| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Astro::Montenbruck::RiseSet::RST; |
|
2
|
|
|
|
|
|
|
|
|
3
|
3
|
|
|
3
|
|
21
|
use strict; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
87
|
|
|
4
|
3
|
|
|
3
|
|
15
|
use warnings; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
81
|
|
|
5
|
3
|
|
|
3
|
|
13
|
no warnings qw/experimental/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
102
|
|
|
6
|
3
|
|
|
3
|
|
26
|
use feature qw/switch/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
289
|
|
|
7
|
|
|
|
|
|
|
|
|
8
|
3
|
|
|
3
|
|
21
|
use Exporter qw/import/; |
|
|
3
|
|
|
|
|
15
|
|
|
|
3
|
|
|
|
|
113
|
|
|
9
|
3
|
|
|
3
|
|
18
|
use Readonly; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
142
|
|
|
10
|
|
|
|
|
|
|
|
|
11
|
3
|
|
|
3
|
|
26
|
use Math::Trig qw/:pi deg2rad rad2deg acos/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
398
|
|
|
12
|
3
|
|
|
3
|
|
36
|
use List::Util qw/any/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
179
|
|
|
13
|
|
|
|
|
|
|
|
|
14
|
3
|
|
|
3
|
|
1351
|
use Astro::Montenbruck::Time::Sidereal qw/ramc/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
161
|
|
|
15
|
3
|
|
|
3
|
|
20
|
use Astro::Montenbruck::MathUtils qw/diff_angle reduce_deg reduce_rad/; |
|
|
3
|
|
|
|
|
6
|
|
|
|
3
|
|
|
|
|
136
|
|
|
16
|
3
|
|
|
3
|
|
16
|
use Astro::Montenbruck::Time qw/cal2jd jd_cent $SEC_PER_DAY/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
246
|
|
|
17
|
3
|
|
|
3
|
|
1273
|
use Astro::Montenbruck::Time::DeltaT qw/delta_t/; |
|
|
3
|
|
|
|
|
10
|
|
|
|
3
|
|
|
|
|
211
|
|
|
18
|
3
|
|
|
3
|
|
23
|
use Astro::Montenbruck::CoCo qw/equ2hor/; |
|
|
3
|
|
|
|
|
5
|
|
|
|
3
|
|
|
|
|
132
|
|
|
19
|
3
|
|
|
3
|
|
17
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :states/; |
|
|
3
|
|
|
|
|
7
|
|
|
|
3
|
|
|
|
|
3634
|
|
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
our @EXPORT_OK = qw/rst_function/; |
|
22
|
|
|
|
|
|
|
our $VERSION = 0.01; |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
# Interpolate from three equally spaced tabular angular values. |
|
25
|
|
|
|
|
|
|
# |
|
26
|
|
|
|
|
|
|
# [Meeus-1998; equation 3.3] |
|
27
|
|
|
|
|
|
|
# |
|
28
|
|
|
|
|
|
|
# This version is suitable for interpolating from a table of |
|
29
|
|
|
|
|
|
|
# angular values which may cross the origin of the circle, |
|
30
|
|
|
|
|
|
|
# for example: 359 degrees...0 degrees...1 degree. |
|
31
|
|
|
|
|
|
|
# |
|
32
|
|
|
|
|
|
|
# Arguments: |
|
33
|
|
|
|
|
|
|
# - `n` : the interpolating factor, must be between -1 and 1 |
|
34
|
|
|
|
|
|
|
# - `y` : a sequence of three values |
|
35
|
|
|
|
|
|
|
# |
|
36
|
|
|
|
|
|
|
# Results: |
|
37
|
|
|
|
|
|
|
# - the interpolated value of y |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
sub _interpolate_angle3 { |
|
40
|
44
|
|
|
44
|
|
95
|
my ( $n, $y ) = @_; |
|
41
|
44
|
50
|
33
|
|
|
184
|
die "interpolating factor $n out of range" unless ( -1 < $n ) && ( $n < 1 ); |
|
42
|
|
|
|
|
|
|
|
|
43
|
44
|
|
|
|
|
135
|
my $a = diff_angle( $y->[0], $y->[1], 'radians' ); |
|
44
|
44
|
|
|
|
|
129
|
my $b = diff_angle( $y->[1], $y->[2], 'radians' ); |
|
45
|
44
|
|
|
|
|
112
|
my $c = diff_angle( $a, $b, 'radians' ); |
|
46
|
44
|
|
|
|
|
122
|
$y->[1] + $n / 2 * ( $a + $b + $n * $c ); |
|
47
|
|
|
|
|
|
|
} |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# Interpolate from three equally spaced tabular values. |
|
50
|
|
|
|
|
|
|
# |
|
51
|
|
|
|
|
|
|
# [Meeus-1998; equation 3.3] |
|
52
|
|
|
|
|
|
|
# |
|
53
|
|
|
|
|
|
|
# Parameters: |
|
54
|
|
|
|
|
|
|
# - `n` : the interpolating factor, must be between -1 and 1 |
|
