| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | # Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Kevin Ryde | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | # This file is part of Chart. | 
| 4 |  |  |  |  |  |  | # | 
| 5 |  |  |  |  |  |  | # Chart is free software; you can redistribute it and/or modify it under the | 
| 6 |  |  |  |  |  |  | # terms of the GNU General Public License as published by the Free Software | 
| 7 |  |  |  |  |  |  | # Foundation; either version 3, or (at your option) any later version. | 
| 8 |  |  |  |  |  |  | # | 
| 9 |  |  |  |  |  |  | # Chart is distributed in the hope that it will be useful, but WITHOUT ANY | 
| 10 |  |  |  |  |  |  | # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS | 
| 11 |  |  |  |  |  |  | # FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more | 
| 12 |  |  |  |  |  |  | # details. | 
| 13 |  |  |  |  |  |  | # | 
| 14 |  |  |  |  |  |  | # You should have received a copy of the GNU General Public License along | 
| 15 |  |  |  |  |  |  | # with Chart.  If not, see <http://www.gnu.org/licenses/>. | 
| 16 |  |  |  |  |  |  |  | 
| 17 |  |  |  |  |  |  | package App::Chart::Series::Derived::EMA; | 
| 18 | 2 |  |  | 2 |  | 883 | use 5.010; | 
|  | 2 |  |  |  |  | 7 |  | 
| 19 | 2 |  |  | 2 |  | 8 | use strict; | 
|  | 2 |  |  |  |  | 3 |  | 
|  | 2 |  |  |  |  | 35 |  | 
| 20 | 2 |  |  | 2 |  | 8 | use warnings; | 
|  | 2 |  |  |  |  | 4 |  | 
|  | 2 |  |  |  |  | 50 |  | 
| 21 | 2 |  |  | 2 |  | 8 | use Carp; | 
|  | 2 |  |  |  |  | 2 |  | 
|  | 2 |  |  |  |  | 92 |  | 
| 22 | 2 |  |  | 2 |  | 9 | use POSIX (); | 
|  | 2 |  |  |  |  | 3 |  | 
|  | 2 |  |  |  |  | 28 |  | 
| 23 | 2 |  |  | 2 |  | 677 | use Locale::TextDomain ('App-Chart'); | 
|  | 2 |  |  |  |  | 30563 |  | 
|  | 2 |  |  |  |  | 14 |  | 
| 24 |  |  |  |  |  |  |  | 
| 25 | 2 |  |  | 2 |  | 12084 | use base 'App::Chart::Series::Indicator'; | 
|  | 2 |  |  |  |  | 6 |  | 
|  | 2 |  |  |  |  | 948 |  | 
| 26 |  |  |  |  |  |  | use App::Chart::Series::Calculation; | 
| 27 |  |  |  |  |  |  |  | 
| 28 |  |  |  |  |  |  |  | 
| 29 |  |  |  |  |  |  | # In the manual it's noted that the first n days weight make up 86.5% of | 
| 30 |  |  |  |  |  |  | # the total weight in an EMA.  That amount is x = 1 + f + f^2 + ... + | 
| 31 |  |  |  |  |  |  | # f^(n-1), and for total weight t | 
| 32 |  |  |  |  |  |  | # | 
| 33 |  |  |  |  |  |  | #     t = x + f^n*(1 + f + f^2 + ...) | 
| 34 |  |  |  |  |  |  | # | 
| 35 |  |  |  |  |  |  | #     t = x + f^n*t | 
| 36 |  |  |  |  |  |  | # | 
| 37 |  |  |  |  |  |  | # so the fraction of the total is | 
| 38 |  |  |  |  |  |  | # | 
| 39 |  |  |  |  |  |  | #     x/t = 1 - f^n | 
| 40 |  |  |  |  |  |  | # | 
| 41 |  |  |  |  |  |  | #               /      2  \ n | 
| 42 |  |  |  |  |  |  | #         = 1 - | 1 - --- | | 
| 43 |  |  |  |  |  |  | #               \     n+1 / | 
| 44 |  |  |  |  |  |  | # | 
| 45 |  |  |  |  |  |  | #               /     -2  \ n+1 | 
| 46 |  |  |  |  |  |  | #               | 1 + --- | | 
| 47 |  |  |  |  |  |  | #               \     n+1 / | 
| 48 |  |  |  |  |  |  | #         = 1 - ----------- | 
| 49 |  |  |  |  |  |  | #               /      2  \ | 
| 50 |  |  |  |  |  |  | #               | 1 - --- | | 
| 51 |  |  |  |  |  |  | #               \     n+1 / | 
