| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Astro::Misc; |
|
2
|
1
|
|
|
1
|
|
382
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
29
|
|
|
3
|
|
|
|
|
|
|
|
|
4
|
|
|
|
|
|
|
=head1 NAME |
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
Astro::Misc - Miscellaneous astronomical routines |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
use Astro::Misc; |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
$U = calc_U($flux, $dist, $freq); |
|
13
|
|
|
|
|
|
|
($dist1, $dist2)= kindist($ra, $dec, $vel, $epoch, $model); |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
Astro::Misc contains an assorted set Perl routines for doing various |
|
18
|
|
|
|
|
|
|
astronomical calculations. |
|
19
|
|
|
|
|
|
|
|
|
20
|
|
|
|
|
|
|
=head1 AUTHOR |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
Chris Phillips Chris.Phillips@csiro.au |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
=head1 FUNCTIONS |
|
25
|
|
|
|
|
|
|
|
|
26
|
|
|
|
|
|
|
=cut |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
BEGIN { |
|
30
|
1
|
|
|
1
|
|
3
|
use Exporter (); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
14
|
|
|
31
|
1
|
|
|
|
|
96
|
use vars qw($VERSION @ISA @EXPORT @EXPORT_OK @EXPORT_FAIL |
|
32
|
1
|
|
|
1
|
|
2
|
$Temp $parsecAU $au2km $G $c @ThompsonData); |
|
|
1
|
|
|
|
|
1
|
|
|
33
|
1
|
|
|
1
|
|
4
|
$VERSION = '1.01'; |
|
34
|
1
|
|
|
|
|
7
|
@ISA = qw(Exporter); |
|
35
|
|
|
|
|
|
|
|
|
36
|
1
|
|
|
|
|
2
|
@EXPORT = qw( read_possm calc_U calc_Nl lum2spectral |
|
37
|
|
|
|
|
|
|
Nl2spectral kindist); |
|
38
|
1
|
|
|
|
|
1
|
@EXPORT_OK = qw ( $Temp read_lovas a model_1 model_2 @ThompsonData $c); |
|
39
|
1
|
|
|
|
|
30
|
@EXPORT_FAIL = qw ( ); |
|
40
|
|
|
|
|
|
|
|
|
41
|
1
|
|
|
1
|
|
3
|
use Carp; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
37
|
|
|
42
|
1
|
|
|
1
|
|
3
|
use POSIX qw( asin log10); |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
4
|
|
|
43
|
|
|
|
|
|
|
|
|
44
|
1
|
|
|
1
|
|
42
|
use Astro::Time qw( $PI ); |
|
|
1
|
|
|
|
|
10
|
|
|
|
1
|
|
|
|
|
68
|
|
|
45
|
1
|
|
|
1
|
|
3
|
use Astro::Coord qw( fk5fk4 fk4gal ); |
|
|
1
|
|
|
|
|
0
|
|
|
|
1
|
|
|
|
|
42
|
|
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
} |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
$parsecAU = 206265; # The length of one parsec in AU |
|
50
|
|
|
|
|
|
|
$au2km = 149.59787066e6; # Number of km in one AU |
|
51
|
|
|
|
|
|
|
$G = 6.67e-11; # Gravitational constant |
|
52
|
|
|
|
|
|
|
$c = 2.99792458e5; # speed of light in km/s |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
$Temp = 1e4; # Electron temperature |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# Load up the data from Thompson 1984 ApJ 283 165 Table 1 |
|
57
|
1
|
|
|
1
|
|
3
|
use constant SPEC => 0; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
35
|
|
|
58
|
1
|
|
|
1
|
|
3
|
use constant LUM => 2; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
54
|
|
|
59
|
1
|
|
|
1
|
|
5
|
use constant NL => 5; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
1940
|
|
|
60
|
|
|
|
|
|
|
@ThompsonData = (); |
|
61
|
|
|
|
|
|
|
while () { |
|
62
|
|
|
|
|
|
|
push @ThompsonData, [split]; |
|
63
|
|
|
|
|
|
|
} |
|
64
|
|
|
|
|
|
|
|
|
65
|
|
|
|
|
|
|
=item B |
|
66
|
|
|
|
|
|
|
|
|
67
|
|
|
|
|
|
|
Read_possm interprets the output file from the AIPS POSSM task. |
|
68
|
|
|
|
|
|
|
the task may be called repeatably if there is more than one POSSM |
|
69
|
|
|
|
|
|
|
output in the file. The file must be open before calling |
|
70
|
|
|
|
|
|
|
read_possm, using the FileHandle module. The data from the possm |
|
71
|
|
|
|
|
|
|
plot is returned in a hash. Some of the header values are returned |
|
72
|
|
|
|
|
|
|
as scalar values while the actual plot values are returned as |
|
73
|
|
|
|
|
|
|
references to arrays. The scalar values returned are: |
|
74
|
|
|
|
|
|
|
SOURCE, DATE, TIME, BANDWIDTH, TYPE (='A&P'||'R&I') |
|
75
|
|
|
|
|
|
|
The array references are: CHANNEL, |
|
76
|
|
|
|
|
|
|
