if (e < 0.0 || e > 10.0 || (e >= 1.0 && jform != 3)) { |
|
|
|
50
|
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
198
|
0
|
|
|
|
|
|
*jstat = -2; |
|
199
|
0
|
|
|
|
|
|
return; |
|
200
|
|
|
|
|
|
|
} |
|
201
|
3
|
50
|
|
|
|
|
if (aorq <= 0.0) { |
|
202
|
0
|
|
|
|
|
|
*jstat = -3; |
|
203
|
0
|
|
|
|
|
|
return; |
|
204
|
|
|
|
|
|
|
} |
|
205
|
3
|
50
|
|
|
|
|
if (jform == 1 && dm <= 0.0) { |
|
|
|
0
|
|
|
|
|
|
|
206
|
0
|
|
|
|
|
|
*jstat = -4; |
|
207
|
0
|
|
|
|
|
|
return; |
|
208
|
|
|
|
|
|
|
} |
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
/* |
|
211
|
|
|
|
|
|
|
* Transform elements into standard form: |
|
212
|
|
|
|
|
|
|
* |
|
213
|
|
|
|
|
|
|
* PHT = epoch of perihelion passage |
|
214
|
|
|
|
|
|
|
* ARGPH = argument of perihelion (little omega) |
|
215
|
|
|
|
|
|
|
* Q = perihelion distance (q) |
|
216
|
|
|
|
|
|
|
* CM = combined mass, M+m (mu) |
|
217
|
|
|
|
|
|
|
*/ |
|
218
|
|
|
|
|
|
|
|
|
219
|
3
|
50
|
|
|
|
|
if (jform == 1) { |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
/* Major planet. */ |
|
222
|
0
|
|
|
|
|
|
PHT = epoch-(aorl-perih)/dm; |
|
223
|
0
|
|
|
|
|
|
ARGPH = perih-anode; |
|
224
|
0
|
|
|
|
|
|
Q = aorq*(1.0-e); |
|
225
|
0
|
|
|
|
|
|
W = dm/PAL__GCON; |
|
226
|
0
|
|
|
|
|
|
CM = W*W*aorq*aorq*aorq; |
|
227
|
|
|
|
|
|
|
|
|
228
|
3
|
50
|
|
|
|
|
} else if (jform == 2) { |
|
229
|
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
/* Minor planet. */ |
|
231
|
0
|
|
|
|
|
|
PHT = epoch-aorl*sqrt(aorq*aorq*aorq)/PAL__GCON; |
|
232
|
|
|
|
|
|
|
ARGPH = perih; |
|
233
|
0
|
|
|
|
|
|
Q = aorq*(1.0-e); |
|
234
|
|
|
|
|
|
|
CM = 1.0; |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
} else { |
|
237
|
|
|
|
|
|
|
|
|
238
|
|
|
|
|
|
|
/* Comet. */ |
|
239
|
|
|
|
|
|
|
PHT = epoch; |
|
240
|
|
|
|
|
|
|
ARGPH = perih; |
|
241
|
|
|
|
|
|
|
Q = aorq; |
|
242
|
|
|
|
|
|
|
CM = 1.0; |
|
243
|
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
/* The universal variable alpha. This is proportional to the total |
|
247
|
|
|
|
|
|
|
* energy of the orbit: -ve for an ellipse, zero for a parabola, |
|
248
|
|
|
|
|
|
|
* +ve for a hyperbola. */ |
|
249
|
|
|
|
|
|
|
|
|
250
|
3
|
|
|
|
|
|
ALPHA = CM*(e-1.0)/Q; |
|
251
|
|
|
|
|
|
|
|
|
252
|
|
|
|
|
|
|
/* Speed at perihelion. */ |
|
253
|
|
|
|
|
|
|
|
|
254
|
3
|
|
|
|
|
|
PHS = sqrt(ALPHA+2.0*CM/Q); |
|
255
|
|
|
|
|
|
|
|
|
256
|
|
|
|
|
|
|
/* In a Cartesian coordinate system which has the x-axis pointing |
|
257
|
|
|
|
|
|
|
* to perihelion and the z-axis normal to the orbit (such that the |
|
258
|
|
|
|
|
|
|
* object orbits counter-clockwise as seen from +ve z), the |
|
259
|
|
|
|
|
|
|
* perihelion position and velocity vectors are: |
|
260
|
|
|
|
|
|
|
* |
|
261
|
|
|
|
|
|
|
* position [Q,0,0] |
|
262
|
|
|
|
|
|
|
* velocity [0,PHS,0] |
|
263
|
|
|
|
|
|
|
* |
|
264
|
|
|
|
|
|
|
* To express the results in J2000 equatorial coordinates we make a |
|
265
|
|
|
|
|
|
|
* series of four rotations of the Cartesian axes: |
|
266
|
|
|
|
|
|
|
* |
|
267
|
|
|
|
|
|
|
* axis Euler angle |
|
268
|
|
|
|
|
|
|
* |
|
269
|
|
|
|
|
|
|
* 1 z argument of perihelion (little omega) |
|
270
|
|
|
|
|
|
|
* 2 x inclination (i) |
|
271
|
|
|
|
|
|
|
* 3 z longitude of the ascending node (big omega) |
|
272
|
|
|
|
|
|
|
