| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | /* | 
| 2 |  |  |  |  |  |  | *+ | 
| 3 |  |  |  |  |  |  | *  Name: | 
| 4 |  |  |  |  |  |  | *     palPertue | 
| 5 |  |  |  |  |  |  |  | 
| 6 |  |  |  |  |  |  | *  Purpose: | 
| 7 |  |  |  |  |  |  | *     Update the universal elements by applying planetary perturbations | 
| 8 |  |  |  |  |  |  |  | 
| 9 |  |  |  |  |  |  | *  Language: | 
| 10 |  |  |  |  |  |  | *     Starlink ANSI C | 
| 11 |  |  |  |  |  |  |  | 
| 12 |  |  |  |  |  |  | *  Type of Module: | 
| 13 |  |  |  |  |  |  | *     Library routine | 
| 14 |  |  |  |  |  |  |  | 
| 15 |  |  |  |  |  |  | *  Invocation: | 
| 16 |  |  |  |  |  |  | *     void palPertue( double date, double u[13], int *jstat ); | 
| 17 |  |  |  |  |  |  |  | 
| 18 |  |  |  |  |  |  | *  Arguments: | 
| 19 |  |  |  |  |  |  | *     date = double (Given) | 
| 20 |  |  |  |  |  |  | *        Final epoch (TT MJD) for the update elements. | 
| 21 |  |  |  |  |  |  | *     u = const double [13] (Given & Returned) | 
| 22 |  |  |  |  |  |  | *        Universal orbital elements (Note 1) | 
| 23 |  |  |  |  |  |  | *            (0)  combined mass (M+m) | 
| 24 |  |  |  |  |  |  | *            (1)  total energy of the orbit (alpha) | 
| 25 |  |  |  |  |  |  | *            (2)  reference (osculating) epoch (t0) | 
| 26 |  |  |  |  |  |  | *          (3-5)  position at reference epoch (r0) | 
| 27 |  |  |  |  |  |  | *          (6-8)  velocity at reference epoch (v0) | 
| 28 |  |  |  |  |  |  | *            (9)  heliocentric distance at reference epoch | 
| 29 |  |  |  |  |  |  | *           (10)  r0.v0 | 
| 30 |  |  |  |  |  |  | *           (11)  date (t) | 
| 31 |  |  |  |  |  |  | *           (12)  universal eccentric anomaly (psi) of date, approx | 
| 32 |  |  |  |  |  |  | *     jstat = int * (Returned) | 
| 33 |  |  |  |  |  |  | *        status: | 
| 34 |  |  |  |  |  |  | *                   +102 = warning, distant epoch | 
| 35 |  |  |  |  |  |  | *                   +101 = warning, large timespan ( > 100 years) | 
| 36 |  |  |  |  |  |  | *              +1 to +10 = coincident with major planet (Note 5) | 
| 37 |  |  |  |  |  |  | *                      0 = OK | 
| 38 |  |  |  |  |  |  | *                     -1 = numerical error | 
| 39 |  |  |  |  |  |  |  | 
| 40 |  |  |  |  |  |  | *  Description: | 
| 41 |  |  |  |  |  |  | *     Update the universal elements of an asteroid or comet by applying | 
| 42 |  |  |  |  |  |  | *     planetary perturbations. | 
| 43 |  |  |  |  |  |  |  | 
| 44 |  |  |  |  |  |  | *  Authors: | 
| 45 |  |  |  |  |  |  | *     PTW: Pat Wallace (STFC) | 
| 46 |  |  |  |  |  |  | *     TIMJ: Tim Jenness (JAC, Hawaii) | 
| 47 |  |  |  |  |  |  | *     {enter_new_authors_here} | 
| 48 |  |  |  |  |  |  |  | 
| 49 |  |  |  |  |  |  | *  Notes: | 
| 50 |  |  |  |  |  |  | *     - The "universal" elements are those which define the orbit for the | 
| 51 |  |  |  |  |  |  | *       purposes of the method of universal variables (see reference 2). | 
| 52 |  |  |  |  |  |  | *       They consist of the combined mass of the two bodies, an epoch, | 
| 53 |  |  |  |  |  |  | *       and the position and velocity vectors (arbitrary reference frame) | 
| 54 |  |  |  |  |  |  | *       at that epoch.  The parameter set used here includes also various | 
| 55 |  |  |  |  |  |  | *       quantities that can, in fact, be derived from the other | 
| 56 |  |  |  |  |  |  | *       information.  This approach is taken to avoiding unnecessary | 
| 57 |  |  |  |  |  |  | *       computation and loss of accuracy.  The supplementary quantities | 
| 58 |  |  |  |  |  |  | *       are (i) alpha, which is proportional to the total energy of the | 
| 59 |  |  |  |  |  |  | *       orbit, (ii) the heliocentric distance at epoch, (iii) the | 
| 60 |  |  |  |  |  |  | *       outwards component of the velocity at the given epoch, (iv) an | 
| 61 |  |  |  |  |  |  | *       estimate of psi, the "universal eccentric anomaly" at a given | 
| 62 |  |  |  |  |  |  | *       date and (v) that date. | 
| 63 |  |  |  |  |  |  | *     - The universal elements are with respect to the J2000 equator and | 
| 64 |  |  |  |  |  |  | *       equinox. | 
| 65 |  |  |  |  |  |  | *     - The epochs DATE, U(3) and U(12) are all Modified Julian Dates | 
| 66 |  |  |  |  |  |  | *       (JD-2400000.5). | 
| 67 |  |  |  |  |  |  | *     - The algorithm is a simplified form of Encke's method.  It takes as | 
| 68 |  |  |  |  |  |  | *       a basis the unperturbed motion of the body, and numerically | 
| 69 |  |  |  |  |  |  | *       integrates the perturbing accelerations from the major planets. | 
| 70 |  |  |  |  |  |  | *       The expression used is essentially Sterne's 6.7-2 (reference 1). | 
