| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | /* | 
| 2 |  |  |  |  |  |  | *+ | 
| 3 |  |  |  |  |  |  | *  Name: | 
| 4 |  |  |  |  |  |  | *     palPv2el | 
| 5 |  |  |  |  |  |  |  | 
| 6 |  |  |  |  |  |  | *  Purpose: | 
| 7 |  |  |  |  |  |  | *     Position velocity to heliocentirc osculating elements | 
| 8 |  |  |  |  |  |  |  | 
| 9 |  |  |  |  |  |  | *  Language: | 
| 10 |  |  |  |  |  |  | *     Starlink ANSI C | 
| 11 |  |  |  |  |  |  |  | 
| 12 |  |  |  |  |  |  | *  Type of Module: | 
| 13 |  |  |  |  |  |  | *     Library routine | 
| 14 |  |  |  |  |  |  |  | 
| 15 |  |  |  |  |  |  | *  Invocation: | 
| 16 |  |  |  |  |  |  | *     void palPv2el ( const double pv[6], double date, double pmass, int jformr, | 
| 17 |  |  |  |  |  |  | *                     int *jform, double *epoch, double *orbinc, | 
| 18 |  |  |  |  |  |  | *                     double *anode, double *perih, double *aorq, double *e, | 
| 19 |  |  |  |  |  |  | *                     double *aorl, double *dm, int *jstat ); | 
| 20 |  |  |  |  |  |  |  | 
| 21 |  |  |  |  |  |  | *  Arguments: | 
| 22 |  |  |  |  |  |  | *     pv = const double [6] (Given) | 
| 23 |  |  |  |  |  |  | *        Heliocentric x,y,z,xdot,ydot,zdot of date, | 
| 24 |  |  |  |  |  |  | *        J2000 equatorial triad (AU,AU/s; Note 1) | 
| 25 |  |  |  |  |  |  | *     date = double (Given) | 
| 26 |  |  |  |  |  |  | *        Date (TT Modified Julian Date = JD-2400000.5) | 
| 27 |  |  |  |  |  |  | *     pmass = double (Given) | 
| 28 |  |  |  |  |  |  | *        Mass of the planet (Sun=1; Note 2) | 
| 29 |  |  |  |  |  |  | *     jformr = int (Given) | 
| 30 |  |  |  |  |  |  | *        Requested element set (1-3; Note 3) | 
| 31 |  |  |  |  |  |  | *     jform = int * (Returned) | 
| 32 |  |  |  |  |  |  | *        Element set actually returned (1-3; Note 4) | 
| 33 |  |  |  |  |  |  | *     epoch = double * (Returned) | 
| 34 |  |  |  |  |  |  | *        Epoch of elements (TT MJD) | 
| 35 |  |  |  |  |  |  | *     orbinc = double * (Returned) | 
| 36 |  |  |  |  |  |  | *        inclination (radians) | 
| 37 |  |  |  |  |  |  | *     anode = double * (Returned) | 
| 38 |  |  |  |  |  |  | *        longitude of the ascending node (radians) | 
| 39 |  |  |  |  |  |  | *     perih = double * (Returned) | 
| 40 |  |  |  |  |  |  | *        longitude or argument of perihelion (radians) | 
| 41 |  |  |  |  |  |  | *     aorq = double * (Returned) | 
| 42 |  |  |  |  |  |  | *        mean distance or perihelion distance (AU) | 
| 43 |  |  |  |  |  |  | *     e = double * (Returned) | 
| 44 |  |  |  |  |  |  | *        eccentricity | 
| 45 |  |  |  |  |  |  | *     aorl = double * (Returned) | 
| 46 |  |  |  |  |  |  | *        mean anomaly or longitude (radians, JFORM=1,2 only) | 
| 47 |  |  |  |  |  |  | *     dm = double * (Returned) | 
| 48 |  |  |  |  |  |  | *        daily motion (radians, JFORM=1 only) | 