| 52 |  |  |  |  |  |  | # | 
| 53 |  |  |  |  |  |  | # As n increases, the numerator approaches e^-2 from the limit (1+x/n)^n | 
| 54 |  |  |  |  |  |  | # --> e^x by Euler, and the numerator approaches 1.  So the result is | 
| 55 |  |  |  |  |  |  | # | 
| 56 |  |  |  |  |  |  | #                  1 | 
| 57 |  |  |  |  |  |  | #     x/t --> 1 - ---  = 0.8646647... | 
| 58 |  |  |  |  |  |  | #                 e^2 | 
| 59 |  |  |  |  |  |  | # | 
| 60 |  |  |  |  |  |  |  | 
| 61 |  |  |  |  |  |  | sub longname  { __('EMA - Exponential MA') } | 
| 62 |  |  |  |  |  |  | sub shortname { __('EMA') } | 
| 63 |  |  |  |  |  |  | sub manual    { __p('manual-node','Exponential Moving Average') } | 
| 64 |  |  |  |  |  |  |  | 
| 65 |  |  |  |  |  |  | use constant | 
| 66 |  |  |  |  |  |  | { priority   => 12, | 
| 67 |  |  |  |  |  |  | type       => 'average', | 
| 68 |  |  |  |  |  |  | parameter_info => [ { name     => __('Days'), | 
| 69 |  |  |  |  |  |  | key      => 'ema_days', | 
| 70 |  |  |  |  |  |  | type     => 'float', | 
| 71 |  |  |  |  |  |  | minimum  => 1, | 
| 72 |  |  |  |  |  |  | default  => 20, | 
| 73 |  |  |  |  |  |  | decimals => 0, | 
| 74 |  |  |  |  |  |  | step     => 1 } ], | 
| 75 |  |  |  |  |  |  | }; | 
| 76 |  |  |  |  |  |  |  | 
| 77 |  |  |  |  |  |  | sub new { | 
| 78 |  |  |  |  |  |  | my ($class, $parent, $N) = @_; | 
| 79 |  |  |  |  |  |  |  | 
| 80 |  |  |  |  |  |  | $N //= parameter_info()->[0]->{'default'}; | 
| 81 |  |  |  |  |  |  | ($N > 0) or croak "EMA bad N: $N"; | 
| 82 |  |  |  |  |  |  |  | 
| 83 |  |  |  |  |  |  | return $class->SUPER::new | 
| 84 |  |  |  |  |  |  | (parent     => $parent, | 
| 85 |  |  |  |  |  |  | parameters => [ $N ], | 
| 86 |  |  |  |  |  |  | N          => $N, | 
| 87 |  |  |  |  |  |  | arrays     => { values => [] }, | 
| 88 |  |  |  |  |  |  | array_aliases => { }); | 
| 89 |  |  |  |  |  |  | } | 
| 90 |  |  |  |  |  |  |  | 
| 91 |  |  |  |  |  |  | # Return a procedure which calculates an exponential moving average over an | 
| 92 |  |  |  |  |  |  | # accumulated window. | 
| 93 |  |  |  |  |  |  | # | 
| 94 |  |  |  |  |  |  | # Each call $proc->($value) enters a new value into the window, and the | 
| 95 |  |  |  |  |  |  | # return is the EMA up to (and including) that $value. | 
| 96 |  |  |  |  |  |  | # | 
| 97 |  |  |  |  |  |  | # An EMA is in theory influenced by all preceding data, but warmup_count() | 
| 98 |  |  |  |  |  |  | # below is designed to determine a warmup count.  By calling $proc with | 
| 99 |  |  |  |  |  |  | # warmup_count($N) many values, the next call will have an omitted weight of | 
| 100 |  |  |  |  |  |  | # no more than 0.1% of the total.  Omitting 0.1% should be negligable, | 
| 101 |  |  |  |  |  |  | # unless past values are ridiculously bigger than recent ones. | 
| 102 |  |  |  |  |  |  | # | 
| 103 |  |  |  |  |  |  | sub proc { | 
| 104 |  |  |  |  |  |  | my ($self_or_class, $N) = @_; | 
| 105 |  |  |  |  |  |  |  | 
| 106 |  |  |  |  |  |  | if ($N <= 1) { | 
| 107 |  |  |  |  |  |  | return \&App::Chart::Series::Calculation::identity; | 
| 108 |  |  |  |  |  |  | } | 
| 109 |  |  |  |  |  |  |  | 
| 110 |  |  |  |  |  |  | # $sum is v0 + v1*f + v2*f^2 + v3*f^3 + ... + vk*f^k, for as many $value's | 