VELOCITY, FREQUENCY, AMPLITUDE, PHASE, ANTENNA |
|
77
|
|
|
|
|
|
|
The global variable $Astro::Misc:oldpossm (default=0) controls whether |
|
78
|
|
|
|
|
|
|
old or new style possm plots are read. For oldpossm=1, one of |
|
79
|
|
|
|
|
|
|
VELOCITY or FREQUENCY will be a reference to an empty list (but the |
|
80
|
|
|
|
|
|
|
hash value IS defined). |
|
81
|
|
|
|
|
|
|
|
|
82
|
|
|
|
|
|
|
Usage: use FileHandle |
|
83
|
|
|
|
|
|
|
my $fh = FileHandle->new(); |
|
84
|
|
|
|
|
|
|
my %ahash = (); |
|
85
|
|
|
|
|
|
|
open($fh, 'possmfile'); |
|
86
|
|
|
|
|
|
|
read_possm($fh, %ahash); |
|
87
|
|
|
|
|
|
|
|
|
88
|
|
|
|
|
|
|
Returns: 0 on success (but not hit eof) |
|
89
|
|
|
|
|
|
|
1 on success (and hit eof) |
|
90
|
|
|
|
|
|
|
2 on premature eof |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
Examples of hash usage: |
|
93
|
|
|
|
|
|
|
$hash{SOURCE} # Source name |
|
94
|
|
|
|
|
|
|
@{$hash{VELOCITY}} # Array of velocity values |
|
95
|
|
|
|
|
|
|
${$hash{PHASE}}[4] # The fifth phase value |
|
96
|
|
|
|
|
|
|
|
|
97
|
|
|
|
|
|
|
=cut |
|
98
|
|
|
|
|
|
|
|
|
99
|
|
|
|
|
|
|
|
|
100
|
|
|
|
|
|
|
sub read_possm ($\%) { |
|
101
|
|
|
|
|
|
|
|
|
102
|
0
|
|
|
0
|
1
|
|
my($fh, $hashref) = @_; |
|
103
|
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
# Initialise the hash ref |
|
105
|
|
|
|
|
|
|
|
|
106
|
0
|
|
|
|
|
|
$$hashref{CHANNEL} = [()]; |
|
107
|
0
|
|
|
|
|
|
$$hashref{VELOCITY} = [()]; |
|
108
|
0
|
|
|
|
|
|
$$hashref{FREQUENCY} = [()]; |
|
109
|
0
|
|
|
|
|
|
$$hashref{AMPLITUDE} = [()]; |
|
110
|
0
|
|
|
|
|
|
$$hashref{PHASE} = [()]; |
|
111
|
0
|
|
|
|
|
|
$$hashref{ANTENNA} = [()]; |
|
112
|
|
|
|
|
|
|
|
|
113
|
0
|
|
|
|
|
|
my $eof = 1; |
|
114
|
|
|
|
|
|
|
# Read the header section |
|
115
|
0
|
|
|
|
|
|
while (<$fh>) { |
|
116
|
0
|
0
|
|
|
|
|
if (/^Source:\s*(\S*)/) { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
117
|
0
|
|
|
|
|
|
$$hashref{SOURCE} = $1; |
|
118
|
|
|
|
|
|
|
} elsif (/^OBS\.\sDATE:\s(\S+)\s+Time\sof\srecord:\s+ |
|
119
|
|
|
|
|
|
|
(\d+\/\s+\d+\s+\d+\s+\d+\.\d+)/x) { |
|
120
|
0
|
|
|
|
|
|
$$hashref{DATE} = $1; |
|
121
|
0
|
|
|
|
|
|
$$hashref{TIME} = $2; |
|
122
|
|
|
|
|
|
|
} elsif (/^Bw \(\S+\):\s+(\S+)/) { |
|
123
|
0
|
|
|
|
|
|
$$hashref{BANDWIDTH} = $1; |
|
124
|
|
|
|
|
|
|
} elsif (/^Antenna\s#\s+\d+\s+name:\s+(\S+)/) { |
|
125
|
0
|
|
|
|
|
|
push @{$$hashref{ANTENNA}}, $1; |
|
|
0
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
} elsif (/^DATA/) { |
|
127
|
0
|
|
|
|
|
|
$eof = 0; |
|
128
|
0
|
|
|
|
|
|
last; |
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
} |
|
131
|
|
|
|
|
|
|
|
|
132
|
0
|
0
|
|
|
|
|
return 2 if $eof; |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
#Skip until find data |
|
135
|
0
|
|
|
|
|
|
$eof = 1; |
|
136
|
0
|
|
|
|
|
|
my $velocity = 0; |
|
137
|
0
|
|
|
|
|
|
while (<$fh>) { |
|
138
|
0
|
0
|
|
|
|
|
if ($astro::oldpossm) { |
|
139
|
0
|
0
|
|
|
|
|
if (/Channel.*IF.*(Velocity|Frequency).*(Ampl|Real).*(Phase|Imag)/) { |
|
140
|
0
|
0
|
|
|
|
|
$velocity = 1 if ($1 eq 'Velocity'); |
|
141
|
0
|
0
|
|
|
|
|
if ($2 eq 'Ampl') { |
|
142
|
0
|
|
|
|
|
|
$$hashref{TYPE} = 'A&P'; |
|
143
|
|
|
|
|
|
|
} else { |
|
144
|
0
|
|
|
|
|
|
$$hashref{TYPE} = 'R&I'; |
|
145
|
|
|
|
|
|
|
} |
|
146
|
0
|
|
|
|
|
|
$eof = 0; |
|
147
|
0
|
|
|
|
|
|
last; |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
} else { |
|
150
|
|
|
|
|
|
|
# 5/6/03 Minor change. No time to fix properly bugger |
|
151
|
|
|
|
|
|
|
# if (/Channel.*IF.*Frequency.*Velocity.*(Ampl|Real).*(Phase|Imag)/) { |
|
152
|
0
|
0
|
|
|
|
|
if (/Channel.*IF.*Polar.*Frequency.*Velocity.*(Ampl|Real).*(Phase|Imag)/) { |
|
153
|
0
|
|
|
|
|
|
$eof = 0; |
|
154
|
0
|
0
|
|
|
|
|
if ($1 eq 'Ampl') { |
|
155
|
0
|
|
|
|
|
|
$$hashref{TYPE} = 'A&P'; |
|
156
|
|
|
|
|
|
|
} else { |
|
157
|
0
|
|
|
|
|
|
$$hashref{TYPE} = 'R&I'; |
|
158
|
|
|
|
|
|
|
} |
|
159
|
0
|
|
|
|
|
|
last; |
|
160
|
|
|
|
|
|
|
} |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
} |
|
163
|
|
|
|
|
|
|
|
|
164