| 49 |  |  |  |  |  |  | *     jstat = int * (Returned) | 
| 50 |  |  |  |  |  |  | *        status:  0 = OK | 
| 51 |  |  |  |  |  |  | *               - -1 = illegal PMASS | 
| 52 |  |  |  |  |  |  | *               - -2 = illegal JFORMR | 
| 53 |  |  |  |  |  |  | *               - -3 = position/velocity out of range | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | *  Description: | 
| 56 |  |  |  |  |  |  | *     Heliocentric osculating elements obtained from instantaneous position | 
| 57 |  |  |  |  |  |  | *     and velocity. | 
| 58 |  |  |  |  |  |  |  | 
| 59 |  |  |  |  |  |  | *  Authors: | 
| 60 |  |  |  |  |  |  | *     PTW: Pat Wallace (STFC) | 
| 61 |  |  |  |  |  |  | *     TIMJ: Tim Jenness (JAC, Hawaii) | 
| 62 |  |  |  |  |  |  | *     {enter_new_authors_here} | 
| 63 |  |  |  |  |  |  |  | 
| 64 |  |  |  |  |  |  | *  Notes: | 
| 65 |  |  |  |  |  |  | *     - The PV 6-vector is with respect to the mean equator and equinox of | 
| 66 |  |  |  |  |  |  | *       epoch J2000.  The orbital elements produced are with respect to | 
| 67 |  |  |  |  |  |  | *       the J2000 ecliptic and mean equinox. | 
| 68 |  |  |  |  |  |  | *     - The mass, PMASS, is important only for the larger planets.  For | 
| 69 |  |  |  |  |  |  | *       most purposes (e.g. asteroids) use 0D0.  Values less than zero | 
| 70 |  |  |  |  |  |  | *       are illegal. | 
| 71 |  |  |  |  |  |  | *     - Three different element-format options are supported: | 
| 72 |  |  |  |  |  |  | * | 
| 73 |  |  |  |  |  |  | *       Option JFORM=1, suitable for the major planets: | 
| 74 |  |  |  |  |  |  | * | 
| 75 |  |  |  |  |  |  | *       EPOCH  = epoch of elements (TT MJD) | 
| 76 |  |  |  |  |  |  | *       ORBINC = inclination i (radians) | 
| 77 |  |  |  |  |  |  | *       ANODE  = longitude of the ascending node, big omega (radians) | 
| 78 |  |  |  |  |  |  | *       PERIH  = longitude of perihelion, curly pi (radians) | 
| 79 |  |  |  |  |  |  | *       AORQ   = mean distance, a (AU) | 
| 80 |  |  |  |  |  |  | *       E      = eccentricity, e | 
| 81 |  |  |  |  |  |  | *       AORL   = mean longitude L (radians) | 
| 82 |  |  |  |  |  |  | *       DM     = daily motion (radians) | 
| 83 |  |  |  |  |  |  | * | 
| 84 |  |  |  |  |  |  | *       Option JFORM=2, suitable for minor planets: | 
| 85 |  |  |  |  |  |  | * | 
| 86 |  |  |  |  |  |  | *       EPOCH  = epoch of elements (TT MJD) | 
| 87 |  |  |  |  |  |  | *       ORBINC = inclination i (radians) | 
| 88 |  |  |  |  |  |  | *       ANODE  = longitude of the ascending node, big omega (radians) | 
| 89 |  |  |  |  |  |  | *       PERIH  = argument of perihelion, little omega (radians) | 
| 90 |  |  |  |  |  |  | *       AORQ   = mean distance, a (AU) | 
| 91 |  |  |  |  |  |  | *       E      = eccentricity, e | 
| 92 |  |  |  |  |  |  | *       AORL   = mean anomaly M (radians) | 