55
|
|
|
|
|
|
|
# - `y` : a sequence of three values |
|
56
|
|
|
|
|
|
|
# |
|
57
|
|
|
|
|
|
|
# Results: |
|
58
|
|
|
|
|
|
|
# - the interpolated value of y |
|
59
|
|
|
|
|
|
|
sub _interpolate3 { |
|
60
|
28
|
|
|
28
|
|
58
|
my ( $n, $y ) = @_; |
|
61
|
28
|
50
|
33
|
|
|
109
|
die "interpolating factor out of range $n" unless ( -1 < $n ) && ( $n < 1 ); |
|
62
|
|
|
|
|
|
|
|
|
63
|
28
|
|
|
|
|
65
|
my $a = $y->[1] - $y->[0]; |
|
64
|
28
|
|
|
|
|
52
|
my $b = $y->[2] - $y->[1]; |
|
65
|
28
|
|
|
|
|
49
|
my $c = $b - $a; |
|
66
|
28
|
|
|
|
|
84
|
$y->[1] + $n / 2 * ( $a + $b + $n * $c ); |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
|
|
69
|
|
|
|
|
|
|
sub rst_function { |
|
70
|
10
|
|
|
10
|
1
|
163
|
my %arg = @_; |
|
71
|
10
|
|
|
|
|
32
|
my ( $h, $phi, $lambda ) = map { deg2rad( $arg{$_} ) } qw/h phi lambda/; |
|
|
30
|
|
|
|
|
245
|
|
|
72
|
|
|
|
|
|
|
|
|
73
|
10
|
|
|
|
|
113
|
my $sin_h = sin($h); |
|
74
|
10
|
|
50
|
|
|
59
|
my $delta = $arg{delta} || 1 / 1440; |
|
75
|
10
|
|
|
|
|
20
|
my $jdm = cal2jd( @{ $arg{date} } ); |
|
|
10
|
|
|
|
|
48
|
|
|
76
|
10
|
|
|
|
|
58
|
my $gstm = deg2rad( ramc( $jdm, 0 ) ); |
|
77
|
10
|
|
|
|
|
92
|
my @equ = map { [ $arg{get_position}->( $jdm + $_ ) ] } ( -1 .. 1 ); |
|
|
30
|
|
|
|
|
562
|
|
|
78
|
10
|
|
|
|
|
253
|
my @alpha = map { $_->[0] } @equ; |
|
|
30
|
|
|
|
|
67
|
|
|
79
|
10
|
|
|
|
|
22
|
my @delta = map { $_->[1] } @equ; |
|
|
30
|
|
|
|
|
55
|
|
|
80
|
10
|
|
|
|
|
42
|
my $cos_h = |
|
81
|
|
|
|
|
|
|
( $sin_h - sin($phi) * sin($delta[1]) ) / ( cos($phi) * cos($delta[1]) ); |
|
82
|
10
|
|
|
|
|
54
|
my $dt = delta_t($jdm) / $SEC_PER_DAY; |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
sub { |
|
85
|
30
|
|
|
30
|
|
635
|
my $evt = shift; # $EVT_RISE, $EVT_SET or $EVT_TRANSIT |
|
86
|
30
|
50
|
|
|
|
241
|
die "Unknown event: $evt" unless any { $evt eq $_ } @RS_EVENTS; |
|
|
60
|
|
|
|
|
659
|
|
|
87
|
30
|
|
|
|
|
176
|
my %arg = ( max_iter => 50, @_ ); |
|
88
|
|
|
|
|
|
|
|
|
89
|
30
|
50
|
|
|
|
132
|
if ( $cos_h < -1 ) { |
|
|
|
50
|
|
|
|
|
|
|
90
|
0
|
|
|
|
|
0
|
$arg{on_noevent}->($STATE_CIRCUMPOLAR); |
|
91
|
0
|
|
|
|
|
0
|
return; |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
elsif ( $cos_h > 1 ) { |
|
94
|
0
|
|
|
|
|
0
|
$arg{on_noevent}->($STATE_NEVER_RISES); |
|
95
|
0
|
|
|
|
|
0
|
return; |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
|
|
98
|
30
|
|
|
|
|
120
|
my $h0 = acos($cos_h); |
|
99
|
30
|
|
|
|
|
328
|
my $m0 = ( reduce_rad( $alpha[1] + $lambda - $gstm ) ) / pi2; |
|
100
|
30
|
|
|
|
|
56
|
my $m = do { |
|
101
|
30
|
|
|
|
|
52
|
given ($evt) { |
|
102
|
30
|
|
|
|
|
90
|
$m0 when $EVT_TRANSIT; |
|
103
|
20
|
|
|
|
|
139
|
$m0 - $h0 / pi2 when $EVT_RISE; |
|
104
|
10
|
|
|
|
|
61
|
$m0 + $h0 / pi2 when $EVT_SET; |
|
105
|
|
|
|
|
|
|
} |
|
106
|
|
|
|
|
|
|
}; |
|
107
|
30
|
50
|
|
|
|
256
|
if ( $m < 0 ) { |
|
|
|
100
|
|
|
|
|
|
|
108
|
0
|
|
|
|
|
0
|
$m++; |
|
109
|
|
|
|
|
|
|
} |
|
110
|
|
|
|
|
|
|
elsif ( $m > 1 ) { |
|
111
|
3
|
|
|
|
|
9
|
$m--; |
|
112
|
|
|
|
|
|
|
} |
|
113
|
30
|
50
|
33
|
|
|
140
|
die "m is out of range: $m" unless ( 0 <= $m ) && ( $m <= 1 ); |
|
114
|
|
|
|
|
|
|
|
|
115
|
30
|
|
|
|
|
94
|
for ( 0 .. $arg{max_iter} ) { |
|
116
|
44
|
|
|
|
|
80
|
my $m0 = $m; |
|
117
|
44
|
|
|
|
|
104
|
my $theta0 = |
|
118
|
|
|
|
|
|
|
deg2rad( reduce_deg( rad2deg($gstm) + 360.985647 * $m ) ); |
|
119
|
44
|
|
|
|
|
318
|
my $n = $m + $dt; |
|
120
|
44
|
|
|
|
|
123
|
my $ra = _interpolate_angle3( $n, \@alpha ); |
|
121
|
44
|
|
|
|
|
124
|