|
0
|
0
|
|
|
|
|
croak "$0: premature EOF" if $eof; |
|
165
|
|
|
|
|
|
|
|
|
166
|
|
|
|
|
|
|
# Read the data in |
|
167
|
0
|
|
|
|
|
|
$eof = 1; |
|
168
|
0
|
|
|
|
|
|
my $n = 0; |
|
169
|
0
|
|
|
|
|
|
while (<$fh>) { |
|
170
|
0
|
0
|
0
|
|
|
|
if ($astro::oldpossm && /\s*(\d+)\s+ # Channel |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
171
|
|
|
|
|
|
|
\d+\s+ # IF |
|
172
|
|
|
|
|
|
|
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Velocity Frequency |
|
173
|
|
|
|
|
|
|
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Amplitude |
|
174
|
|
|
|
|
|
|
([-+]?\d+\.\d*) # Phase |
|
175
|
|
|
|
|
|
|
/x) { |
|
176
|
|
|
|
|
|
|
|
|
177
|
0
|
|
|
|
|
|
$n++; |
|
178
|
0
|
|
|
|
|
|
push(@{$$hashref{CHANNEL}},$1); |
|
|
0
|
|
|
|
|
|
|
|
179
|
0
|
0
|
|
|
|
|
if ($velocity) { |
|
180
|
0
|
|
|
|
|
|
push(@{$$hashref{VELOCITY}},$2); |
|
|
0
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
} else { |
|
182
|
0
|
|
|
|
|
|
push(@{$$hashref{FREQUENCY}},$2); |
|
|
0
|
|
|
|
|
|
|
|
183
|
|
|
|
|
|
|
} |
|
184
|
0
|
|
|
|
|
|
push(@{$$hashref{AMPLITUDE}},$3); |
|
|
0
|
|
|
|
|
|
|
|
185
|
0
|
|
|
|
|
|
push(@{$$hashref{PHASE}},$4); |
|
|
0
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
} elsif (/\s*(\d+)\s+ # Channel |
|
187
|
|
|
|
|
|
|
\d+\s+ # IF |
|
188
|
|
|
|
|
|
|
\S+\s+ # Polar |
|
189
|
|
|
|
|
|
|
(\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Frequency |
|
190
|
|
|
|
|
|
|
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Velocity |
|
191
|
|
|
|
|
|
|
([-+]?\d+\.\d*(?:[Ee][\-+]\d+)?)\s+ # Amplitude - Real |
|
192
|
|
|
|
|
|
|
([-+]?\d+\.\d*) # Phase - Imag |
|
193
|
|
|
|
|
|
|
/x) { |
|
194
|
|
|
|
|
|
|
|
|
195
|
0
|
|
|
|
|
|
$n++; |
|
196
|
0
|
|
|
|
|
|
push(@{$$hashref{CHANNEL}},$1); |
|
|
0
|
|
|
|
|
|
|
|
197
|
0
|
|
|
|
|
|
push(@{$$hashref{FREQUENCY}},$2); |
|
|
0
|
|
|
|
|
|
|
|
198
|
0
|
|
|
|
|
|
push(@{$$hashref{VELOCITY}},$3); |
|
|
0
|
|
|
|
|
|
|
|
199
|
0
|
|
|
|
|
|
push(@{$$hashref{AMPLITUDE}},$4); |
|
|
0
|
|
|
|
|
|
|
|
200
|
0
|
|
|
|
|
|
push(@{$$hashref{PHASE}},$5); |
|
|
0
|
|
|
|
|
|
|
|
201
|
|
|
|
|
|
|
} elsif (/\s*\d+.*FLAGGED/) { |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
} elsif (/Header/) { #Next plot |
|
204
|
0
|
|
|
|
|
|
$eof = 0; |
|
205
|
0
|
|
|
|
|
|
last; |
|
206
|
|
|
|
|
|
|
} else { |
|
207
|
0
|
|
|
|
|
|
print STDERR '** '; |
|
208
|
0
|
|
|
|
|
|
print STDERR; |
|
209
|
|
|
|
|
|
|
} |
|
210
|
|
|
|
|
|
|
} |
|
211
|
|
|
|
|
|
|
|
|
212
|
0
|
0
|
|
|
|
|
croak "$0: No Data read\n" if ($n == 0); |
|
213
|
|
|
|
|
|
|
|
|
214
|
0
|
|
|
|
|
|
return $eof; |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
} |
|
217
|
|
|
|
|
|
|
|
|
218
|
|
|
|
|
|
|
=item B |
|
219
|
|
|
|
|
|
|
|
|
220
|
|
|
|
|
|
|
Read_lovas read the Lovas "Recommended Rest Frequencies for Observed |
|
221
|
|
|
|
|
|
|
Interstellar Molecular Microwave Transitions - 1991 Revision" |
|
222
|
|
|
|
|
|
|
(J. Phys. Chem. Ref. Data, 21, 181-272, 1992). Alpha quality!! |
|
223
|
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
my @lovas = read_lovas($fname); |
|
225
|
|
|
|
|
|
|
my @lovas = read_lovas($fname, $minfreq, $maxfreq); |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
=cut |
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
# Probably does not work !!! |
|
230
|
|
|
|
|
|
|
sub read_lovas ($;$$) { |
|
231
|
0
|
|
|
0
|
1
|
|
warn 'Using Beta routine'; |
|
232
|
0
|
|
|
|
|
|
my($fname, $min, $max) = @_; |
|
233
|
|
|
|
|
|
|
|
|
234
|
0
|
0
|
|
|
|
|
if (!open(LOVAS, $fname)) { |
|
235
|
0
|
|
|
|
|
|
carp "Could not open $fname: $!\n"; |
|
236
|
0
|
|
|
|
|
|
return undef; |
|
237
|
|
|
|
|
|
|
} |
|
238
|
|
|
|
|
|
|
|
|
239
|
0
|
|
|
|
|
|
my ($freq, $calc, $uncert, $molecule, $form, $tsys, $source, $telescope, $ref); |
|
240
|
0
|
|
|
|
|
|
my @lovas = (); |
|
241
|
|
|
|
|
|
|
|
|
242
|
0
|
|
|
|
|
|
while () { |
|
243
|
0
|
|
|
|
|
|
chomp; |
|
244
|
|
|
|
|
|
|
|
|
245
|
0
|
|
|
|
|
|
$freq = substr $_, 1, 16; |
|
246
|
0
|
|
|
|
|
|