| 93 |  |  |  |  |  |  | * | 
| 94 |  |  |  |  |  |  | *       Option JFORM=3, suitable for comets: | 
| 95 |  |  |  |  |  |  | * | 
| 96 |  |  |  |  |  |  | *       EPOCH  = epoch of perihelion (TT MJD) | 
| 97 |  |  |  |  |  |  | *       ORBINC = inclination i (radians) | 
| 98 |  |  |  |  |  |  | *       ANODE  = longitude of the ascending node, big omega (radians) | 
| 99 |  |  |  |  |  |  | *       PERIH  = argument of perihelion, little omega (radians) | 
| 100 |  |  |  |  |  |  | *       AORQ   = perihelion distance, q (AU) | 
| 101 |  |  |  |  |  |  | *       E      = eccentricity, e | 
| 102 |  |  |  |  |  |  | * | 
| 103 |  |  |  |  |  |  | *     - It may not be possible to generate elements in the form | 
| 104 |  |  |  |  |  |  | *       requested through JFORMR.  The caller is notified of the form | 
| 105 |  |  |  |  |  |  | *       of elements actually returned by means of the JFORM argument: | 
| 106 |  |  |  |  |  |  |  | 
| 107 |  |  |  |  |  |  | *        JFORMR   JFORM     meaning | 
| 108 |  |  |  |  |  |  | * | 
| 109 |  |  |  |  |  |  | *          1        1       OK - elements are in the requested format | 
| 110 |  |  |  |  |  |  | *          1        2       never happens | 
| 111 |  |  |  |  |  |  | *          1        3       orbit not elliptical | 
| 112 |  |  |  |  |  |  | * | 
| 113 |  |  |  |  |  |  | *          2        1       never happens | 
| 114 |  |  |  |  |  |  | *          2        2       OK - elements are in the requested format | 
| 115 |  |  |  |  |  |  | *          2        3       orbit not elliptical | 
| 116 |  |  |  |  |  |  | * | 
| 117 |  |  |  |  |  |  | *          3        1       never happens | 
| 118 |  |  |  |  |  |  | *          3        2       never happens | 
| 119 |  |  |  |  |  |  | *          3        3       OK - elements are in the requested format | 
| 120 |  |  |  |  |  |  | * | 
| 121 |  |  |  |  |  |  | *     - The arguments returned for each value of JFORM (cf Note 5: JFORM | 
| 122 |  |  |  |  |  |  | *       may not be the same as JFORMR) are as follows: | 
| 123 |  |  |  |  |  |  | * | 
| 124 |  |  |  |  |  |  | *         JFORM         1              2              3 | 
| 125 |  |  |  |  |  |  | *         EPOCH         t0             t0             T | 
| 126 |  |  |  |  |  |  | *         ORBINC        i              i              i | 
| 127 |  |  |  |  |  |  | *         ANODE         Omega          Omega          Omega | 
| 128 |  |  |  |  |  |  | *         PERIH         curly pi       omega          omega | 
| 129 |  |  |  |  |  |  | *         AORQ          a              a              q | 
| 130 |  |  |  |  |  |  | *         E             e              e              e | 
| 131 |  |  |  |  |  |  | *         AORL          L              M              - | 
| 132 |  |  |  |  |  |  | *         DM            n              -              - | 
| 133 |  |  |  |  |  |  | * | 
| 134 |  |  |  |  |  |  | *       where: | 