| 71 |  |  |  |  |  |  | *       Everhart and Pitkin (reference 2) suggest rectifying the orbit at | 
| 72 |  |  |  |  |  |  | *       each integration step by propagating the new perturbed position | 
| 73 |  |  |  |  |  |  | *       and velocity as the new universal variables.  In the present | 
| 74 |  |  |  |  |  |  | *       routine the orbit is rectified less frequently than this, in order | 
| 75 |  |  |  |  |  |  | *       to gain a slight speed advantage.  However, the rectification is | 
| 76 |  |  |  |  |  |  | *       done directly in terms of position and velocity, as suggested by | 
| 77 |  |  |  |  |  |  | *       Everhart and Pitkin, bypassing the use of conventional orbital | 
| 78 |  |  |  |  |  |  | *       elements. | 
| 79 |  |  |  |  |  |  | * | 
| 80 |  |  |  |  |  |  | *       The f(q) part of the full Encke method is not used.  The purpose | 
| 81 |  |  |  |  |  |  | *       of this part is to avoid subtracting two nearly equal quantities | 
| 82 |  |  |  |  |  |  | *       when calculating the "indirect member", which takes account of the | 
| 83 |  |  |  |  |  |  | *       small change in the Sun's attraction due to the slightly displaced | 
| 84 |  |  |  |  |  |  | *       position of the perturbed body.  A simpler, direct calculation in | 
| 85 |  |  |  |  |  |  | *       double precision proves to be faster and not significantly less | 
| 86 |  |  |  |  |  |  | *       accurate. | 
| 87 |  |  |  |  |  |  | * | 
| 88 |  |  |  |  |  |  | *       Apart from employing a variable timestep, and occasionally | 
| 89 |  |  |  |  |  |  | *       "rectifying the orbit" to keep the indirect member small, the | 
| 90 |  |  |  |  |  |  | *       integration is done in a fairly straightforward way.  The | 
| 91 |  |  |  |  |  |  | *       acceleration estimated for the middle of the timestep is assumed | 
| 92 |  |  |  |  |  |  | *       to apply throughout that timestep;  it is also used in the | 
| 93 |  |  |  |  |  |  | *       extrapolation of the perturbations to the middle of the next | 
| 94 |  |  |  |  |  |  | *       timestep, to predict the new disturbed position.  There is no | 
| 95 |  |  |  |  |  |  | *       iteration within a timestep. | 
| 96 |  |  |  |  |  |  | * | 
| 97 |  |  |  |  |  |  | *       Measures are taken to reach a compromise between execution time | 
| 98 |  |  |  |  |  |  | *       and accuracy.  The starting-point is the goal of achieving | 
| 99 |  |  |  |  |  |  | *       arcsecond accuracy for ordinary minor planets over a ten-year | 
| 100 |  |  |  |  |  |  | *       timespan.  This goal dictates how large the timesteps can be, | 
| 101 |  |  |  |  |  |  | *       which in turn dictates how frequently the unperturbed motion has | 
| 102 |  |  |  |  |  |  | *       to be recalculated from the osculating elements. | 
| 103 |  |  |  |  |  |  | * | 
| 104 |  |  |  |  |  |  | *       Within predetermined limits, the timestep for the numerical | 
| 105 |  |  |  |  |  |  | *       integration is varied in length in inverse proportion to the | 
| 106 |  |  |  |  |  |  | *       magnitude of the net acceleration on the body from the major | 
| 107 |  |  |  |  |  |  | *       planets. | 
| 108 |  |  |  |  |  |  | * | 
| 109 |  |  |  |  |  |  | *       The numerical integration requires estimates of the major-planet | 
| 110 |  |  |  |  |  |  | *       motions.  Approximate positions for the major planets (Pluto | 
| 111 |  |  |  |  |  |  | *       alone is omitted) are obtained from the routine palPlanet.  Two | 
| 112 |  |  |  |  |  |  | *       levels of interpolation are used, to enhance speed without | 
| 113 |  |  |  |  |  |  | *       significantly degrading accuracy.  At a low frequency, the routine | 
| 114 |  |  |  |  |  |  | *       palPlanet is called to generate updated position+velocity "state | 
| 115 |  |  |  |  |  |  | *       vectors".  The only task remaining to be carried out at the full | 
| 116 |  |  |  |  |  |  | *       frequency (i.e. at each integration step) is to use the state | 
| 117 |  |  |  |  |  |  | *       vectors to extrapolate the planetary positions.  In place of a | 
| 118 |  |  |  |  |  |  | *       strictly linear extrapolation, some allowance is made for the | 
| 119 |  |  |  |  |  |  | *       curvature of the orbit by scaling back the radius vector as the | 
| 120 |  |  |  |  |  |  | *       linear extrapolation goes off at a tangent. | 
| 121 |  |  |  |  |  |  | * | 
| 122 |  |  |  |  |  |  | *       Various other approximations are made.  For example, perturbations | 
| 123 |  |  |  |  |  |  | *       by Pluto and the minor planets are neglected and relativistic | 
| 124 |  |  |  |  |  |  | *       effects are not taken into account. | 
| 125 |  |  |  |  |  |  | * | 
| 126 |  |  |  |  |  |  | *       In the interests of simplicity, the background calculations for | 