$molecule = substr $_, 18, 11; |
|
247
|
0
|
|
|
|
|
|
$form = substr $_, 29, 28; |
|
248
|
0
|
|
|
|
|
|
$c = substr $_, 57, 1; # Could be either formulae or Tsys |
|
249
|
0
|
|
|
|
|
|
$tsys = substr $_, 58, 7; |
|
250
|
0
|
|
|
|
|
|
$source = substr $_, 65, 15; |
|
251
|
0
|
|
|
|
|
|
$telescope = substr $_, 81, 12; |
|
252
|
0
|
|
|
|
|
|
$ref = substr $_, 94; |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
# Clean up the strings |
|
255
|
|
|
|
|
|
|
|
|
256
|
0
|
|
|
|
|
|
$freq =~ s/^\s+//; |
|
257
|
0
|
|
|
|
|
|
$freq =~ s/\s+$//; |
|
258
|
0
|
|
|
|
|
|
$molecule =~ s/^\s+//; |
|
259
|
0
|
|
|
|
|
|
$molecule =~ s/\s+$//; |
|
260
|
0
|
|
|
|
|
|
$source =~ s/^\s+//; |
|
261
|
0
|
|
|
|
|
|
$source =~ s/\s+$//; |
|
262
|
0
|
|
|
|
|
|
$telescope =~ s/^\s+//; |
|
263
|
0
|
|
|
|
|
|
$telescope =~ s/\s+$//; |
|
264
|
0
|
|
|
|
|
|
$ref =~ s/^\s+//; |
|
265
|
0
|
|
|
|
|
|
$ref =~ s/\s+$//; |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
# Work out the contended column 57; |
|
268
|
0
|
0
|
|
|
|
|
if ($c ne ' ') { |
|
269
|
|
|
|
|
|
|
|
|
270
|
0
|
|
|
|
|
|
my ($s1) = $tsys =~ /^(\s+)/; |
|
271
|
0
|
|
|
|
|
|
my ($s2) = $form =~ /(\s+)$/; |
|
272
|
|
|
|
|
|
|
# Assign column 57 to the field with the "nearest" non-blank (preference |
|
273
|
|
|
|
|
|
|
# to Tsys). |
|
274
|
0
|
0
|
|
|
|
|
if (!defined $s1) { |
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
275
|
0
|
|
|
|
|
|
$tsys = "$c$tsys"; |
|
276
|
|
|
|
|
|
|
} elsif (!defined $s2) { |
|
277
|
0
|
|
|
|
|
|
$form .= $c; |
|
278
|
|
|
|
|
|
|
} elsif (length($s2) > length($s1)) { |
|
279
|
0
|
|
|
|
|
|
$tsys = "$c$tsys"; |
|
280
|
|
|
|
|
|
|
} else { |
|
281
|
0
|
|
|
|
|
|
$form .= $c; |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
0
|
|
|
|
|
|
$form =~ s/^\s+//; |
|
286
|
0
|
|
|
|
|
|
$form =~ s/\s+$//; |
|
287
|
0
|
|
|
|
|
|
$tsys =~ s/^\s+//; |
|
288
|
0
|
|
|
|
|
|
$tsys =~ s/\s+$//; |
|
289
|
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
# Clean up unidentified molecules |
|
291
|
0
|
0
|
|
|
|
|
if ($molecule eq 'unidentifie') { |
|
292
|
0
|
|
|
|
|
|
$molecule .= $form; |
|
293
|
0
|
|
|
|
|
|
$form = ''; |
|
294
|
|
|
|
|
|
|
} |
|
295
|
|
|
|
|
|
|
|
|
296
|
0
|
0
|
|
|
|
|
if ($freq =~ /(.*)\*$/) { |
|
297
|
0
|
|
|
|
|
|
my $oldfreq = $freq; |
|
298
|
0
|
|
|
|
|
|
$freq = $1; |
|
299
|
0
|
|
|
|
|
|
$calc = 1; |
|
300
|
0
|
|
|
|
|
|
$freq =~ s/\s+$//; |
|
301
|
0
|
|
|
|
|
|
print "Using $oldfreq -> \"$freq\"\n"; |
|
302
|
|
|
|
|
|
|
} else { |
|
303
|
0
|
|
|
|
|
|
$calc = 0; |
|
304
|
|
|
|
|
|
|
} |
|
305
|
|
|
|
|
|
|
|
|
306
|
0
|
0
|
|
|
|
|
if ($freq =~ /([^\s\*\(]*[\d\.])\s*(\*)?\s*(\(\s*\d+\))?/) { |
|
307
|
0
|
|
|
|
|
|
my $oldfreq = $freq; |
|
308
|
0
|
|
|
|
|
|
$freq = $1; |
|
309
|
0
|
0
|
|
|
|
|
if (defined $2) { |
|
310
|
0
|
|
|
|
|
|
$calc = $2; |
|
311
|
|
|
|
|
|
|
} else { |
|
312
|
0
|
|
|
|
|
|
$calc = ' '; |
|
313
|
|
|
|
|
|
|
} |
|
314
|
0
|
0
|
|
|
|
|
if (defined $3) { |
|
315
|
0
|
|
|
|
|
|
$uncert = $3; |
|
316
|
|
|
|
|
|
|
} else { |
|
317
|
0
|
|
|
|
|
|
$uncert = ''; |
|
318
|
|
|
|
|
|
|
} |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
#warn "Used $oldfreq-> $freq:$calc:$uncert\n"; |
|
321
|
|
|
|
|
|
|
} else { |
|
322
|
0
|
|
|
|
|
|
warn "***Failed to parse $freq\n"; |
|
323
|
|
|
|
|
|
|
} |
|
324
|
|
|
|
|
|
|
|
|
325
|
0
|
0
|
0
|
|
|
|
next if (defined $min && $freq<$min); |
|
326
|
0
|
0
|
0
|
|
|
|
next if (defined $max && $freq>$max); |
|
327
|
|
|
|
|
|
|
|
|
328
|
0
|
|
|
|
|
|
push @lovas, [$freq, $calc, $uncert, $molecule, $form, $tsys, $source, |
|
329
|
|
|
|
|
|
|
$telescope, $ref]; |
|
330
|
|
|
|
|
|
|
|
|
331
|
|
|
|
|
|
|
} |
|
332
|
0
|
|
|
|
|
|
close(LOVAS); |
|
333
|
|
|
|
|
|
|
|
|
334
|
0
|
|
|
|
|
|
return @lovas; |
|
335
|
|
|
|
|
|
|
} |
|
336
|
|
|
|
|
|
|
|
|
337
|
|
|
|
|
|
|
# Used internally for calc_U |
|
338
|
|
|
|
|
|
|
# Ref: Mezger & Henderson 1967, ApJ 147 p 471 Eq A.2 |
|
339
|
|
|
|
|
|
|
sub a ($) { |
|
340
|
0
|
|
|
0
|
0
|
|
my $freq = shift; |
|
341
|
|
|
|