| 135 |  |  |  |  |  |  | * | 
| 136 |  |  |  |  |  |  | *         t0           is the epoch of the elements (MJD, TT) | 
| 137 |  |  |  |  |  |  | *         T              "    epoch of perihelion (MJD, TT) | 
| 138 |  |  |  |  |  |  | *         i              "    inclination (radians) | 
| 139 |  |  |  |  |  |  | *         Omega          "    longitude of the ascending node (radians) | 
| 140 |  |  |  |  |  |  | *         curly pi       "    longitude of perihelion (radians) | 
| 141 |  |  |  |  |  |  | *         omega          "    argument of perihelion (radians) | 
| 142 |  |  |  |  |  |  | *         a              "    mean distance (AU) | 
| 143 |  |  |  |  |  |  | *         q              "    perihelion distance (AU) | 
| 144 |  |  |  |  |  |  | *         e              "    eccentricity | 
| 145 |  |  |  |  |  |  | *         L              "    longitude (radians, 0-2pi) | 
| 146 |  |  |  |  |  |  | *         M              "    mean anomaly (radians, 0-2pi) | 
| 147 |  |  |  |  |  |  | *         n              "    daily motion (radians) | 
| 148 |  |  |  |  |  |  | *         -             means no value is set | 
| 149 |  |  |  |  |  |  | * | 
| 150 |  |  |  |  |  |  | *     - At very small inclinations, the longitude of the ascending node | 
| 151 |  |  |  |  |  |  | *       ANODE becomes indeterminate and under some circumstances may be | 
| 152 |  |  |  |  |  |  | *       set arbitrarily to zero.  Similarly, if the orbit is close to | 
| 153 |  |  |  |  |  |  | *       circular, the true anomaly becomes indeterminate and under some | 
| 154 |  |  |  |  |  |  | *       circumstances may be set arbitrarily to zero.  In such cases, | 
| 155 |  |  |  |  |  |  | *       the other elements are automatically adjusted to compensate, | 
| 156 |  |  |  |  |  |  | *       and so the elements remain a valid description of the orbit. | 
| 157 |  |  |  |  |  |  | *     - The osculating epoch for the returned elements is the argument | 
| 158 |  |  |  |  |  |  | *       DATE. | 
| 159 |  |  |  |  |  |  | * | 
| 160 |  |  |  |  |  |  | *     - Reference:  Sterne, Theodore E., "An Introduction to Celestial | 
| 161 |  |  |  |  |  |  | *                   Mechanics", Interscience Publishers, 1960 | 
| 162 |  |  |  |  |  |  |  | 
| 163 |  |  |  |  |  |  | *  History: | 
| 164 |  |  |  |  |  |  | *     2012-03-09 (TIMJ): | 
| 165 |  |  |  |  |  |  | *        Initial version converted from SLA/F. | 
| 166 |  |  |  |  |  |  | *        Adapted with permission from the Fortran SLALIB library. | 
| 167 |  |  |  |  |  |  | *     {enter_further_changes_here} | 
| 168 |  |  |  |  |  |  |  | 
| 169 |  |  |  |  |  |  | *  Copyright: | 
| 170 |  |  |  |  |  |  | *     Copyright (C) 2005 Patrick T. Wallace | 
| 171 |  |  |  |  |  |  | *     Copyright (C) 2012 Science and Technology Facilities Council. | 
| 172 |  |  |  |  |  |  | *     All Rights Reserved. | 