| 111 |  |  |  |  |  |  | # as so far entered | 
| 112 |  |  |  |  |  |  | # | 
| 113 |  |  |  |  |  |  | # $weight is the corresponding 1 + f + f^2 + ... + f^k.  This approaches | 
| 114 |  |  |  |  |  |  | # 1/(1-f), but on the first few outputs it's much smaller, so must | 
| 115 |  |  |  |  |  |  | # calculate it explicitly. | 
| 116 |  |  |  |  |  |  |  | 
| 117 |  |  |  |  |  |  | my $f      = N_to_f ($N); | 
| 118 |  |  |  |  |  |  | my $alpha  = N_to_alpha ($N); | 
| 119 |  |  |  |  |  |  | my $sum    = 0; | 
| 120 |  |  |  |  |  |  | my $weight = 0; | 
| 121 |  |  |  |  |  |  | return sub { | 
| 122 |  |  |  |  |  |  | my ($value) = @_; | 
| 123 |  |  |  |  |  |  | $sum = $sum * $f + $value * $alpha; | 
| 124 |  |  |  |  |  |  | $weight = $weight * $f + $alpha; | 
| 125 |  |  |  |  |  |  | return $sum / $weight; | 
| 126 |  |  |  |  |  |  | }; | 
| 127 |  |  |  |  |  |  | } | 
| 128 |  |  |  |  |  |  |  | 
| 129 |  |  |  |  |  |  | # By priming an EMA accumulator PROC above with warmup_count($N) many | 
| 130 |  |  |  |  |  |  | # values, the next call will have an omitted weight of no more than 0.1% of | 
| 131 |  |  |  |  |  |  | # the total.  Omitting 0.1% should be negligable, unless past values are | 
| 132 |  |  |  |  |  |  | # ridiculously bigger than recent ones.  The implementation is fast, per | 
| 133 |  |  |  |  |  |  | # ema_omitted_search() below. | 
| 134 |  |  |  |  |  |  | # | 
| 135 |  |  |  |  |  |  | # Knowing that log(f) approaches -2/count as count increases, the result | 
| 136 |  |  |  |  |  |  | # from ema_omitted_search() is roughly log(0.001)/(-2/$N) = 3.45*$N. | 
| 137 |  |  |  |  |  |  | # | 
| 138 |  |  |  |  |  |  | use constant WARMUP_OMITTED_FRACTION => 0.001; | 
| 139 |  |  |  |  |  |  |  | 
| 140 |  |  |  |  |  |  | sub warmup_count { | 
| 141 |  |  |  |  |  |  | my ($self_or_class, $N) = @_; | 
| 142 |  |  |  |  |  |  | if ($N <= 1) { | 
| 143 |  |  |  |  |  |  | return 0; | 
| 144 |  |  |  |  |  |  | } else { | 
| 145 |  |  |  |  |  |  | return ema_omitted_search (N_to_f($N), WARMUP_OMITTED_FRACTION) - 1 ; | 
| 146 |  |  |  |  |  |  | } | 
| 147 |  |  |  |  |  |  | } | 
| 148 |  |  |  |  |  |  |  | 
| 149 |  |  |  |  |  |  | # ema_omitted_search() returns the number of terms t needed in an EMA to | 
| 150 |  |  |  |  |  |  | # have an omitted part <= TARGET, where target is a proportion between 0 and | 
| 151 |  |  |  |  |  |  | # 1.  This means | 
| 152 |  |  |  |  |  |  | # | 
| 153 |  |  |  |  |  |  | #     Omitted(t-1) <= target | 
| 154 |  |  |  |  |  |  | #     f^t <= target | 
| 155 |  |  |  |  |  |  | #     t >= log(target) / log(f) | 
| 156 |  |  |  |  |  |  | # | 
| 157 |  |  |  |  |  |  | # Can have f==0 when count==1 (a degenerate EMA, which just follows the | 
| 158 |  |  |  |  |  |  | # given points exactly).  log(0) isn't supported on guile 1.6, hence the | 
| 159 |  |  |  |  |  |  | # special case. | 
| 160 |  |  |  |  |  |  | # | 
| 161 |  |  |  |  |  |  | # Actually log(f) approaches -2/N as N increases, but it's easy enough to | 
| 162 |  |  |  |  |  |  | # do the calculation exactly. | 
| 163 |  |  |  |  |  |  | # | 
| 164 |  |  |  |  |  |  | sub ema_omitted_search { | 
| 165 |  |  |  |  |  |  | my ($f, $target) = @_; | 
| 166 |  |  |  |  |  |  | if ($f == 0) { | 
| 167 |  |  |  |  |  |  | return 0; | 