|
|
|
|
|
342
|
0
|
|
|
|
|
|
my $a = 0.336 * $freq**0.1 * $Temp**-0.15 |
|
343
|
|
|
|
|
|
|
* (log(4.995e-2/$freq) + 1.5*log($Temp)); |
|
344
|
|
|
|
|
|
|
|
|
345
|
0
|
|
|
|
|
|
return($a); |
|
346
|
|
|
|
|
|
|
} |
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
=item B |
|
349
|
|
|
|
|
|
|
|
|
350
|
|
|
|
|
|
|
$U = calc_U($flux, $dist, $freq); |
|
351
|
|
|
|
|
|
|
|
|
352
|
|
|
|
|
|
|
Calculate U (Excitation Parameter) for an UCHII region |
|
353
|
|
|
|
|
|
|
Based on Eqn 8 in Schraml and Mezger, 1969 |
|
354
|
|
|
|
|
|
|
$flux Integrated Source Flux Density (Jy) |
|
355
|
|
|
|
|
|
|
$dist Distance to source (kpc) |
|
356
|
|
|
|
|
|
|
$freq Frequency of observation (GHz) |
|
357
|
|
|
|
|
|
|
Note: |
|
358
|
|
|
|
|
|
|
Uses the global variable $Astro::Misc::Temp for electron temperature |
|
359
|
|
|
|
|
|
|
Default is 10000K |
|
360
|
|
|
|
|
|
|
|
|
361
|
|
|
|
|
|
|
=cut |
|
362
|
|
|
|
|
|
|
|
|
363
|
|
|
|
|
|
|
sub calc_U ($$$) { |
|
364
|
|
|
|
|
|
|
|
|
365
|
0
|
|
|
0
|
1
|
|
my ($flux, $dist, $freq) = @_; |
|
366
|
|
|
|
|
|
|
|
|
367
|
0
|
|
|
|
|
|
my $U = 4.5526 * ($freq**0.1 / a($freq) * $Temp**0.35 |
|
368
|
|
|
|
|
|
|
* $flux * $dist**2)**(1/3); |
|
369
|
0
|
|
|
|
|
|
return ($U); |
|
370
|
|
|
|
|
|
|
} |
|
371
|
|
|
|
|
|
|
|
|
372
|
|
|
|
|
|
|
=item B |
|
373
|
|
|
|
|
|
|
|
|
374
|
|
|
|
|
|
|
$Nl = calc_Nl($U); |
|
375
|
|
|
|
|
|
|
|
|
376
|
|
|
|
|
|
|
Calculate the Lyman continuum photon flux given U, the Excitation |
|
377
|
|
|
|
|
|
|
Parameter for an UCHII region |
|
378
|
|
|
|
|
|
|
$U is the Excitation Parameter (from calc_U) |
|
379
|
|
|
|
|
|
|
Ref: Kurtz 1994 ApJS 91 p659 Eq (1) (Original Origin unknown) |
|
380
|
|
|
|
|
|
|
|
|
381
|
|
|
|
|
|
|
=cut |
|
382
|
|
|
|
|
|
|
|
|
383
|
|
|
|
|
|
|
sub calc_Nl ($) { |
|
384
|
|
|
|
|
|
|
|
|
385
|
0
|
|
|
0
|
1
|
|
my ($U) = @_; |
|
386
|
|
|
|
|
|
|
|
|
387
|
|
|
|
|
|
|
# This came from Panagia 1973 AJ 78 p929 Eq 5. |
|
388
|
|
|
|
|
|
|
#my $Nl = ($U / 1.0976 / 2.01e-19)**3 * (3.43e-13); |
|
389
|
|
|
|
|
|
|
|
|
390
|
|
|
|
|
|
|
# This is the same from Kurtz but includes the Electron Temperature |
|
391
|
0
|
|
|
|
|
|
my $Nl = 8.04e46 * $Temp**-0.85 * $U**3; |
|
392
|
|
|
|
|
|
|
|
|
393
|
0
|
|
|
|
|
|
return $Nl; |
|
394
|
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
} |
|
396
|
|
|
|
|
|
|
|
|
397
|
|
|
|
|
|
|
## Replaced by values from Thompson 1984 |
|
398
|
|
|
|
|
|
|
# my @speclist = ('O4', 'O5', 'O5.5', 'O6', 'O6.5', 'O7', 'O7.5', 'O8', |
|
399
|
|
|
|
|
|
|
# 'O8.5', 'O9', 'O9.5', 'B0', 'B0.5', 'B1', 'B2', 'B3'); |
|
400
|
|
|
|
|
|
|
# my @lumlist = (6.11, 5.83, 5.60, 5.40, 5.17, 5.00, 4.92, 4.81, |
|
401
|
|
|
|
|
|
|
# 4.73, 4.66, 4.58, 4.40, 4.04, 3.72, 3.46, 3.02); |
|
402
|
|
|
|
|
|
|
# my @Nllist = (49.93, 49.62, 49.36, 49.08, 49.82, 48.62, 48.51, 48.35, 48.21, |
|
403
|
|
|
|
|
|
|
# 48.08, 47.84, 47.36, 46.23, 45.29, 44.65, 43.69); |
|
404
|
|
|
|
|
|
|
|
|
405
|
|
|
|
|
|
|
# die '@lumlist, @speclist and @Nlist must be the same size' |
|
406
|
|
|
|
|
|
|
# if (scalar(@lumlist) != scalar(@speclist) |
|
407
|
|
|
|
|
|
|
# || scalar(@lumlist) != scalar(@Nllist)); |
|
408
|
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
# =item B |
|
410
|
|
|
|
|
|
|
|
|
411
|
|
|
|
|
|
|
# $spectral_type = lum2spectral($luminosity); |
|
412
|
|
|
|
|
|
|
|
|
413
|
|
|
|
|
|
|
# Calculate the spectral type of a ZAMS star from its luminosity |
|
414
|
|
|
|
|
|
|
# Based on Panagia, 1973, ApJ, 78, 929. |
|
415
|
|
|
|
|
|
|
# $luminosity Star luminosity (normalised to Lsun) |
|
416
|
|
|
|
|
|
|
# Returns undef if luminosity is out of range (O4 - B3) |
|
417
|
|
|
|
|
|
|
|
|
418
|
|
|
|
|
|
|
# =cut |
|
419
|
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
# sub lum2spectral ($) { |
|
421
|
|
|
|
|
|
|
|
|
422
|
|
|
|
|
|
|
# my ($lum) = @_; |
|
423
|
|
|
|
|
|
|
# $lum = log10($lum); |
|
424
|
|
|
|
|
|
|
|
|
425
|
|
|
|
|
|
|
# my $n = scalar (@speclist); |
|
426
|
|
|
|
|
|
|
|
|
427
|
|
|
|
|
|
|
# if ($lum > $lumlist[0]) { |
|