| 173 |  |  |  |  |  |  |  | 
| 174 |  |  |  |  |  |  | *  Licence: | 
| 175 |  |  |  |  |  |  | *     This program is free software; you can redistribute it and/or | 
| 176 |  |  |  |  |  |  | *     modify it under the terms of the GNU General Public License as | 
| 177 |  |  |  |  |  |  | *     published by the Free Software Foundation; either version 3 of | 
| 178 |  |  |  |  |  |  | *     the License, or (at your option) any later version. | 
| 179 |  |  |  |  |  |  | * | 
| 180 |  |  |  |  |  |  | *     This program is distributed in the hope that it will be | 
| 181 |  |  |  |  |  |  | *     useful, but WITHOUT ANY WARRANTY; without even the implied | 
| 182 |  |  |  |  |  |  | *     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 183 |  |  |  |  |  |  | *     PURPOSE. See the GNU General Public License for more details. | 
| 184 |  |  |  |  |  |  | * | 
| 185 |  |  |  |  |  |  | *     You should have received a copy of the GNU General Public License | 
| 186 |  |  |  |  |  |  | *     along with this program; if not, write to the Free Software | 
| 187 |  |  |  |  |  |  | *     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | 
| 188 |  |  |  |  |  |  | *     MA 02110-1301, USA. | 
| 189 |  |  |  |  |  |  |  | 
| 190 |  |  |  |  |  |  | *  Bugs: | 
| 191 |  |  |  |  |  |  | *     {note_any_bugs_here} | 
| 192 |  |  |  |  |  |  | *- | 
| 193 |  |  |  |  |  |  | */ | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | #include | 
| 196 |  |  |  |  |  |  |  | 
| 197 |  |  |  |  |  |  | #include "pal1sofa.h" | 
| 198 |  |  |  |  |  |  | #include "pal.h" | 
| 199 |  |  |  |  |  |  | #include "palmac.h" | 
| 200 |  |  |  |  |  |  |  | 
| 201 | 2 |  |  |  |  |  | void palPv2el ( const double pv[6], double date, double pmass, int jformr, | 
| 202 |  |  |  |  |  |  | int *jform, double *epoch, double *orbinc, | 
| 203 |  |  |  |  |  |  | double *anode, double *perih, double *aorq, double *e, | 
| 204 |  |  |  |  |  |  | double *aorl, double *dm, int *jstat ) { | 
| 205 |  |  |  |  |  |  |  | 
| 206 |  |  |  |  |  |  | /*  Sin and cos of J2000 mean obliquity (IAU 1976) */ | 
| 207 |  |  |  |  |  |  | const double SE = 0.3977771559319137; | 
| 208 |  |  |  |  |  |  | const double CE = 0.9174820620691818; | 
| 209 |  |  |  |  |  |  |  | 
| 210 |  |  |  |  |  |  | /*  Minimum allowed distance (AU) and speed (AU/day) */ | 
| 211 |  |  |  |  |  |  | const double RMIN = 1e-3; | 
| 212 |  |  |  |  |  |  | const double VMIN = 1e-8; | 
| 213 |  |  |  |  |  |  |  | 
| 214 |  |  |  |  |  |  | /*  How close to unity the eccentricity has to be to call it a parabola */ | 
| 215 |  |  |  |  |  |  | const double PARAB = 1.0e-8; | 
| 216 |  |  |  |  |  |  |  | 
| 217 |  |  |  |  |  |  | double X,Y,Z,XD,YD,ZD,R,V2,V,RDV,GMU,HX,HY,HZ, | 
| 218 |  |  |  |  |  |  | HX2PY2,H2,H,OI,BIGOM,AR,ECC,S,C,AT,U,OM, | 
| 219 |  |  |  |  |  |  | GAR3,EM1,EP1,HAT,SHAT,CHAT,AE,AM,DN,PL, | 
