|  line  | 
 stmt  | 
 bran  | 
 cond  | 
 sub  | 
 pod  | 
 time  | 
 code  | 
| 
1
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Kevin Ryde  | 
| 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
3
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # This file is part of Chart.  | 
| 
4
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
5
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Chart is free software; you can redistribute it and/or modify it under the  | 
| 
6
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # terms of the GNU General Public License as published by the Free Software  | 
| 
7
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Foundation; either version 3, or (at your option) any later version.  | 
| 
8
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
9
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Chart is distributed in the hope that it will be useful, but WITHOUT ANY  | 
| 
10
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS  | 
| 
11
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more  | 
| 
12
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # details.  | 
| 
13
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
14
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # You should have received a copy of the GNU General Public License along  | 
| 
15
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # with Chart.  If not, see <http://www.gnu.org/licenses/>.  | 
| 
16
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
17
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 package App::Chart::Series::Derived::EMA;  | 
| 
18
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
718
 | 
 use 5.010;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
6
 | 
    | 
| 
19
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
8
 | 
 use strict;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
33
 | 
    | 
| 
20
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
8
 | 
 use warnings;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
39
 | 
    | 
| 
21
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
7
 | 
 use Carp;  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
3
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
85
 | 
    | 
| 
22
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
519
 | 
 use POSIX ();  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
8591
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
68
 | 
    | 
| 
23
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
682
 | 
 use Locale::TextDomain ('App-Chart');  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
33543
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
11
 | 
    | 
| 
24
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
25
 | 
2
 | 
 
 | 
 
 | 
  
2
  
 | 
 
 | 
9899
 | 
 use base 'App::Chart::Series::Indicator';  | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
4
 | 
    | 
| 
 