428
|
|
|
|
|
|
|
# return ">$speclist[0]"; |
|
429
|
|
|
|
|
|
|
# } elsif ($lum < $lumlist[$n-1]) { |
|
430
|
|
|
|
|
|
|
# return "<$speclist[$n-1]"; |
|
431
|
|
|
|
|
|
|
# }; |
|
432
|
|
|
|
|
|
|
|
|
433
|
|
|
|
|
|
|
# my $i = 1; |
|
434
|
|
|
|
|
|
|
|
|
435
|
|
|
|
|
|
|
# # Find the closest pair |
|
436
|
|
|
|
|
|
|
# while ($lum < $lumlist[$i]) { |
|
437
|
|
|
|
|
|
|
# $i++; |
|
438
|
|
|
|
|
|
|
# } |
|
439
|
|
|
|
|
|
|
# # Return the closest one |
|
440
|
|
|
|
|
|
|
# if ($lumlist[$i-1]-$lum > $lum - $lumlist[$i]) { |
|
441
|
|
|
|
|
|
|
# return $speclist[$i]; |
|
442
|
|
|
|
|
|
|
# } else { |
|
443
|
|
|
|
|
|
|
# return $speclist[$i-1]; |
|
444
|
|
|
|
|
|
|
# } |
|
445
|
|
|
|
|
|
|
# } |
|
446
|
|
|
|
|
|
|
|
|
447
|
|
|
|
|
|
|
# =item B |
|
448
|
|
|
|
|
|
|
|
|
449
|
|
|
|
|
|
|
# $spectral = Nl2spectral($Nl); |
|
450
|
|
|
|
|
|
|
|
|
451
|
|
|
|
|
|
|
# Calculate the spectral type of a ZAMS star from its flux of |
|
452
|
|
|
|
|
|
|
# Lyman Continuum Photons (Nl) |
|
453
|
|
|
|
|
|
|
# Based on Panagia, 1973, ApJ, 78, 929 |
|
454
|
|
|
|
|
|
|
# $Nl Flux of Lyman Continuum Photons |
|
455
|
|
|
|
|
|
|
# Returns undef if luminosity is out of range (O4 - B3) |
|
456
|
|
|
|
|
|
|
|
|
457
|
|
|
|
|
|
|
# =cut |
|
458
|
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
# sub Nl2spectral ($) { |
|
460
|
|
|
|
|
|
|
|
|
461
|
|
|
|
|
|
|
# my ($Nl) = @_; |
|
462
|
|
|
|
|
|
|
# $Nl = log10($Nl); |
|
463
|
|
|
|
|
|
|
|
|
464
|
|
|
|
|
|
|
# my $n = scalar (@speclist); |
|
465
|
|
|
|
|
|
|
|
|
466
|
|
|
|
|
|
|
# if ($Nl > $Nllist[0]) { |
|
467
|
|
|
|
|
|
|
# return ">$speclist[0]"; |
|
468
|
|
|
|
|
|
|
# } elsif ($Nl < $Nllist[$n-1]) { |
|
469
|
|
|
|
|
|
|
# return "<$speclist[$n-1]"; |
|
470
|
|
|
|
|
|
|
# }; |
|
471
|
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
# my $i = 1; |
|
473
|
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
# # Find the closest pair |
|
475
|
|
|
|
|
|
|
# while ($Nl < $Nllist[$i]) { |
|
476
|
|
|
|
|
|
|
# $i++; |
|
477
|
|
|
|
|
|
|
# } |
|
478
|
|
|
|
|
|
|
# # Return the closest one |
|
479
|
|
|
|
|
|
|
# if ($Nllist[$i-1]-$Nl > $Nl - $Nllist[$i]) { |
|
480
|
|
|
|
|
|
|
# return $speclist[$i]; |
|
481
|
|
|
|
|
|
|
# } else { |
|
482
|
|
|
|
|
|
|
# return $speclist[$i-1]; |
|
483
|
|
|
|
|
|
|
# } |
|
484
|
|
|
|
|
|
|
# } |
|
485
|
|
|
|
|
|
|
|
|
486
|
|
|
|
|
|
|
=item B |
|
487
|
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
$spectral_type = lum2spectral($luminosity); |
|
489
|
|
|
|
|
|
|
|
|
490
|
|
|
|
|
|
|
Calculate the spectral type of a ZAMS star from its luminosity |
|
491
|
|
|
|
|
|
|
Based on Thompson 1984 ApJ 283 165 Table 1 |
|
492
|
|
|
|
|
|
|
$luminosity Star luminosity (normalised to Lsun) |
|
493
|
|
|
|
|
|
|
|
|
494
|
|
|
|
|
|
|
=cut |
|
495
|
|
|
|
|
|
|
|
|
496
|
|
|
|
|
|
|
sub lum2spectral($) { |
|
497
|
0
|
|
|
0
|
1
|
|
my $lum = log10(shift); |
|
498
|
|
|
|
|
|
|
|
|
499
|
0
|
|
|
|
|
|
my $n = scalar (@ThompsonData); |
|
500
|
0
|
0
|
|
|
|
|
if ($lum < $ThompsonData[0][LUM]) { |
|
|
|
0
|
|
|
|
|
|
|
501
|
0
|
|
|
|
|
|
return "<$ThompsonData[0][SPEC]"; |
|
502
|
|
|
|
|
|
|
} elsif ($lum > $ThompsonData[$n-1][LUM]) { |
|
503
|
0
|
|
|
|
|
|
return ">$ThompsonData[$n-1][SPEC]"; |
|
504
|
|
|
|
|
|
|
}; |
|
505
|
|
|
|
|
|
|
|
|
506
|
0
|
|
|
|
|
|
$n = 1; |
|
507
|
|
|
|
|
|
|
# Find the closest pair |
|
508
|
0
|
|
|
|
|
|
while ($lum > $ThompsonData[$n][LUM]) { |
|
509
|
0
|
|
|
|
|
|
$n++; |
|
510
|
|
|
|
|
|
|
} |
|
511
|
|
|
|
|
|
|
# Return the closest one |
|
512
|
0
|
0
|
|
|
|
|
if ($ThompsonData[$n][LUM]-$lum < $lum - $ThompsonData[$n-1][LUM]) { |
|
513
|
0
|
|
|
|
|
|
return $ThompsonData[$n][SPEC]; |
|
514
|
|
|
|
|
|
|
} else { |
|
515
|
0
|
|
|
|
|
|
return $ThompsonData[$n-1][SPEC]; |
|
516
|
|
|
|
|
|
|
} |
|
517
|
|
|
|
|
|
|
} |
|
518
|
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
=item B |
|
520
|
|
|
|
|
|
|
|
|
521
|
|
|
|
|
|
|
$spectral = Nl2spectral($Nl); |
|
522
|
|
|
|
|
|
|
|
|
523
|
|
|
|
|
|
|