| 127 |  |  |  |  |  |  | *       the major planets are carried out en masse.  The mean elements and | 
| 128 |  |  |  |  |  |  | *       state vectors for all the planets are refreshed at the same time, | 
| 129 |  |  |  |  |  |  | *       without regard for orbit curvature, mass or proximity. | 
| 130 |  |  |  |  |  |  | * | 
| 131 |  |  |  |  |  |  | *       The Earth-Moon system is treated as a single body when the body is | 
| 132 |  |  |  |  |  |  | *       distant but as separate bodies when closer to the EMB than the | 
| 133 |  |  |  |  |  |  | *       parameter RNE, which incurs a time penalty but improves accuracy | 
| 134 |  |  |  |  |  |  | *       for near-Earth objects. | 
| 135 |  |  |  |  |  |  | * | 
| 136 |  |  |  |  |  |  | *     - This routine is not intended to be used for major planets. | 
| 137 |  |  |  |  |  |  | *       However, if major-planet elements are supplied, sensible results | 
| 138 |  |  |  |  |  |  | *       will, in fact, be produced.  This happens because the routine | 
| 139 |  |  |  |  |  |  | *       checks the separation between the body and each of the planets and | 
| 140 |  |  |  |  |  |  | *       interprets a suspiciously small value (0.001 AU) as an attempt to | 
| 141 |  |  |  |  |  |  | *       apply the routine to the planet concerned.  If this condition is | 
| 142 |  |  |  |  |  |  | *       detected, the contribution from that planet is ignored, and the | 
| 143 |  |  |  |  |  |  | *       status is set to the planet number (1-10 = Mercury, Venus, EMB, | 
| 144 |  |  |  |  |  |  | *       Mars, Jupiter, Saturn, Uranus, Neptune, Earth, Moon) as a warning. | 
| 145 |  |  |  |  |  |  |  | 
| 146 |  |  |  |  |  |  | *  See Also: | 
| 147 |  |  |  |  |  |  | *     - Sterne, Theodore E., "An Introduction to Celestial Mechanics", | 
| 148 |  |  |  |  |  |  | *       Interscience Publishers Inc., 1960.  Section 6.7, p199. | 
| 149 |  |  |  |  |  |  | *     - Everhart, E. & Pitkin, E.T., Am.J.Phys. 51, 712, 1983. | 
| 150 |  |  |  |  |  |  |  | 
| 151 |  |  |  |  |  |  | *  History: | 
| 152 |  |  |  |  |  |  | *     2012-03-12 (TIMJ): | 
| 153 |  |  |  |  |  |  | *        Initial version direct conversion of SLA/F. | 
| 154 |  |  |  |  |  |  | *        Adapted with permission from the Fortran SLALIB library. | 
| 155 |  |  |  |  |  |  | *     2012-06-21 (TIMJ): | 
| 156 |  |  |  |  |  |  | *        Support a lack of copysign() function. | 
| 157 |  |  |  |  |  |  | *     2012-06-22 (TIMJ): | 
| 158 |  |  |  |  |  |  | *        Check __STDC_VERSION__ | 
| 159 |  |  |  |  |  |  | *     {enter_further_changes_here} | 
| 160 |  |  |  |  |  |  |  | 
| 161 |  |  |  |  |  |  | *  Copyright: | 
| 162 |  |  |  |  |  |  | *     Copyright (C) 2004 Patrick T. Wallace | 
| 163 |  |  |  |  |  |  | *     Copyright (C) 2012 Science and Technology Facilities Council. | 
| 164 |  |  |  |  |  |  | *     All Rights Reserved. | 
| 165 |  |  |  |  |  |  |  | 
| 166 |  |  |  |  |  |  | *  Licence: | 
| 167 |  |  |  |  |  |  | *     This program is free software; you can redistribute it and/or | 
| 168 |  |  |  |  |  |  | *     modify it under the terms of the GNU General Public License as | 
| 169 |  |  |  |  |  |  | *     published by the Free Software Foundation; either version 3 of | 
| 170 |  |  |  |  |  |  | *     the License, or (at your option) any later version. | 
| 171 |  |  |  |  |  |  | * | 
| 172 |  |  |  |  |  |  | *     This program is distributed in the hope that it will be | 
| 173 |  |  |  |  |  |  | *     useful, but WITHOUT ANY WARRANTY; without even the implied | 
| 174 |  |  |  |  |  |  | *     warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | 
| 175 |  |  |  |  |  |  | *     PURPOSE. See the GNU General Public License for more details. | 
| 176 |  |  |  |  |  |  | * | 
| 177 |  |  |  |  |  |  | *     You should have received a copy of the GNU General Public License | 
| 178 |  |  |  |  |  |  | *     along with this program; if not, write to the Free Software | 
| 179 |  |  |  |  |  |  | *     Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, | 
| 180 |  |  |  |  |  |  | *     MA 02110-1301, USA. | 
| 181 |  |  |  |  |  |  |  | 
| 182 |  |  |  |  |  |  | *  Bugs: | 
| 183 |  |  |  |  |  |  | *     {note_any_bugs_here} | 
| 184 |  |  |  |  |  |  | *- | 
| 185 |  |  |  |  |  |  | */ | 
| 186 |  |  |  |  |  |  |  | 
| 187 |  |  |  |  |  |  | /* Use the config file if we have one, else look at | 
| 188 |  |  |  |  |  |  | compiler defines to see if we have C99 */ | 
| 189 |  |  |  |  |  |  | #if HAVE_CONFIG_H | 
| 190 |  |  |  |  |  |  | #include | 
| 191 |  |  |  |  |  |  | #else | 
| 192 |  |  |  |  |  |  | #ifdef __STDC_VERSION__ | 
| 193 |  |  |  |  |  |  | #  if (__STDC_VERSION__ >= 199901L) | 
| 194 |  |  |  |  |  |  | #    define HAVE_COPYSIGN 1 | 