| 220 |  |  |  |  |  |  | EL,Q,TP,THAT,THHF,F; | 
| 221 |  |  |  |  |  |  |  | 
| 222 |  |  |  |  |  |  | int JF; | 
| 223 |  |  |  |  |  |  |  | 
| 224 |  |  |  |  |  |  | /*  Validate arguments PMASS and JFORMR.*/ | 
| 225 | 2 | 50 |  |  |  |  | if (pmass < 0.0) { | 
| 226 | 0 |  |  |  |  |  | *jstat = -1; | 
| 227 | 0 |  |  |  |  |  | return; | 
| 228 |  |  |  |  |  |  | } | 
| 229 | 2 | 50 |  |  |  |  | if (jformr < 1 || jformr > 3) { | 
| 230 | 0 |  |  |  |  |  | *jstat = -2; | 
| 231 | 0 |  |  |  |  |  | return; | 
| 232 |  |  |  |  |  |  | } | 
| 233 |  |  |  |  |  |  |  | 
| 234 |  |  |  |  |  |  | /*  Provisionally assume the elements will be in the chosen form. */ | 
| 235 |  |  |  |  |  |  | JF = jformr; | 
| 236 |  |  |  |  |  |  |  | 
| 237 |  |  |  |  |  |  | /*  Rotate the position from equatorial to ecliptic coordinates. */ | 
| 238 | 2 |  |  |  |  |  | X = pv[0]; | 
| 239 | 2 |  |  |  |  |  | Y = pv[1]*CE+pv[2]*SE; | 
| 240 | 2 |  |  |  |  |  | Z = -pv[1]*SE+pv[2]*CE; | 
| 241 |  |  |  |  |  |  |  | 
| 242 |  |  |  |  |  |  | /*  Rotate the velocity similarly, scaling to AU/day. */ | 
| 243 | 2 |  |  |  |  |  | XD = PAL__SPD*pv[3]; | 
| 244 | 2 |  |  |  |  |  | YD = PAL__SPD*(pv[4]*CE+pv[5]*SE); | 
| 245 | 2 |  |  |  |  |  | ZD = PAL__SPD*(-pv[4]*SE+pv[5]*CE); | 
| 246 |  |  |  |  |  |  |  | 
| 247 |  |  |  |  |  |  | /*  Distance and speed. */ | 
| 248 | 2 |  |  |  |  |  | R = sqrt(X*X+Y*Y+Z*Z); | 
| 249 | 2 |  |  |  |  |  | V2 = XD*XD+YD*YD+ZD*ZD; | 
| 250 | 2 |  |  |  |  |  | V = sqrt(V2); | 
| 251 |  |  |  |  |  |  |  | 
| 252 |  |  |  |  |  |  | /*  Reject unreasonably small values. */ | 
| 253 | 2 | 50 |  |  |  |  | if (R < RMIN || V < VMIN) { | 
|  |  | 50 |  |  |  |  |  | 
| 254 | 0 |  |  |  |  |  | *jstat = -3; | 
| 255 | 0 |  |  |  |  |  | return; | 
| 256 |  |  |  |  |  |  | } | 
| 257 |  |  |  |  |  |  |  | 
| 258 |  |  |  |  |  |  | /*  R dot V. */ | 
| 259 | 2 |  |  |  |  |  | RDV = X*XD+Y*YD+Z*ZD; | 
| 260 |  |  |  |  |  |  |  | 
| 261 |  |  |  |  |  |  | /*  Mu. */ | 
| 262 | 2 |  |  |  |  |  | GMU = (1.0+pmass)*PAL__GCON*PAL__GCON; | 
| 263 |  |  |  |  |  |  |  | 
| 264 |  |  |  |  |  |  | /*  Vector angular momentum per unit reduced mass. */ | 
| 265 | 2 |  |  |  |  |  | HX = Y*ZD-Z*YD; | 
| 266 | 2 |  |  |  |  |  | HY = Z*XD-X*ZD; | 
| 267 | 2 |  |  |  |  |  | HZ = X*YD-Y*XD; | 
| 268 |  |  |  |  |  |  |  | 
| 269 |  |  |  |  |  |  | /*  Areal constant. */ | 
| 270 | 2 |  |  |  |  |  | HX2PY2 = HX*HX+HY*HY; | 
| 271 | 2 |  |  |  |  |  | H2 = HX2PY2+HZ*HZ; | 
| 272 | 2 |  |  |  |  |  | H = sqrt(H2); | 
| 273 |  |  |  |  |  |  |  | 
| 274 |  |  |  |  |  |  | /*  Inclination. */ | 
| 275 | 2 |  |  |  |  |  | OI = atan2(sqrt(HX2PY2),HZ); | 
| 276 |  |  |  |  |  |  |  | 
| 277 |  |  |  |  |  |  | /*  Longitude of ascending node. */ | 
| 278 | 2 | 50 |  |  |  |  | if (HX != 0.0 || HY != 0.0) { | 
| 279 | 2 |  |  |  |  |  | BIGOM = atan2(HX,-HY); | 