| 168 |  |  |  |  |  |  | } else { | 
| 169 |  |  |  |  |  |  | return POSIX::ceil (log($target) / log($f)); | 
| 170 |  |  |  |  |  |  | } | 
| 171 |  |  |  |  |  |  | } | 
| 172 |  |  |  |  |  |  |  | 
| 173 |  |  |  |  |  |  | # ema_omitted() returns the fraction (between 0 and 1) of weight omitted by | 
| 174 |  |  |  |  |  |  | # stopping an EMA at the f^k term, which means the first k+1 terms. | 
| 175 |  |  |  |  |  |  | # | 
| 176 |  |  |  |  |  |  | # The weight, out of a total 1, in those first terms | 
| 177 |  |  |  |  |  |  | # | 
| 178 |  |  |  |  |  |  | #     W(k) = (1-f) (1 + f + f^2 + ... + f^k) | 
| 179 |  |  |  |  |  |  | # | 
| 180 |  |  |  |  |  |  | # multiplying through makes the middle terms cancel, leaving | 
| 181 |  |  |  |  |  |  | # | 
| 182 |  |  |  |  |  |  | #     W(k) = 1 - f^(k+1) | 
| 183 |  |  |  |  |  |  | # | 
| 184 |  |  |  |  |  |  | # The omitted part is then O = 1-W, | 
| 185 |  |  |  |  |  |  | # | 
| 186 |  |  |  |  |  |  | #     Omitted(k) = f^(k+1) | 
| 187 |  |  |  |  |  |  | # | 
| 188 |  |  |  |  |  |  | sub ema_omitted { | 
| 189 |  |  |  |  |  |  | my ($f, $k) = @_; | 
| 190 |  |  |  |  |  |  | return $f ** ($k + 1); | 
| 191 |  |  |  |  |  |  | } | 
| 192 |  |  |  |  |  |  |  | 
| 193 |  |  |  |  |  |  | # alpha=2/(N+1) | 
| 194 |  |  |  |  |  |  | sub N_to_alpha { | 
| 195 |  |  |  |  |  |  | my ($N) = @_; | 
| 196 |  |  |  |  |  |  | return 2 / ($N + 1); | 
| 197 |  |  |  |  |  |  | } | 
| 198 |  |  |  |  |  |  | # f=1-2/(N+1), rearranged to f=(N-1)/(N+1). | 
| 199 |  |  |  |  |  |  | sub N_to_f { | 
| 200 |  |  |  |  |  |  | my ($N) = @_; | 
| 201 |  |  |  |  |  |  | return  ($N - 1) / ($N + 1); | 
| 202 |  |  |  |  |  |  | } | 
| 203 |  |  |  |  |  |  | # N = 2/alpha - 1 | 
| 204 |  |  |  |  |  |  | sub alpha_to_N { | 
| 205 |  |  |  |  |  |  | my ($alpha) = @_; | 
| 206 |  |  |  |  |  |  | return 2 / $alpha - 1; | 
| 207 |  |  |  |  |  |  | } | 
| 208 |  |  |  |  |  |  | # convert a $N in J. Welles Wilder's reckoning to one in the standard form | 
| 209 |  |  |  |  |  |  | # Wilder alpha=1/W, alpha=2/(N+1), so N=2*W-1 | 
| 210 |  |  |  |  |  |  | sub N_from_Wilder_N { | 
| 211 |  |  |  |  |  |  | my ($W) = @_; | 
| 212 |  |  |  |  |  |  | return 2*$W - 1; | 
| 213 |  |  |  |  |  |  | } | 
| 214 |  |  |  |  |  |  | sub N_to_Wilder_N { | 
| 215 |  |  |  |  |  |  | my ($N) = @_; | 
| 216 |  |  |  |  |  |  | return ($N+1)/2; | 
| 217 |  |  |  |  |  |  | } | 
| 218 |  |  |  |  |  |  |  | 
| 219 |  |  |  |  |  |  | 1; | 
| 220 |  |  |  |  |  |  | __END__ | 
| 221 |  |  |  |  |  |  |  | 
| 222 |  |  |  |  |  |  | # =head1 NAME | 
| 223 |  |  |  |  |  |  | # | 
| 224 |  |  |  |  |  |  | # App::Chart::Series::Derived::EMA -- exponential moving average | 
| 225 |  |  |  |  |  |  | # | 
| 226 |  |  |  |  |  |  | # =head1 SYNOPSIS | 
| 227 |  |  |  |  |  |  | # | 
| 228 |  |  |  |  |  |  | #  my $series = $parent->EMA($N); | 
| 229 |  |  |  |  |  |  | # | 
| 230 |  |  |  |  |  |  | # =head1 DESCRIPTION | 
| 231 |  |  |  |  |  |  | # | 
| 232 |  |  |  |  |  |  | # ... | 
| 233 |  |  |  |  |  |  | # | 
| 234 |  |  |  |  |  |  | # =head1 SEE ALSO | 
| 235 |  |  |  |  |  |  | # | 
| 236 |  |  |  |  |  |  | # L<App::Chart::Series>, L<App::Chart::Series::Derived::SMA> | 
| 237 |  |  |  |  |  |  | # | 
| 238 |  |  |  |  |  |  | # =cut |