| 195 |  |  |  |  |  |  | #  endif | 
| 196 |  |  |  |  |  |  | #endif | 
| 197 |  |  |  |  |  |  | #endif | 
| 198 |  |  |  |  |  |  |  | 
| 199 |  |  |  |  |  |  | #include | 
| 200 |  |  |  |  |  |  |  | 
| 201 |  |  |  |  |  |  | #include "pal.h" | 
| 202 |  |  |  |  |  |  | #include "palmac.h" | 
| 203 |  |  |  |  |  |  | #include "pal1sofa.h" | 
| 204 |  |  |  |  |  |  |  | 
| 205 |  |  |  |  |  |  | /* copysign is C99 */ | 
| 206 |  |  |  |  |  |  | #if HAVE_COPYSIGN | 
| 207 |  |  |  |  |  |  | # define COPYSIGN copysign | 
| 208 |  |  |  |  |  |  | #else | 
| 209 |  |  |  |  |  |  | # define COPYSIGN(a,b) DSIGN(a,b) | 
| 210 |  |  |  |  |  |  | #endif | 
| 211 |  |  |  |  |  |  |  | 
| 212 | 2 |  |  |  |  |  | void palPertue( double date, double u[13], int *jstat ) { | 
| 213 |  |  |  |  |  |  |  | 
| 214 |  |  |  |  |  |  | /*  Distance from EMB at which Earth and Moon are treated separately */ | 
| 215 |  |  |  |  |  |  | const double RNE=1.0; | 
| 216 |  |  |  |  |  |  |  | 
| 217 |  |  |  |  |  |  | /*  Coincidence with major planet distance */ | 
| 218 |  |  |  |  |  |  | const double COINC=0.0001; | 
| 219 |  |  |  |  |  |  |  | 
| 220 |  |  |  |  |  |  | /*  Coefficient relating timestep to perturbing force */ | 
| 221 |  |  |  |  |  |  | const double TSC=1e-4; | 
| 222 |  |  |  |  |  |  |  | 
| 223 |  |  |  |  |  |  | /*  Minimum and maximum timestep (days) */ | 
| 224 |  |  |  |  |  |  | const double TSMIN = 0.01; | 
| 225 |  |  |  |  |  |  | const double TSMAX = 10.0; | 
| 226 |  |  |  |  |  |  |  | 
| 227 |  |  |  |  |  |  | /*  Age limit for major-planet state vector (days) */ | 
| 228 |  |  |  |  |  |  | const double AGEPMO=5.0; | 
| 229 |  |  |  |  |  |  |  | 
| 230 |  |  |  |  |  |  | /*  Age limit for major-planet mean elements (days) */ | 
| 231 |  |  |  |  |  |  | const double AGEPEL=50.0; | 
| 232 |  |  |  |  |  |  |  | 
| 233 |  |  |  |  |  |  | /*  Margin for error when deciding whether to renew the planetary data */ | 
| 234 |  |  |  |  |  |  | const double TINY=1e-6; | 
| 235 |  |  |  |  |  |  |  | 
| 236 |  |  |  |  |  |  | /*  Age limit for the body's osculating elements (before rectification) */ | 
| 237 |  |  |  |  |  |  | const double AGEBEL=100.0; | 
| 238 |  |  |  |  |  |  |  | 
| 239 |  |  |  |  |  |  | /*  Gaussian gravitational constant squared */ | 
| 240 |  |  |  |  |  |  | const double GCON2 = PAL__GCON * PAL__GCON; | 
| 241 |  |  |  |  |  |  |  | 
| 242 |  |  |  |  |  |  | /*  The final epoch */ | 
| 243 |  |  |  |  |  |  | double TFINAL; | 
| 244 |  |  |  |  |  |  |  | 
| 245 |  |  |  |  |  |  | /*  The body's current universal elements */ | 
| 246 |  |  |  |  |  |  | double UL[13]; | 
| 247 |  |  |  |  |  |  |  | 
| 248 |  |  |  |  |  |  | /*  Current reference epoch */ | 
| 249 |  |  |  |  |  |  | double T0; | 
| 250 |  |  |  |  |  |  |  | 
| 251 |  |  |  |  |  |  | /*  Timespan from latest orbit rectification to final epoch (days) */ | 
| 252 |  |  |  |  |  |  | double TSPAN; | 
| 253 |  |  |  |  |  |  |  | 
| 254 |  |  |  |  |  |  | /*  Time left to go before integration is complete */ | 
| 255 |  |  |  |  |  |  | double TLEFT; | 
| 256 |  |  |  |  |  |  |  | 
| 257 |  |  |  |  |  |  | /*  Time direction flag: +1=forwards, -1=backwards */ | 
| 258 |  |  |  |  |  |  | double FB; | 
| 259 |  |  |  |  |  |  |  | 
| 260 |  |  |  |  |  |  | /*  First-time flag */ | 
| 261 |  |  |  |  |  |  | int FIRST = 0; | 
| 262 |  |  |  |  |  |  |  | 
| 263 |  |  |  |  |  |  | /* | 
| 264 |  |  |  |  |  |  | *  The current perturbations | 
| 265 |  |  |  |  |  |  | */ | 
| 266 |  |  |  |  |  |  |  | 
| 267 |  |  |  |  |  |  | /*  Epoch (days relative to current reference epoch) */ | 
| 268 |  |  |  |  |  |  | double RTN; | 
| 269 |  |  |  |  |  |  | /*  Position (AU) */ | 
| 270 |  |  |  |  |  |  | double PERP[3]; | 
| 271 |  |  |  |  |  |  | /*  Velocity (AU/d) */ | 
| 272 |  |  |  |  |  |  | double PERV[3]; | 
| 273 |  |  |  |  |  |  | /*  Acceleration (AU/d/d) */ | 
| 274 |  |  |  |  |  |  | double PERA[3]; | 
| 275 |  |  |  |  |  |  |  | 
| 276 |  |  |  |  |  |  | /*  Length of current timestep (days), and half that */ | 
| 277 |  |  |  |  |  |  | double TS,HTS; | 
| 278 |  |  |  |  |  |  |  | 
| 279 |  |  |  |  |  |  | /*  Epoch of middle of timestep */ | 
| 280 |  |  |  |  |  |  | double T; | 
| 281 |  |  |  |  |  |  |  | 
| 282 |  |  |  |  |  |  | /*  Epoch of planetary mean elements */ | 
| 283 |  |  |  |  |  |  | double TPEL = 0.0; | 
| 284 |  |  |  |  |  |  |  | 
| 285 |  |  |  |  |  |  | /*  Planet number (1=Mercury, 2=Venus, 3=EMB...8=Neptune) */ | 
| 286 |  |  |  |  |  |  | int NP; | 
| 287 |  |  |  |  |  |  |  | 
| 288 |  |  |  |  |  |  | /*  Planetary universal orbital elements */ | 
| 289 |  |  |  |  |  |  | double UP[8][13]; | 