* 4 x J2000 obliquity (epsilon) |
|
273
|
|
|
|
|
|
|
* |
|
274
|
|
|
|
|
|
|
* In each case the rotation is clockwise as seen from the +ve end of |
|
275
|
|
|
|
|
|
|
* the axis concerned. |
|
276
|
|
|
|
|
|
|
*/ |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
/* Functions of the Euler angles. */ |
|
279
|
3
|
|
|
|
|
|
SW = sin(ARGPH); |
|
280
|
3
|
|
|
|
|
|
CW = cos(ARGPH); |
|
281
|
3
|
|
|
|
|
|
SI = sin(orbinc); |
|
282
|
3
|
|
|
|
|
|
CI = cos(orbinc); |
|
283
|
3
|
|
|
|
|
|
SO = sin(anode); |
|
284
|
3
|
|
|
|
|
|
CO = cos(anode); |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
/* Position at perihelion (AU). */ |
|
287
|
3
|
|
|
|
|
|
X = Q*CW; |
|
288
|
3
|
|
|
|
|
|
Y = Q*SW; |
|
289
|
3
|
|
|
|
|
|
Z = Y*SI; |
|
290
|
3
|
|
|
|
|
|
Y = Y*CI; |
|
291
|
3
|
|
|
|
|
|
PX = X*CO-Y*SO; |
|
292
|
3
|
|
|
|
|
|
Y = X*SO+Y*CO; |
|
293
|
3
|
|
|
|
|
|
PY = Y*CE-Z*SE; |
|
294
|
3
|
|
|
|
|
|
PZ = Y*SE+Z*CE; |
|
295
|
|
|
|
|
|
|
|
|
296
|
|
|
|
|
|
|
/* Velocity at perihelion (AU per canonical day). */ |
|
297
|
3
|
|
|
|
|
|
X = -PHS*SW; |
|
298
|
3
|
|
|
|
|
|
Y = PHS*CW; |
|
299
|
3
|
|
|
|
|
|
Z = Y*SI; |
|
300
|
3
|
|
|
|
|
|
Y = Y*CI; |
|
301
|
3
|
|
|
|
|
|
VX = X*CO-Y*SO; |
|
302
|
3
|
|
|
|
|
|
Y = X*SO+Y*CO; |
|
303
|
3
|
|
|
|
|
|
VY = Y*CE-Z*SE; |
|
304
|
3
|
|
|
|
|
|
VZ = Y*SE+Z*CE; |
|
305
|
|
|
|
|
|
|
|
|
306
|
|
|
|
|
|
|
/* Time from perihelion to date (in Canonical Days: a canonical day |
|
307
|
|
|
|
|
|
|
* is 58.1324409... days, defined as 1/PAL__GCON). */ |
|
308
|
|
|
|
|
|
|
|
|
309
|
3
|
|
|
|
|
|
DT = (date-PHT)*PAL__GCON; |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
/* First approximation to the Universal Eccentric Anomaly, PSI, |
|
312
|
|
|
|
|
|
|
* based on the circle (FC) and parabola (FP) values. */ |
|
313
|
|
|
|
|
|
|
|
|
314
|
3
|
|
|
|
|
|
FC = DT/Q; |
|
315
|
3
|
|
|
|
|
|
W = pow(3.0*DT+sqrt(9.0*DT*DT+8.0*Q*Q*Q), 1.0/3.0); |
|
316
|
3
|
|
|
|
|
|
FP = W-2.0*Q/W; |
|
317
|
3
|
|
|
|
|
|
PSI = (1.0-e)*FC+e*FP; |
|
318
|
|
|
|
|
|
|
|
|
319
|
|
|
|
|
|
|
/* Assemble local copy of element set. */ |
|
320
|
3
|
|
|
|
|
|
UL[0] = CM; |
|
321
|
3
|
|
|
|
|
|
UL[1] = ALPHA; |
|
322
|
3
|
|
|
|
|
|
UL[2] = PHT; |
|
323
|
3
|
|
|
|
|
|
UL[3] = PX; |
|
324
|
3
|
|
|
|
|
|
UL[4] = PY; |
|
325
|
3
|
|
|
|
|
|
UL[5] = PZ; |
|
326
|
3
|
|
|
|
|
|
UL[6] = VX; |
|
327
|
3
|
|
|
|
|
|
UL[7] = VY; |
|
328
|
3
|
|
|
|
|
|
UL[8] = VZ; |
|
329
|
3
|
|
|
|
|
|
UL[9] = Q; |
|
330
|
3
|
|
|
|
|
|
UL[10] = 0.0; |
|
331
|
3
|
|
|
|
|
|
UL[11] = date; |
|
332
|
3
|
|
|
|
|
|
UL[12] = PSI; |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
/* Predict position+velocity at epoch of osculation. */ |
|
335
|
3
|
|
|
|
|
|
palUe2pv( date, UL, PV, &J ); |
|
336
|
3
|
50
|
|
|
|
|
if (J != 0) { |
|
337
|
0
|
|
|
|
|
|
*jstat = -5; |
|
338
|
0
|
|
|
|
|
|
return; |
|
339
|
|
|
|
|
|
|
} |
|
340
|
|
|
|
|
|
|
|
|
341
|
|
|
|
|
|
|
/* Convert back to universal elements. */ |
|
342
|
3
|
|
|
|
|
|
palPv2ue( PV, date, CM-1.0, u, &J ); |
|
343
|
3
|
50
|
|
|
|
|
if (J != 0) { |
|
344
|
0
|
|
|
|
|
|
*jstat = -5; |
|
345
|
0
|
|
|
|
|
|
return; |
|
346
|
|
|
|
|
|
|
} |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
/* OK exit. */ |
|
349
|
3
|
|
|
|
|
|
*jstat = 0; |
|
350
|
|
|
|
|
|
|
|
|
351
|
|
|
|
|
|
|
} |