| 280 |  |  |  |  |  |  | } else { | 
| 281 |  |  |  |  |  |  | BIGOM=0.0; | 
| 282 |  |  |  |  |  |  | } | 
| 283 |  |  |  |  |  |  |  | 
| 284 |  |  |  |  |  |  | /*  Reciprocal of mean distance etc. */ | 
| 285 | 2 |  |  |  |  |  | AR = 2.0/R-V2/GMU; | 
| 286 |  |  |  |  |  |  |  | 
| 287 |  |  |  |  |  |  | /*  Eccentricity. */ | 
| 288 | 2 | 50 |  |  |  |  | ECC = sqrt(DMAX(1.0-AR*H2/GMU,0.0)); | 
| 289 |  |  |  |  |  |  |  | 
| 290 |  |  |  |  |  |  | /*  True anomaly. */ | 
| 291 | 2 |  |  |  |  |  | S = H*RDV; | 
| 292 | 2 |  |  |  |  |  | C = H2-R*GMU; | 
| 293 | 2 | 50 |  |  |  |  | if (S != 0.0 || C != 0.0) { | 
| 294 | 2 |  |  |  |  |  | AT = atan2(S,C); | 
| 295 |  |  |  |  |  |  | } else { | 
| 296 |  |  |  |  |  |  | AT = 0.0; | 
| 297 |  |  |  |  |  |  | } | 
| 298 |  |  |  |  |  |  |  | 
| 299 |  |  |  |  |  |  | /*  Argument of the latitude. */ | 
| 300 | 2 |  |  |  |  |  | S = sin(BIGOM); | 
| 301 | 2 |  |  |  |  |  | C = cos(BIGOM); | 
| 302 | 2 |  |  |  |  |  | U = atan2((-X*S+Y*C)*cos(OI)+Z*sin(OI),X*C+Y*S); | 
| 303 |  |  |  |  |  |  |  | 
| 304 |  |  |  |  |  |  | /*  Argument of perihelion. */ | 
| 305 | 2 |  |  |  |  |  | OM = U-AT; | 
| 306 |  |  |  |  |  |  |  | 
| 307 |  |  |  |  |  |  | /*  Capture near-parabolic cases. */ | 
| 308 | 2 | 50 |  |  |  |  | if (fabs(ECC-1.0) < PARAB) ECC=1.0; | 
| 309 |  |  |  |  |  |  |  | 
| 310 |  |  |  |  |  |  | /*  Comply with JFORMR = 1 or 2 only if orbit is elliptical. */ | 
| 311 | 2 | 50 |  |  |  |  | if (ECC > 1.0) JF=3; | 
| 312 |  |  |  |  |  |  |  | 
| 313 |  |  |  |  |  |  | /*  Functions. */ | 
| 314 | 2 |  |  |  |  |  | GAR3 = GMU*AR*AR*AR; | 
| 315 | 2 |  |  |  |  |  | EM1 = ECC-1.0; | 
| 316 | 2 |  |  |  |  |  | EP1 = ECC+1.0; | 
| 317 | 2 |  |  |  |  |  | HAT = AT/2.0; | 
| 318 | 2 |  |  |  |  |  | SHAT = sin(HAT); | 
| 319 | 2 |  |  |  |  |  | CHAT = cos(HAT); | 
| 320 |  |  |  |  |  |  |  | 
| 321 |  |  |  |  |  |  | /*  Variable initializations to avoid compiler warnings. */ | 
| 322 |  |  |  |  |  |  | AM = 0.0; | 
| 323 |  |  |  |  |  |  | DN = 0.0; | 
| 324 |  |  |  |  |  |  | PL = 0.0; | 
| 325 |  |  |  |  |  |  | EL = 0.0; | 
| 326 |  |  |  |  |  |  | Q = 0.0; | 
| 327 |  |  |  |  |  |  | TP = 0.0; | 
| 328 |  |  |  |  |  |  |  | 
| 329 |  |  |  |  |  |  | /*  Ellipse? */ | 
| 330 | 2 | 50 |  |  |  |  | if (ECC < 1.0 ) { | 
| 331 |  |  |  |  |  |  |  | 
| 332 |  |  |  |  |  |  | /*     Eccentric anomaly. */ | 
| 333 | 2 |  |  |  |  |  | AE = 2.0*atan2(sqrt(-EM1)*SHAT,sqrt(EP1)*CHAT); | 
| 334 |  |  |  |  |  |  |  | 
| 335 |  |  |  |  |  |  | /*     Mean anomaly. */ | 
| 336 | 2 |  |  |  |  |  | AM = AE-ECC*sin(AE); | 
| 337 |  |  |  |  |  |  |  | 
| 338 |  |  |  |  |  |  | /*     Daily motion. */ | 
| 339 | 2 |  |  |  |  |  | DN = sqrt(GAR3); | 
| 340 |  |  |  |  |  |  | } | 
| 341 |  |  |  |  |  |  |  | 
| 342 |  |  |  |  |  |  | /*  "Major planet" element set? */ | 