| 290 |  |  |  |  |  |  |  | 
| 291 |  |  |  |  |  |  | /*  Epoch of planetary state vectors */ | 
| 292 |  |  |  |  |  |  | double TPMO = 0.0; | 
| 293 |  |  |  |  |  |  |  | 
| 294 |  |  |  |  |  |  | /*  State vectors for the major planets (AU,AU/s) */ | 
| 295 |  |  |  |  |  |  | double PVIN[8][6]; | 
| 296 |  |  |  |  |  |  |  | 
| 297 |  |  |  |  |  |  | /*  Earth velocity and position vectors (AU,AU/s) */ | 
| 298 |  |  |  |  |  |  | double VB[3],PB[3],VH[3],PE[3]; | 
| 299 |  |  |  |  |  |  |  | 
| 300 |  |  |  |  |  |  | /*  Moon geocentric state vector (AU,AU/s) and position part */ | 
| 301 |  |  |  |  |  |  | double PVM[6],PM[3]; | 
| 302 |  |  |  |  |  |  |  | 
| 303 |  |  |  |  |  |  | /*  Date to J2000 de-precession matrix */ | 
| 304 |  |  |  |  |  |  | double PMAT[3][3]; | 
| 305 |  |  |  |  |  |  |  | 
| 306 |  |  |  |  |  |  | /* | 
| 307 |  |  |  |  |  |  | *  Correction terms for extrapolated major planet vectors | 
| 308 |  |  |  |  |  |  | */ | 
| 309 |  |  |  |  |  |  |  | 
| 310 |  |  |  |  |  |  | /*  Sun-to-planet distances squared multiplied by 3 */ | 
| 311 |  |  |  |  |  |  | double R2X3[8]; | 
| 312 |  |  |  |  |  |  | /*  Sunward acceleration terms, G/2R^3 */ | 
| 313 |  |  |  |  |  |  | double GC[8]; | 
| 314 |  |  |  |  |  |  | /*  Tangential-to-circular correction factor */ | 
| 315 |  |  |  |  |  |  | double FC; | 
| 316 |  |  |  |  |  |  | /*  Radial correction factor due to Sunwards acceleration */ | 
| 317 |  |  |  |  |  |  | double FG; | 
| 318 |  |  |  |  |  |  |  | 
| 319 |  |  |  |  |  |  | /*  The body's unperturbed and perturbed state vectors (AU,AU/s) */ | 
| 320 |  |  |  |  |  |  | double PV0[6],PV[6]; | 
| 321 |  |  |  |  |  |  |  | 
| 322 |  |  |  |  |  |  | /*  The body's perturbed and unperturbed heliocentric distances (AU) cubed */ | 
| 323 |  |  |  |  |  |  | double R03,R3; | 
| 324 |  |  |  |  |  |  |  | 
| 325 |  |  |  |  |  |  | /*  The perturbating accelerations, indirect and direct */ | 
| 326 |  |  |  |  |  |  | double FI[3],FD[3]; | 
| 327 |  |  |  |  |  |  |  | 
| 328 |  |  |  |  |  |  | /*  Sun-to-planet vector, and distance cubed */ | 
| 329 |  |  |  |  |  |  | double RHO[3],RHO3; | 
| 330 |  |  |  |  |  |  |  | 
| 331 |  |  |  |  |  |  | /*  Body-to-planet vector, and distance cubed */ | 
| 332 |  |  |  |  |  |  | double DELTA[3],DELTA3; | 
| 333 |  |  |  |  |  |  |  | 
| 334 |  |  |  |  |  |  | /*  Miscellaneous */ | 
| 335 |  |  |  |  |  |  | int I,J; | 
| 336 |  |  |  |  |  |  | double R2,W,DT,DT2,R,FT; | 
| 337 |  |  |  |  |  |  | int NE; | 
| 338 |  |  |  |  |  |  |  | 
| 339 |  |  |  |  |  |  | /*  Planetary inverse masses, Mercury through Neptune then Earth and Moon */ | 
| 340 | 2 |  |  |  |  |  | const double AMAS[10] = { | 
| 341 |  |  |  |  |  |  | 6023600., 408523.5, 328900.5, 3098710., | 
| 342 |  |  |  |  |  |  | 1047.355, 3498.5, 22869., 19314., | 
| 343 |  |  |  |  |  |  | 332946.038, 27068709. | 
| 344 |  |  |  |  |  |  | }; | 
| 345 |  |  |  |  |  |  |  | 
| 346 |  |  |  |  |  |  | /*  Preset the status to OK. */ | 
| 347 | 2 |  |  |  |  |  | *jstat = 0; | 
| 348 |  |  |  |  |  |  |  | 
| 349 |  |  |  |  |  |  | /*  Copy the final epoch. */ | 
| 350 |  |  |  |  |  |  | TFINAL = date; | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  | /*  Copy the elements (which will be periodically updated). */ | 
| 353 | 28 | 100 |  |  |  |  | for (I=0; I<13; I++) { | 
| 354 | 26 |  |  |  |  |  | UL[I] = u[I]; | 
| 355 |  |  |  |  |  |  | } | 
| 356 |  |  |  |  |  |  |  | 
| 357 |  |  |  |  |  |  | /*  Initialize the working reference epoch. */ | 
| 358 | 2 |  |  |  |  |  | T0=UL[2]; | 
| 359 |  |  |  |  |  |  |  | 
| 360 |  |  |  |  |  |  | /*  Total timespan (days) and hence time left. */ | 
| 361 | 2 |  |  |  |  |  | TSPAN = TFINAL-T0; | 
| 362 |  |  |  |  |  |  | TLEFT = TSPAN; | 
| 363 |  |  |  |  |  |  |  | 
| 364 |  |  |  |  |  |  | /*  Warn if excessive. */ | 
| 365 | 2 | 50 |  |  |  |  | if (fabs(TSPAN) > 36525.0) *jstat=101; | 
| 366 |  |  |  |  |  |  |  | 
| 367 |  |  |  |  |  |  | /*  Time direction: +1 for forwards, -1 for backwards. */ | 
| 368 | 2 |  |  |  |  |  | FB = COPYSIGN(1.0,TSPAN); | 
| 369 |  |  |  |  |  |  |  | 
| 370 |  |  |  |  |  |  | /*  Initialize relative epoch for start of current timestep. */ | 
| 371 |  |  |  |  |  |  | RTN = 0.0; | 
| 372 |  |  |  |  |  |  |  | 
| 373 |  |  |  |  |  |  | /*  Reset the perturbations (position, velocity, acceleration). */ | 
| 374 | 8 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 375 | 6 |  |  |  |  |  | PERP[I] = 0.0; | 
| 376 | 6 |  |  |  |  |  | PERV[I] = 0.0; | 
| 377 | 6 |  |  |  |  |  | PERA[I] = 0.0; | 
| 378 |  |  |  |  |  |  | } | 
| 379 |  |  |  |  |  |  |  | 
| 380 |  |  |  |  |  |  | /*  Set "first iteration" flag. */ | 
| 381 |  |  |  |  |  |  | FIRST = 1; | 