Calculate the spectral type of a ZAMS star from its flux of |
|
524
|
|
|
|
|
|
|
Lyman Continuum Photons (Nl) |
|
525
|
|
|
|
|
|
|
Based on Panagia, 1973, ApJ, 78, 929 |
|
526
|
|
|
|
|
|
|
$Nl Flux of Lyman Continuum Photons |
|
527
|
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
=cut |
|
529
|
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
sub Nl2spectral ($) { |
|
531
|
0
|
|
|
0
|
1
|
|
my $Nl = log10(shift); |
|
532
|
|
|
|
|
|
|
|
|
533
|
0
|
|
|
|
|
|
my $n = scalar (@ThompsonData); |
|
534
|
|
|
|
|
|
|
|
|
535
|
0
|
0
|
|
|
|
|
if ($Nl < $ThompsonData[0][NL]) { |
|
|
|
0
|
|
|
|
|
|
|
536
|
0
|
|
|
|
|
|
return "<$ThompsonData[0][SPEC]"; |
|
537
|
|
|
|
|
|
|
} elsif ($Nl > $ThompsonData[$n-1][NL]) { |
|
538
|
0
|
|
|
|
|
|
return ">$ThompsonData[$n-1][SPEC]"; |
|
539
|
|
|
|
|
|
|
}; |
|
540
|
|
|
|
|
|
|
|
|
541
|
0
|
|
|
|
|
|
$n = 1; |
|
542
|
|
|
|
|
|
|
# Find the closest pair |
|
543
|
0
|
|
|
|
|
|
while ($Nl > $ThompsonData[$n][NL]) { |
|
544
|
0
|
|
|
|
|
|
$n++; |
|
545
|
|
|
|
|
|
|
} |
|
546
|
|
|
|
|
|
|
# Return the closest one |
|
547
|
0
|
0
|
|
|
|
|
if ($ThompsonData[$n][NL]-$Nl < $Nl - $ThompsonData[$n-1][NL]) { |
|
548
|
0
|
|
|
|
|
|
return $ThompsonData[$n][SPEC]; |
|
549
|
|
|
|
|
|
|
} else { |
|
550
|
0
|
|
|
|
|
|
return $ThompsonData[$n-1][SPEC]; |
|
551
|
|
|
|
|
|
|
} |
|
552
|
|
|
|
|
|
|
} |
|
553
|
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
=item B |
|
555
|
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
($dist1, $dist2)= kindist($ra, $dec, $vel, $epoch, $model); |
|
557
|
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
Calculate the kinematic distance to an object |
|
559
|
|
|
|
|
|
|
$dist1, $dist2 Near/Far distance (kpc) |
|
560
|
|
|
|
|
|
|
$ra RA of object (turns) |
|
561
|
|
|
|
|
|
|
$dec Dec of object (turns) |
|
562
|
|
|
|
|
|
|
$vel LSR Velocity (km/s) |
|
563
|
|
|
|
|
|
|
$epoch Epoch of coords (J2000/J/B1950/B) |
|
564
|
|
|
|
|
|
|
$model Model to use (1 or 2) |
|
565
|
|
|
|
|
|
|
|
|
566
|
|
|
|
|
|
|
Note: |
|
567
|
|
|
|
|
|
|
Model 1 is based on Brand and Blitz, 1993, A&A, 275, 67-90. |
|
568
|
|
|
|
|
|
|
Model 2 has unknown origin. |
|
569
|
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
=cut |
|
571
|
|
|
|
|
|
|
|
|
572
|
|
|
|
|
|
|
sub kindist ($$$$$) { |
|
573
|
|
|
|
|
|
|
|
|
574
|
0
|
|
|
0
|
1
|
|
my ($ra, $dec, $vel, $epoch, $model) = @_; |
|
575
|
0
|
|
|
|
|
|
my ($l, $b, $dist1, $dist2, $psi, $phi, $phid, $psid); |
|
576
|
0
|
|
|
|
|
|
$l = 0.0; |
|
577
|
0
|
|
|
|
|
|
$b = 0.0; |
|
578
|
|
|
|
|
|
|
|
|
579
|
0
|
0
|
0
|
|
|
|
if (($epoch eq 'J2000') || ($epoch eq 'J')) { |
|
580
|
0
|
|
|
|
|
|
($ra, $dec) = fk5fk4($ra, $dec); |
|
581
|
|
|
|
|
|
|
} |
|
582
|
0
|
|
|
|
|
|
($l, $b) = fk4gal($ra, $dec); |
|
583
|
0
|
|
|
|
|
|
$l *= 2.0*$PI; |
|
584
|
0
|
|
|
|
|
|
$b *= 2.0*$PI; |
|
585
|
|
|
|
|
|
|
|
|
586
|
0
|
0
|
0
|
|
|
|
croak "\$model must equal 1 or 2\n" |
|
587
|
|
|
|
|
|
|
if ($model != 1 && $model != 2) ; |
|
588
|
|
|
|
|
|
|
|
|
589
|
0
|
|
|
|
|
|
my $Ro = 8.5; |
|
590
|
0
|
|
|
|
|
|
my $THETAo = 220; |
|
591
|
0
|
|
|
|
|
|
my $R = 0.0004; |
|
592
|
0
|
|
|
|
|
|
my $Wo = $THETAo/$Ro; |
|
593
|
0
|
|
|
|
|
|
my $W = $vel/($Ro * sin($l)) + $Wo; |
|
594
|
|
|
|
|
|
|
|
|
595
|
0
|
|
|
|
|
|
my ($sampW); |
|
596
|
0
|
|
|
|
|
|
my $eps = 9999999.0; |
|
597
|
0
|
|
|
|
|
|
while ($eps > 0.1) { |
|
598
|
0
|
|
|
|
|
|
$R += 0.1; |
|
599
|
0
|
0
|
|
|
|
|
if ($model == 1) { |
|
600
|
0
|
|
|
|
|
|
$sampW = model_1($R); |
|
601
|
|
|
|
|
|
|
} else { |
|
602
|
0
|
|
|
|
|
|
$sampW = model_2($R); |
|
603
|
|
|
|
|
|
|
} |
|
604
|
0
|
|
|
|
|
|
$eps = abs($W - $sampW)/$W; |
|
605
|
0
|
0
|
|
|
|
|
if ($R > 5.0*$Ro) { |
|
606
|
0
|
|
|
|
|
|
warn "Could not find within limits.\n"; |
|
607
|
0
|
|
|
|
|
|
$eps = 0.0; |
|
608
|
|
|
|
|
|
|
} |
|
609
|
|
|
|
|
|
|
} |
|
610
|
0
|
|
|
|
|
|
$R = $R - 0.5; |
|
611
|
0
|
0
|
|
|
|
|
$R = 0.0 if ($R < 0.0); |
|
612
|
0
|
|
|
|
|
|
$eps = 9999999.0; |
|
613
|
0
|
|
|
|
|
|