my $h1 = diff_angle( 0, $theta0 - $lambda - $ra, 'radians' ); |
|
122
|
44
|
|
|
|
|
79
|
my $dm = do { |
|
123
|
44
|
|
|
|
|
70
|
given ($evt) { |
|
124
|
44
|
|
|
|
|
116
|
-( $h1 / pi2 ) when $EVT_TRANSIT; |
|
125
|
28
|
|
|
|
|
155
|
default { |
|
126
|
28
|
|
|
|
|
71
|
my $de = _interpolate3( $n, \@delta ); |
|
127
|
56
|
|
|
|
|
391
|
my ( $az, $alt ) = map { deg2rad($_) } |
|
128
|
28
|
|
|
|
|
73
|
equ2hor( map { rad2deg($_) } ( $h1, $de, $phi ) ); |
|
|
84
|
|
|
|
|
536
|
|
|
129
|
28
|
|
|
|
|
278
|
( $alt - $h ) / |
|
130
|
|
|
|
|
|
|
( pi2 * cos($de) * cos($phi) * sin($h1) ); |
|
131
|
|
|
|
|
|
|
} |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
}; |
|
134
|
44
|
|
|
|
|
147
|
$m += $dm; |
|
135
|
44
|
100
|
|
|
|
132
|
if ( abs( $m - $m0 ) < $delta ) { |
|
136
|
30
|
|
|
|
|
124
|
$arg{on_event}->( $jdm + $m ); |
|
137
|
30
|
|
|
|
|
19484
|
return; |
|
138
|
|
|
|
|
|
|
} |
|
139
|
|
|
|
|
|
|
} |
|
140
|
0
|
|
|
|
|
|
die 'bailout!'; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
10
|
|
|
|
|
135
|
} |
|
143
|
|
|
|
|
|
|
|
|
144
|
|
|
|
|
|
|
1; |
|
145
|
|
|
|
|
|
|
__END__ |
|
146
|
|
|
|
|
|
|
|
|
147
|
|
|
|
|
|
|
=pod |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=encoding UTF-8 |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
=head1 NAME |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
Astro::Montenbruck::RiseSet::RST â rise, set, transit. |
|
154
|
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
use Astro::Montenbruck::MathUtils qw/frac/; |
|
158
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::Constants qw/:events :altitudes/; |
|
159
|
|
|
|
|
|
|
use Astro::Montenbruck::RiseSet::RST qw/rst_function/; |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
# create function for calculating Moon events for Munich, Germany, on March 23, 1989. |
|
162
|
|
|
|
|
|
|
my $func = rst_function( |
|
163
|
|
|
|
|
|
|
date => [1989, 3, 23], |
|
164
|
|
|
|
|
|
|
phi => 48.1, |
|
165
|
|
|
|
|
|
|
lambda => -11.6, |
|
166
|
|
|
|
|
|
|
get_position => sub { |
|
167
|
|
|
|
|
|
|
my $jd = shift; |
|
168
|
|
|
|
|
|
|
# return equatorial coordinates of the celestial body for the Julian Day. |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
); |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
# calculate rise. Alternatively, use $EVT_SET for set, $EVT_TRANSIT for |
|
173
|
|
|
|
|
|
|
# transit as the first argument |
|
174
|
|
|
|
|
|
|
$func->( |
|
175
|
|
|
|
|
|
|
$EVT_RISE, |
|
176
|
|
|
|
|
|
|
on_event => sub { |
|
177
|
|
|
|
|
|
|
my $jd = shift; # Standard Julian date of the event |
|
178
|
|
|
|
|
|
|
my $ut = frac(jd - 0.5) * 24; # UTC, 18.95 = 18h57m |
|
179
|
|
|
|
|
|
|
}, |
|
180
|
|
|
|
|
|
|
on_noevent => sub { |
|
181
|
|
|
|
|
|
|
my $state = shift; |
|
182
|
|
|
|
|
|
|
say "The body is $state" |
|
183
|
|
|
|
|
|
|
} |
|
184
|
|
|
|
|
|
|
}); |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
=head1 VERSION |
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
Version 0.01 |
|
190
|
|
|
|
|
|
|
|
|
191
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
192
|
|
|
|
|
|
|
|
|
193
|
|
|
|
|
|
|
Low-level routines for calculating rise, set and transit times of celestial |
|
194
|
|
|
|
|
|
|
bodies. The calculations are based on I<"Astronomical Algorythms" by Jean Meeus>. |
|
195
|
|
|
|
|
|
|
The same subject is discussed in I<Montenbruck & Phleger>'s book, but Meeus's |
|
196
|
|
|
|
|
|
|
method is more general and consistent and generic. Unit tests use examples from |
|
197
|
|
|
|
|
|
|
the both sources. |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