| 382 |  |  |  |  |  |  |  | 
| 383 |  |  |  |  |  |  | /*  Step through the time left. */ | 
| 384 | 670 | 100 |  |  |  |  | while (FB*TLEFT > 0.0) { | 
| 385 |  |  |  |  |  |  |  | 
| 386 |  |  |  |  |  |  | /*     Magnitude of current acceleration due to planetary attractions. */ | 
| 387 | 668 | 100 |  |  |  |  | if (FIRST) { | 
| 388 |  |  |  |  |  |  | TS = TSMIN; | 
| 389 |  |  |  |  |  |  | } else { | 
| 390 |  |  |  |  |  |  | R2 = 0.0; | 
| 391 | 2664 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 392 | 1998 |  |  |  |  |  | W = FD[I]; | 
| 393 | 1998 |  |  |  |  |  | R2 = R2+W*W; | 
| 394 |  |  |  |  |  |  | } | 
| 395 | 666 |  |  |  |  |  | W = sqrt(R2); | 
| 396 |  |  |  |  |  |  |  | 
| 397 |  |  |  |  |  |  | /*        Use the acceleration to decide how big a timestep can be tolerated. */ | 
| 398 | 666 | 50 |  |  |  |  | if (W != 0.0) { | 
| 399 | 666 | 50 |  |  |  |  | TS = DMIN(TSMAX,DMAX(TSMIN,TSC/W)); | 
|  |  | 100 |  |  |  |  |  | 
|  |  | 50 |  |  |  |  |  | 
| 400 |  |  |  |  |  |  | } else { | 
| 401 |  |  |  |  |  |  | TS = TSMAX; | 
| 402 |  |  |  |  |  |  | } | 
| 403 |  |  |  |  |  |  | } | 
| 404 | 668 |  |  |  |  |  | TS = TS*FB; | 
| 405 |  |  |  |  |  |  |  | 
| 406 |  |  |  |  |  |  | /*     Override if final epoch is imminent. */ | 
| 407 | 668 |  |  |  |  |  | TLEFT = TSPAN-RTN; | 
| 408 | 668 | 100 |  |  |  |  | if (fabs(TS) > fabs(TLEFT)) TS=TLEFT; | 
| 409 |  |  |  |  |  |  |  | 
| 410 |  |  |  |  |  |  | /*     Epoch of middle of timestep. */ | 
| 411 | 668 |  |  |  |  |  | HTS = TS/2.0; | 
| 412 | 668 |  |  |  |  |  | T = T0+RTN+HTS; | 
| 413 |  |  |  |  |  |  |  | 
| 414 |  |  |  |  |  |  | /*     Is it time to recompute the major-planet elements? */ | 
| 415 | 668 | 100 |  |  |  |  | if (FIRST || fabs(T-TPEL)-AGEPEL >= TINY) { | 
|  |  | 100 |  |  |  |  |  | 
| 416 |  |  |  |  |  |  |  | 
| 417 |  |  |  |  |  |  | /*        Yes: go forward in time by just under the maximum allowed. */ | 
| 418 | 22 |  |  |  |  |  | TPEL = T+FB*AGEPEL; | 
| 419 |  |  |  |  |  |  |  | 
| 420 |  |  |  |  |  |  | /*        Compute the state vector for the new epoch. */ | 
| 421 | 198 | 100 |  |  |  |  | for (NP=1; NP<=8; NP++) { | 
| 422 | 176 |  |  |  |  |  | palPlanet(TPEL,NP,PV,&J); | 
| 423 |  |  |  |  |  |  |  | 
| 424 |  |  |  |  |  |  | /*           Warning if remote epoch, abort if error. */ | 
| 425 | 176 | 50 |  |  |  |  | if (J == 1) { | 
| 426 | 0 |  |  |  |  |  | *jstat = 102; | 
| 427 | 176 | 50 |  |  |  |  | } else if (J != 0) { | 
| 428 |  |  |  |  |  |  | goto ABORT; | 
| 429 |  |  |  |  |  |  | } | 
| 430 |  |  |  |  |  |  |  | 
| 431 |  |  |  |  |  |  | /*           Transform the vector into universal elements. */ | 
| 432 | 176 |  |  |  |  |  | palPv2ue(PV,TPEL,0.0,&(UP[NP-1][0]),&J); | 
| 433 | 176 | 50 |  |  |  |  | if (J != 0) goto ABORT; | 
| 434 |  |  |  |  |  |  | } | 
| 435 |  |  |  |  |  |  | } | 
| 436 |  |  |  |  |  |  |  | 
| 437 |  |  |  |  |  |  | /*     Is it time to recompute the major-planet motions? */ | 
| 438 | 668 | 100 |  |  |  |  | if (FIRST || fabs(T-TPMO)-AGEPMO >= TINY) { | 
|  |  | 100 |  |  |  |  |  | 
| 439 |  |  |  |  |  |  |  | 
| 440 |  |  |  |  |  |  | /*        Yes: look ahead. */ | 
| 441 | 176 |  |  |  |  |  | TPMO = T+FB*AGEPMO; | 
| 442 |  |  |  |  |  |  |  | 
| 443 |  |  |  |  |  |  | /*        Compute the motions of each planet (AU,AU/d). */ | 
| 444 | 1584 | 100 |  |  |  |  | for (NP=1; NP<=8; NP++) { | 
| 445 |  |  |  |  |  |  |  | 
| 446 |  |  |  |  |  |  | /*           The planet's position and velocity (AU,AU/s). */ | 
| 447 | 1408 |  |  |  |  |  | palUe2pv(TPMO,&(UP[NP-1][0]),&(PVIN[NP-1][0]),&J); | 
| 448 | 1408 | 50 |  |  |  |  | if (J != 0) goto ABORT; | 
| 449 |  |  |  |  |  |  |  | 
| 450 |  |  |  |  |  |  | /*           Scale velocity to AU/d. */ | 
| 451 | 5632 | 100 |  |  |  |  | for (J=3; J<6; J++) { | 
| 452 | 4224 |  |  |  |  |  | PVIN[NP-1][J] = PVIN[NP-1][J]*PAL__SPD; | 
| 453 |  |  |  |  |  |  | } | 
| 454 |  |  |  |  |  |  |  | 
| 455 |  |  |  |  |  |  | /*           Precompute also the extrapolation correction terms. */ | 
| 456 |  |  |  |  |  |  | R2 = 0.0; | 
| 457 | 5632 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 458 | 4224 |  |  |  |  |  | W = PVIN[NP-1][I]; | 
| 459 | 4224 |  |  |  |  |  | R2 = R2+W*W; | 
| 460 |  |  |  |  |  |  | } | 
| 461 | 1408 |  |  |  |  |  | R2X3[NP-1] = R2*3.0; | 
| 462 | 1408 |  |  |  |  |  | GC[NP-1] = GCON2/(2.0*R2*sqrt(R2)); | 
| 463 |  |  |  |  |  |  | } | 
| 464 |  |  |  |  |  |  | } | 
| 465 |  |  |  |  |  |  |  | 
| 466 |  |  |  |  |  |  | /*     Reset the first-time flag. */ | 
| 467 |  |  |  |  |  |  | FIRST = 0; | 
| 468 |  |  |  |  |  |  |  | 
| 469 |  |  |  |  |  |  | /*     Unperturbed motion of the body at middle of timestep (AU,AU/s). */ | 