| 343 | 2 | 50 |  |  |  |  | if (JF == 1) { | 
| 344 |  |  |  |  |  |  |  | 
| 345 |  |  |  |  |  |  | /*     Longitude of perihelion. */ | 
| 346 | 0 |  |  |  |  |  | PL = BIGOM+OM; | 
| 347 |  |  |  |  |  |  |  | 
| 348 |  |  |  |  |  |  | /*     Longitude at epoch. */ | 
| 349 | 0 |  |  |  |  |  | EL = PL+AM; | 
| 350 |  |  |  |  |  |  | } | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  | /*  "Comet" element set? */ | 
| 353 | 2 | 50 |  |  |  |  | if (JF == 3) { | 
| 354 |  |  |  |  |  |  |  | 
| 355 |  |  |  |  |  |  | /*     Perihelion distance. */ | 
| 356 | 2 |  |  |  |  |  | Q = H2/(GMU*EP1); | 
| 357 |  |  |  |  |  |  |  | 
| 358 |  |  |  |  |  |  | /*     Ellipse, parabola, hyperbola? */ | 
| 359 | 2 | 50 |  |  |  |  | if (ECC < 1.0) { | 
| 360 |  |  |  |  |  |  |  | 
| 361 |  |  |  |  |  |  | /*        Ellipse: epoch of perihelion. */ | 
| 362 | 2 |  |  |  |  |  | TP = date-AM/DN; | 
| 363 |  |  |  |  |  |  |  | 
| 364 |  |  |  |  |  |  | } else { | 
| 365 |  |  |  |  |  |  |  | 
| 366 |  |  |  |  |  |  | /*        Parabola or hyperbola: evaluate tan ( ( true anomaly ) / 2 ) */ | 
| 367 | 0 |  |  |  |  |  | THAT = SHAT/CHAT; | 
| 368 | 0 | 0 |  |  |  |  | if (ECC == 1.0) { | 
| 369 |  |  |  |  |  |  |  | 
| 370 |  |  |  |  |  |  | /*           Parabola: epoch of perihelion. */ | 
| 371 | 0 |  |  |  |  |  | TP = date-THAT*(1.0+THAT*THAT/3.0)*H*H2/(2.0*GMU*GMU); | 
| 372 |  |  |  |  |  |  |  | 
| 373 |  |  |  |  |  |  | } else { | 
| 374 |  |  |  |  |  |  |  | 
| 375 |  |  |  |  |  |  | /*           Hyperbola: epoch of perihelion. */ | 
| 376 | 0 |  |  |  |  |  | THHF = sqrt(EM1/EP1)*THAT; | 
| 377 | 0 |  |  |  |  |  | F = log(1.0+THHF)-log(1.0-THHF); | 
| 378 | 0 |  |  |  |  |  | TP = date-(ECC*sinh(F)-F)/sqrt(-GAR3); | 
| 379 |  |  |  |  |  |  | } | 
| 380 |  |  |  |  |  |  | } | 
| 381 |  |  |  |  |  |  | } | 
| 382 |  |  |  |  |  |  |  | 
| 383 |  |  |  |  |  |  | /*  Return the appropriate set of elements. */ | 
| 384 | 2 |  |  |  |  |  | *jform = JF; | 
| 385 | 2 |  |  |  |  |  | *orbinc = OI; | 
| 386 | 2 |  |  |  |  |  | *anode = eraAnp(BIGOM); | 
| 387 | 2 |  |  |  |  |  | *e = ECC; | 
| 388 | 2 | 50 |  |  |  |  | if (JF == 1) { | 
| 389 | 0 |  |  |  |  |  | *perih = eraAnp(PL); | 
| 390 | 0 |  |  |  |  |  | *aorl = eraAnp(EL); | 
| 391 | 0 |  |  |  |  |  | *dm = DN; | 
| 392 |  |  |  |  |  |  | } else { | 
| 393 | 2 |  |  |  |  |  | *perih = eraAnp(OM); | 
| 394 | 2 | 50 |  |  |  |  | if (JF == 2) *aorl = eraAnp(AM); | 
| 395 |  |  |  |  |  |  | } | 
| 396 | 2 | 50 |  |  |  |  | if (JF != 3) { | 
| 397 | 0 |  |  |  |  |  | *epoch = date; | 
| 398 | 0 |  |  |  |  |  | *aorq = 1.0/AR; | 
| 399 |  |  |  |  |  |  | } else { | 
| 400 | 2 |  |  |  |  |  | *epoch = TP; | 
| 401 | 2 |  |  |  |  |  | *aorq = Q; | 
| 402 |  |  |  |  |  |  | } | 
| 403 | 2 |  |  |  |  |  | *jstat = 0; | 
| 404 |  |  |  |  |  |  |  | 
| 405 |  |  |  |  |  |  | } |