while ($eps > 0.0001) { |
|
614
|
0
|
|
|
|
|
|
$R += 0.0001; |
|
615
|
0
|
0
|
|
|
|
|
if ($model == 1) { |
|
616
|
0
|
|
|
|
|
|
$sampW = model_1($R); |
|
617
|
|
|
|
|
|
|
} else { |
|
618
|
0
|
|
|
|
|
|
$sampW = model_2($R); |
|
619
|
|
|
|
|
|
|
} |
|
620
|
0
|
|
|
|
|
|
$eps = abs($W - $sampW)/$W; |
|
621
|
0
|
0
|
|
|
|
|
if ($R > 5.0*$Ro) { |
|
622
|
0
|
|
|
|
|
|
warn "Could not find within limits.\n"; |
|
623
|
0
|
|
|
|
|
|
$eps = 0.0; |
|
624
|
|
|
|
|
|
|
} |
|
625
|
|
|
|
|
|
|
} |
|
626
|
|
|
|
|
|
|
|
|
627
|
0
|
0
|
|
|
|
|
if ( sin($l) * $Ro/$R > 1.0) { |
|
|
|
0
|
|
|
|
|
|
|
628
|
0
|
|
|
|
|
|
$psi = $PI/2; |
|
629
|
|
|
|
|
|
|
} elsif ( sin($l)*$Ro/$R < -1.0) { |
|
630
|
0
|
|
|
|
|
|
$psi = -$PI/2; |
|
631
|
|
|
|
|
|
|
} else { |
|
632
|
0
|
|
|
|
|
|
$psi = asin(sin($l)*$Ro/$R); |
|
633
|
|
|
|
|
|
|
} |
|
634
|
0
|
|
|
|
|
|
$phi = $PI - $psi - $l; |
|
635
|
|
|
|
|
|
|
|
|
636
|
0
|
0
|
|
|
|
|
if (sin($l) == 0.0) { |
|
637
|
0
|
|
|
|
|
|
$dist1 = 0.0; |
|
638
|
0
|
|
|
|
|
|
$dist2 = 0.0; |
|
639
|
|
|
|
|
|
|
} else { |
|
640
|
0
|
|
|
|
|
|
$dist1 = abs($R*sin($phi)/sin($l)); |
|
641
|
0
|
|
|
|
|
|
$psid = $PI - $psi; |
|
642
|
0
|
|
|
|
|
|
$phid = $PI - $psid - $l; |
|
643
|
0
|
|
|
|
|
|
$dist2 = abs($R*sin($phid)/sin($l)); |
|
644
|
|
|
|
|
|
|
} |
|
645
|
|
|
|
|
|
|
|
|
646
|
0
|
0
|
|
|
|
|
if ($dist1 <= $dist2) { |
|
647
|
0
|
|
|
|
|
|
return($dist1, $dist2); |
|
648
|
|
|
|
|
|
|
} else { |
|
649
|
0
|
|
|
|
|
|
return($dist2, $dist1); |
|
650
|
|
|
|
|
|
|
} |
|
651
|
|
|
|
|
|
|
} |
|
652
|
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
sub model_1 ($) { |
|
654
|
|
|
|
|
|
|
# Model from Brand and Blitz, 1993, A&A, 275, 67-90 |
|
655
|
0
|
|
|
0
|
0
|
|
my ($R) = @_; |
|
656
|
|
|
|
|
|
|
|
|
657
|
0
|
|
|
|
|
|
my $Ro = 8.5; |
|
658
|
0
|
|
|
|
|
|
my $THETAo = 220; |
|
659
|
0
|
|
|
|
|
|
my $q = 1.00767; |
|
660
|
0
|
|
|
|
|
|
my $rr = 0.0394; |
|
661
|
0
|
|
|
|
|
|
my $s = 0.00712; |
|
662
|
|
|
|
|
|
|
# my $s = 0.00698; |
|
663
|
|
|
|
|
|
|
# my $q = 1.0074; |
|
664
|
|
|
|
|
|
|
# my $rr = 0.0382; |
|
665
|
|
|
|
|
|
|
|
|
666
|
0
|
|
|
|
|
|
return (($q*($R/$Ro)**$rr + $s)*$THETAo/$R); |
|
667
|
|
|
|
|
|
|
} |
|
668
|
|
|
|
|
|
|
|
|
669
|
|
|
|
|
|
|
sub model_2 ($) { |
|
670
|
0
|
|
|
0
|
0
|
|
my ($R) = @_; |
|
671
|
|
|
|
|
|
|
|
|
672
|
0
|
|
|
|
|
|
my $Ro = 8.5; |
|
673
|
0
|
|
|
|
|
|
my $THETAo = 220; |
|
674
|
0
|
|
|
|
|
|
my @A = (0.0, +3069.81, -15809.8, +43980.1, -68287.3, |
|
675
|
|
|
|
|
|
|
+54904.0, -17731.0); |
|
676
|
0
|
|
|
|
|
|
my @B = (+325.0912, -248.1467, +231.87099, -110.73531, |
|
677
|
|
|
|
|
|
|
+25.073006, -2.110625); |
|
678
|
0
|
|
|
|
|
|
my @C = (-2342.6564, +2507.60391, -1024.068760, +224.562732, |
|
679
|
|
|
|
|
|
|
-28.4080026, +2.0697271, -0.08050808, +0.00129348); |
|
680
|
0
|
|
|
|
|
|
my $D0 = 234.88; |
|
681
|
|
|
|
|
|
|
|
|
682
|
0
|
|
|
|
|
|
my $term1 = 0.0; |
|
683
|
0
|
|
|
|
|
|
my ($i); |
|
684
|
|
|
|
|
|
|
|
|
685
|
0
|
0
|
0
|
|
|
|
if ($R <= 0.09*$Ro) { |
|
|
|
0
|
0
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
|
|
0
|
|
|
|
|
|
|
686
|
0
|
|
|
|
|
|
for ($i = 0; $i < 7; $i++) { |
|
687
|
0
|
|
|
|
|
|
$term1 = $term1 + $A[$i]*$R**$i; |
|
688
|
|
|
|
|
|
|
} |
|
689
|
|
|
|
|
|
|
} elsif ((0.09*$Ro < $R) && ($R <= 0.45*$Ro)) { |
|
690
|
0
|
|
|
|
|
|
for ($i = 0; $i < 6; $i++) { |
|
691
|
0
|
|
|
|
|
|
$term1 = $term1 + $B[$i]*$R**$i; |
|
692
|
|
|
|
|
|
|
} |
|
693
|
|
|
|
|
|
|
} elsif (((0.45*$Ro) < $R) && ($R <= (1.6*$Ro))) { |
|
694
|
0
|
|
|
|
|
|
for ($i = 0; $i < 8; $i++) { |
|
695
|
0
|
|
|
|
|
|
$term1 = $term1 + $C[$i]*$R**$i; |
|
696
|
|
|
|
|
|
|
} |
|
697
|
|
|
|
|
|
|
} elsif ((1.6*$Ro) < $R) { |
|
698
|
0
|
|
|
|
|
|
$term1 = $D0; |
|
699
|
|
|
|
|
|
|
} else { |
|
700
|
0
|
|
|
|
|
|
die "model_2 inconsistent\n"; |
|
701
|
|
|
|
|
|
|
} |
|
702
|
|
|
|
|
|
|
|
|
703
|
0
|
|
|
|
|
|
return ($term1/$R); |
|
704
|
|
|
|
|
|
|
} |
|
705
|
|
|
|
|
|
|
|
|
706
|
|
|
|
|
|
|
1; |
|
707
|
|
|
|
|
|
|
|
|
708
|
|
|
|
|
|
|
__DATA__ |