| 470 | 668 |  |  |  |  |  | palUe2pv(T,UL,PV0,&J); | 
| 471 | 668 | 50 |  |  |  |  | if (J != 0) goto ABORT; | 
| 472 |  |  |  |  |  |  |  | 
| 473 |  |  |  |  |  |  | /*     Perturbed position of the body (AU) and heliocentric distance cubed. */ | 
| 474 |  |  |  |  |  |  | R2 = 0.0; | 
| 475 | 2672 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 476 | 2004 |  |  |  |  |  | W = PV0[I]+PERP[I]+(PERV[I]+PERA[I]*HTS/2.0)*HTS; | 
| 477 | 2004 |  |  |  |  |  | PV[I] = W; | 
| 478 | 2004 |  |  |  |  |  | R2 = R2+W*W; | 
| 479 |  |  |  |  |  |  | } | 
| 480 | 668 |  |  |  |  |  | R3 = R2*sqrt(R2); | 
| 481 |  |  |  |  |  |  |  | 
| 482 |  |  |  |  |  |  | /*     The body's unperturbed heliocentric distance cubed. */ | 
| 483 |  |  |  |  |  |  | R2 = 0.0; | 
| 484 | 2672 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 485 | 2004 |  |  |  |  |  | W = PV0[I]; | 
| 486 | 2004 |  |  |  |  |  | R2 = R2+W*W; | 
| 487 |  |  |  |  |  |  | } | 
| 488 | 668 |  |  |  |  |  | R03 = R2*sqrt(R2); | 
| 489 |  |  |  |  |  |  |  | 
| 490 |  |  |  |  |  |  | /*     Compute indirect and initialize direct parts of the perturbation. */ | 
| 491 | 2672 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 492 | 2004 |  |  |  |  |  | FI[I] = PV0[I]/R03-PV[I]/R3; | 
| 493 | 2004 |  |  |  |  |  | FD[I] = 0.0; | 
| 494 |  |  |  |  |  |  | } | 
| 495 |  |  |  |  |  |  |  | 
| 496 |  |  |  |  |  |  | /*     Ready to compute the direct planetary effects. */ | 
| 497 |  |  |  |  |  |  |  | 
| 498 |  |  |  |  |  |  | /*     Reset the "near-Earth" flag. */ | 
| 499 |  |  |  |  |  |  | NE = 0; | 
| 500 |  |  |  |  |  |  |  | 
| 501 |  |  |  |  |  |  | /*     Interval from state-vector epoch to middle of current timestep. */ | 
| 502 | 668 |  |  |  |  |  | DT = T-TPMO; | 
| 503 | 668 |  |  |  |  |  | DT2 = DT*DT; | 
| 504 |  |  |  |  |  |  |  | 
| 505 |  |  |  |  |  |  | /*     Planet by planet, including separate Earth and Moon. */ | 
| 506 | 6680 | 100 |  |  |  |  | for (NP=1; NP<10; NP++) { | 
| 507 |  |  |  |  |  |  |  | 
| 508 |  |  |  |  |  |  | /*        Which perturbing body? */ | 
| 509 | 6012 | 100 |  |  |  |  | if (NP <= 8) { | 
| 510 |  |  |  |  |  |  |  | 
| 511 |  |  |  |  |  |  | /*           Planet: compute the extrapolation in longitude (squared). */ | 
| 512 |  |  |  |  |  |  | R2 = 0.0; | 
| 513 | 21376 | 100 |  |  |  |  | for (J=3; J<6; J++) { | 
| 514 | 16032 |  |  |  |  |  | W = PVIN[NP-1][J]*DT; | 
| 515 | 16032 |  |  |  |  |  | R2 = R2+W*W; | 
| 516 |  |  |  |  |  |  | } | 
| 517 |  |  |  |  |  |  |  | 
| 518 |  |  |  |  |  |  | /*           Hence the tangential-to-circular correction factor. */ | 
| 519 | 5344 |  |  |  |  |  | FC = 1.0+R2/R2X3[NP-1]; | 
| 520 |  |  |  |  |  |  |  | 
| 521 |  |  |  |  |  |  | /*           The radial correction factor due to the inwards acceleration. */ | 
| 522 | 5344 |  |  |  |  |  | FG = 1.0-GC[NP-1]*DT2; | 
| 523 |  |  |  |  |  |  |  | 
| 524 |  |  |  |  |  |  | /*           Planet's position. */ | 
| 525 | 21376 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 526 | 16032 |  |  |  |  |  | RHO[I] = FG*(PVIN[NP-1][I]+FC*PVIN[NP-1][I+3]*DT); | 
| 527 |  |  |  |  |  |  | } | 
| 528 |  |  |  |  |  |  |  | 
| 529 | 668 | 100 |  |  |  |  | } else if (NE) { | 
| 530 |  |  |  |  |  |  |  | 
| 531 |  |  |  |  |  |  | /*           Near-Earth and either Earth or Moon. */ | 
| 532 |  |  |  |  |  |  |  | 
| 533 | 15 | 50 |  |  |  |  | if (NP == 9) { | 
| 534 |  |  |  |  |  |  |  | 
| 535 |  |  |  |  |  |  | /*              Earth: position. */ | 
| 536 | 15 |  |  |  |  |  | palEpv(T,PE,VH,PB,VB); | 
| 537 | 60 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 538 | 45 |  |  |  |  |  | RHO[I] = PE[I]; | 
| 539 |  |  |  |  |  |  | } | 
| 540 |  |  |  |  |  |  |  | 
| 541 |  |  |  |  |  |  | } else { | 
| 542 |  |  |  |  |  |  |  | 
| 543 |  |  |  |  |  |  | /*              Moon: position. */ | 
| 544 | 0 |  |  |  |  |  | palPrec(palEpj(T),2000.0,PMAT); | 
| 545 | 0 |  |  |  |  |  | palDmoon(T,PVM); | 
| 546 | 0 |  |  |  |  |  | eraRxp(PMAT,PVM,PM); | 
| 547 | 0 | 0 |  |  |  |  | for (I=0; I<3; I++) { | 
| 548 | 0 |  |  |  |  |  | RHO[I] = PM[I]+PE[I]; | 
| 549 |  |  |  |  |  |  | } | 
| 550 |  |  |  |  |  |  | } | 
| 551 |  |  |  |  |  |  | } | 
| 552 |  |  |  |  |  |  |  | 
| 553 |  |  |  |  |  |  | /*        Proceed unless Earth or Moon and not the near-Earth case. */ | 
| 554 | 6012 | 100 |  |  |  |  | if (NP <= 8 || NE) { | 
| 555 |  |  |  |  |  |  |  | 
| 556 |  |  |  |  |  |  | /*           Heliocentric distance cubed. */ | 
| 557 |  |  |  |  |  |  | R2 = 0.0; | 
| 558 | 21436 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 559 | 16077 |  |  |  |  |  | W = RHO[I]; | 
| 560 | 16077 |  |  |  |  |  | R2 = R2+W*W; | 
| 561 |  |  |  |  |  |  | } | 
| 562 | 5359 |  |  |  |  |  | R = sqrt(R2); | 