The general problem here is to find the instant of time at which a celestial |
|
200
|
|
|
|
|
|
|
body reaches a predetermined I<altitude>. |
|
201
|
|
|
|
|
|
|
|
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
=head2 rst_function( %args ) |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
Returns function for calculating time of event. See L</EVENT FUNCTION> below. |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head3 Named Arguments |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
=over |
|
212
|
|
|
|
|
|
|
|
|
213
|
|
|
|
|
|
|
=item * B<date> â array of B<year> (astronomical, zero-based), B<month> [1..12], |
|
214
|
|
|
|
|
|
|
and B<day>, [1..31]. |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
=item * B<phi> â geographical latitude, degrees, positive northward |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
=item * B<lambda> â geographical longitude, degrees, positive westward |
|
219
|
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
=item * B<get_position> â function, which given I<Standard Julian Day>, returns |
|
221
|
|
|
|
|
|
|
equatorial coordinates of the celestial body, in radians. |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
=item * B<h> â the I<standard altitude>, i.e. the geometric altitude of the |
|
225
|
|
|
|
|
|
|
center of the body at the time of apparent rising or setting, degrees. |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
=back |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
=head2 EVENT FUNCTION |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
The event function, returned by L</rst_function( %args )>, calculates time of a |
|
232
|
|
|
|
|
|
|
given event (rise, set or trasnsit). |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
$func->( EVENT_TYPE, on_event => sub{ ... }, on_noevent => sub{ ... } ); |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
Its first argument, I<event type>, is one of C<$EVT_RISE>, C<$EVT_SET>, or |
|
237
|
|
|
|
|
|
|
C<$EVT_TRANSIT>, see L<Astro::Montenbruck::RiseSet::Constants/EVENTS>. |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
Named arguments are callback functions: |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=over |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
=item * C<on_event> is called when the event time is determined. The argument is |
|
244
|
|
|
|
|
|
|
I<Standard Julian day> of the event. |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
on_event => sub { my $jd = shift; ... } |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
=item * C<on_noevent> is called when the event does not happen at the given date, |
|
249
|
|
|
|
|
|
|
either because the body never rises, or is circumpolar. The argument is respectively |
|
250
|
|
|
|
|
|
|
C<$STATE_NEVER_RISES> or C<$STATE_CIRCUMPOLAR>, see |
|
251
|
|
|
|
|
|
|
L<Astro::Montenbruck::RiseSet::Constants/STATES>. |
|
252
|
|
|
|
|
|
|
|
|
253
|
|
|
|
|
|
|
on_noevent => sub { my $state = shift; ... } |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=back |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
=head1 AUTHOR |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
Sergey Krushinsky, C<< <krushi at cpan.org> >> |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=head1 COPYRIGHT AND LICENSE |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
Copyright (C) 2010-2019 by Sergey Krushinsky |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
This library is free software; you can redistribute it and/or modify |
|
266
|
|
|
|
|
|
|
it under the same terms as Perl itself. |
|
267
|
|
|
|
|
|
|
|
|
268
|
|
|
|
|
|
|
=cut |