| 563 | 5359 |  |  |  |  |  | RHO3 = R2*R; | 
| 564 |  |  |  |  |  |  |  | 
| 565 |  |  |  |  |  |  | /*           Body-to-planet vector, and distance. */ | 
| 566 |  |  |  |  |  |  | R2 = 0.0; | 
| 567 | 21436 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 568 | 16077 |  |  |  |  |  | W = RHO[I]-PV[I]; | 
| 569 | 16077 |  |  |  |  |  | DELTA[I] = W; | 
| 570 | 16077 |  |  |  |  |  | R2 = R2+W*W; | 
| 571 |  |  |  |  |  |  | } | 
| 572 | 5359 |  |  |  |  |  | R = sqrt(R2); | 
| 573 |  |  |  |  |  |  |  | 
| 574 |  |  |  |  |  |  | /*           If this is the EMB, set the near-Earth flag appropriately. */ | 
| 575 | 5359 | 100 |  |  |  |  | if (NP == 3 && R < RNE) NE = 1; | 
|  |  | 100 |  |  |  |  |  | 
| 576 |  |  |  |  |  |  |  | 
| 577 |  |  |  |  |  |  | /*           Proceed unless EMB and this is the near-Earth case. */ | 
| 578 | 5359 | 100 |  |  |  |  | if ( ! (NE && NP == 3) ) { | 
| 579 |  |  |  |  |  |  |  | 
| 580 |  |  |  |  |  |  | /*              If too close, ignore this planet and set a warning. */ | 
| 581 | 5344 | 50 |  |  |  |  | if (R < COINC) { | 
| 582 | 0 |  |  |  |  |  | *jstat = NP; | 
| 583 |  |  |  |  |  |  |  | 
| 584 |  |  |  |  |  |  | } else { | 
| 585 |  |  |  |  |  |  |  | 
| 586 |  |  |  |  |  |  | /*                 Accumulate "direct" part of perturbation acceleration. */ | 
| 587 | 5344 |  |  |  |  |  | DELTA3 = R2*R; | 
| 588 | 5344 |  |  |  |  |  | W = AMAS[NP-1]; | 
| 589 | 21376 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 590 | 16032 |  |  |  |  |  | FD[I] = FD[I]+(DELTA[I]/DELTA3-RHO[I]/RHO3)/W; | 
| 591 |  |  |  |  |  |  | } | 
| 592 |  |  |  |  |  |  | } | 
| 593 |  |  |  |  |  |  | } | 
| 594 |  |  |  |  |  |  | } | 
| 595 |  |  |  |  |  |  | } | 
| 596 |  |  |  |  |  |  |  | 
| 597 |  |  |  |  |  |  | /*     Update the perturbations to the end of the timestep. */ | 
| 598 | 668 |  |  |  |  |  | RTN += TS; | 
| 599 | 2672 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 600 | 2004 |  |  |  |  |  | W = (FI[I]+FD[I])*GCON2; | 
| 601 | 2004 |  |  |  |  |  | FT = W*TS; | 
| 602 | 2004 |  |  |  |  |  | PERP[I] = PERP[I]+(PERV[I]+FT/2.0)*TS; | 
| 603 | 2004 |  |  |  |  |  | PERV[I] = PERV[I]+FT; | 
| 604 | 2004 |  |  |  |  |  | PERA[I] = W; | 
| 605 |  |  |  |  |  |  | } | 
| 606 |  |  |  |  |  |  |  | 
| 607 |  |  |  |  |  |  | /*     Time still to go. */ | 
| 608 | 668 |  |  |  |  |  | TLEFT = TSPAN-RTN; | 
| 609 |  |  |  |  |  |  |  | 
| 610 |  |  |  |  |  |  | /*     Is it either time to rectify the orbit or the last time through? */ | 
| 611 | 668 | 100 |  |  |  |  | if (fabs(RTN) >= AGEBEL || FB*TLEFT <= 0.0) { | 
|  |  | 100 |  |  |  |  |  | 
| 612 |  |  |  |  |  |  |  | 
| 613 |  |  |  |  |  |  | /*        Yes: update to the end of the current timestep. */ | 
| 614 | 22 |  |  |  |  |  | T0 += RTN; | 
| 615 |  |  |  |  |  |  | RTN = 0.0; | 
| 616 |  |  |  |  |  |  |  | 
| 617 |  |  |  |  |  |  | /*        The body's unperturbed motion (AU,AU/s). */ | 
| 618 | 22 |  |  |  |  |  | palUe2pv(T0,UL,PV0,&J); | 
| 619 | 22 | 50 |  |  |  |  | if (J != 0) goto ABORT; | 
| 620 |  |  |  |  |  |  |  | 
| 621 |  |  |  |  |  |  | /*        Add and re-initialize the perturbations. */ | 
| 622 | 88 | 100 |  |  |  |  | for (I=0; I<3; I++) { | 
| 623 | 66 |  |  |  |  |  | J = I+3; | 
| 624 | 66 |  |  |  |  |  | PV[I] = PV0[I]+PERP[I]; | 
| 625 | 66 |  |  |  |  |  | PV[J] = PV0[J]+PERV[I]/PAL__SPD; | 
| 626 | 66 |  |  |  |  |  | PERP[I] = 0.0; | 
| 627 | 66 |  |  |  |  |  | PERV[I] = 0.0; | 
| 628 | 66 |  |  |  |  |  | PERA[I] = FD[I]*GCON2; | 
| 629 |  |  |  |  |  |  | } | 
| 630 |  |  |  |  |  |  |  | 
| 631 |  |  |  |  |  |  | /*        Use the position and velocity to set up new universal elements. */ | 
| 632 | 22 |  |  |  |  |  | palPv2ue(PV,T0,0.0,UL,&J); | 
| 633 | 22 | 50 |  |  |  |  | if (J != 0) goto ABORT; | 
| 634 |  |  |  |  |  |  |  | 
| 635 |  |  |  |  |  |  | /*        Adjust the timespan and time left. */ | 
| 636 | 668 |  |  |  |  |  | TSPAN = TFINAL-T0; | 
| 637 |  |  |  |  |  |  | TLEFT = TSPAN; | 
| 638 |  |  |  |  |  |  | } | 
| 639 |  |  |  |  |  |  |  | 
| 640 |  |  |  |  |  |  | /*     Next timestep. */ | 
| 641 |  |  |  |  |  |  | } | 
| 642 |  |  |  |  |  |  |  | 
| 643 |  |  |  |  |  |  | /*  Return the updated universal-element set. */ | 
| 644 | 28 | 100 |  |  |  |  | for (I=0; I<13; I++) { | 
| 645 | 26 |  |  |  |  |  | u[I] = UL[I]; | 
| 646 |  |  |  |  |  |  | } | 
| 647 |  |  |  |  |  |  |  | 
| 648 |  |  |  |  |  |  | /*  Finished. */ | 
| 649 |  |  |  |  |  |  | return; | 
| 650 |  |  |  |  |  |  |  | 
| 651 |  |  |  |  |  |  | /*  Miscellaneous numerical error. */ | 
| 652 |  |  |  |  |  |  | ABORT: | 
| 653 | 0 |  |  |  |  |  | *jstat = -1; | 
| 654 | 0 |  |  |  |  |  | return; | 
| 655 |  |  |  |  |  |  | } |