 | 
2
 | 
 
 | 
 
 | 
 
 | 
 
 | 
660
 | 
    | 
| 
26
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use App::Chart::Series::Calculation;  | 
| 
27
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
28
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
29
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # In the manual it's noted that the first n days weight make up 86.5% of  | 
| 
30
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # the total weight in an EMA.  That amount is x = 1 + f + f^2 + ... +  | 
| 
31
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # f^(n-1), and for total weight t  | 
| 
32
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
33
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     t = x + f^n*(1 + f + f^2 + ...)  | 
| 
34
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
35
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     t = x + f^n*t  | 
| 
36
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
37
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # so the fraction of the total is  | 
| 
38
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
39
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     x/t = 1 - f^n  | 
| 
40
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
41
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               /      2  \ n  | 
| 
42
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #         = 1 - | 1 - --- |  | 
| 
43
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               \     n+1 /  | 
| 
44
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
45
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               /     -2  \ n+1  | 
| 
46
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               | 1 + --- |  | 
| 
47
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               \     n+1 /  | 
| 
48
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #         = 1 - -----------  | 
| 
49
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               /      2  \  | 
| 
50
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               | 1 - --- |  | 
| 
51
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #               \     n+1 /  | 
| 
52
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
53
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # As n increases, the numerator approaches e^-2 from the limit (1+x/n)^n  | 
| 
54
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # --> e^x by Euler, and the numerator approaches 1.  So the result is  | 
| 
55
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
56
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #                  1  | 
| 
57
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     x/t --> 1 - ---  = 0.8646647...  | 
| 
58
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #                 e^2  | 
| 
59
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
60
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
61
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub longname  { __('EMA - Exponential MA') }  | 
| 
62
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub shortname { __('EMA') }  | 
| 
63
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub manual    { __p('manual-node','Exponential Moving Average') }  | 
| 
64
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
65
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use constant  | 
| 
66
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   { priority   => 12,  | 
| 
67
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     type       => 'average',  | 
| 
68
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     parameter_info => [ { name     => __('Days'),  | 
| 
69
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           key      => 'ema_days',  | 
| 
70
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           type     => 'float',  | 
| 
71
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           minimum  => 1,  | 
| 
72
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           default  => 20,  | 
| 
73
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           decimals => 0,  | 
| 
74
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
                           step     => 1 } ],  | 
| 
75
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   };  | 
| 
76
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
77
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub new {  | 
| 
78
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($class, $parent, $N) = @_;  | 
| 
79
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
80
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   $N //= parameter_info()->[0]->{'default'};  | 
| 
81
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   ($N > 0) or croak "EMA bad N: $N";  | 
| 
82
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
83
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return $class->SUPER::new  | 
| 
84
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     (parent     => $parent,  | 
| 
85
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      parameters => [ $N ],  | 
| 
86
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      N          => $N,  | 
| 
87
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      arrays     => { values => [] },  | 
| 
88
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
      array_aliases => { });  | 
| 
89
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
90
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
91
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Return a procedure which calculates an exponential moving average over an  | 
| 
92
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # accumulated window.  | 
| 
93
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
94
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Each call $proc->($value) enters a new value into the window, and the  | 
| 
95
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # return is the EMA up to (and including) that $value.  | 
| 
96
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
97
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # An EMA is in theory influenced by all preceding data, but warmup_count()  | 
| 
98
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # below is designed to determine a warmup count.  By calling $proc with  | 
| 
99
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # warmup_count($N) many values, the next call will have an omitted weight of  | 
| 
100
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # no more than 0.1% of the total.  Omitting 0.1% should be negligable,  | 
| 
101
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # unless past values are ridiculously bigger than recent ones.  | 
| 
102
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
103
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub proc {  | 
| 
104
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($self_or_class, $N) = @_;  | 
| 
105
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
106
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ($N <= 1) {  | 
| 
107
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return \&App::Chart::Series::Calculation::identity;  | 
| 
108
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
109
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
110
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # $sum is v0 + v1*f + v2*f^2 + v3*f^3 + ... + vk*f^k, for as many $value's  | 
| 
111
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # as so far entered  | 
| 
112
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   #  | 
| 
113
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # $weight is the corresponding 1 + f + f^2 + ... + f^k.  This approaches  | 
| 
114
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # 1/(1-f), but on the first few outputs it's much smaller, so must  | 
| 
115
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   # calculate it explicitly.  | 
| 
116
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
117
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $f      = N_to_f ($N);  | 
| 
118
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $alpha  = N_to_alpha ($N);  | 
| 
119
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $sum    = 0;  | 
| 
120
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my $weight = 0;  | 
| 
121
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return sub {  | 
| 
122
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     my ($value) = @_;  | 
| 
123
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $sum = $sum * $f + $value * $alpha;  | 
| 
124
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     $weight = $weight * $f + $alpha;  | 
| 
125
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return $sum / $weight;  | 
| 
126
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   };  | 
| 
127
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
128
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
129
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # By priming an EMA accumulator PROC above with warmup_count($N) many  | 
| 
130
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # values, the next call will have an omitted weight of no more than 0.1% of  | 
| 
131
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # the total.  Omitting 0.1% should be negligable, unless past values are  | 
| 
132
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ridiculously bigger than recent ones.  The implementation is fast, per  | 
| 
133
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ema_omitted_search() below.  | 
| 
134
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
135
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Knowing that log(f) approaches -2/count as count increases, the result  | 
| 
136
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # from ema_omitted_search() is roughly log(0.001)/(-2/$N) = 3.45*$N.  | 
| 
137
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
138
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 use constant WARMUP_OMITTED_FRACTION => 0.001;  | 
| 
139
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
140
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub warmup_count {  | 
| 
141
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($self_or_class, $N) = @_;  | 
| 
142
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ($N <= 1) {  | 
| 
143
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return 0;  | 
| 
144
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } else {  | 
| 
145
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return ema_omitted_search (N_to_f($N), WARMUP_OMITTED_FRACTION) - 1 ;  | 
| 
146
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
147
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
148
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
149
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ema_omitted_search() returns the number of terms t needed in an EMA to  | 
| 
150
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # have an omitted part <= TARGET, where target is a proportion between 0 and  | 
| 
151
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # 1.  This means  | 
| 
152
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
153
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     Omitted(t-1) <= target  | 
| 
154
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     f^t <= target  | 
| 
155
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     t >= log(target) / log(f)  | 
| 
156
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
157
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Can have f==0 when count==1 (a degenerate EMA, which just follows the  | 
| 
158
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # given points exactly).  log(0) isn't supported on guile 1.6, hence the  | 
| 
159
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # special case.  | 
| 
160
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
161
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Actually log(f) approaches -2/N as N increases, but it's easy enough to  | 
| 
162
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # do the calculation exactly.  | 
| 
163
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
164
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub ema_omitted_search {  | 
| 
165
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($f, $target) = @_;  | 
| 
166
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   if ($f == 0) {  | 
| 
167
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return 0;  | 
| 
168
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   } else {  | 
| 
169
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
     return POSIX::ceil (log($target) / log($f));  | 
| 
170
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   }  | 
| 
171
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
172
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
173
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ema_omitted() returns the fraction (between 0 and 1) of weight omitted by  | 
| 
174
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # stopping an EMA at the f^k term, which means the first k+1 terms.  | 
| 
175
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
176
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # The weight, out of a total 1, in those first terms  | 
| 
177
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
178
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     W(k) = (1-f) (1 + f + f^2 + ... + f^k)  | 
| 
179
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
180
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # multiplying through makes the middle terms cancel, leaving  | 
| 
181
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
182
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     W(k) = 1 - f^(k+1)  | 
| 
183
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
184
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # The omitted part is then O = 1-W,  | 
| 
185
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
186
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #     Omitted(k) = f^(k+1)  | 
| 
187
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  | 
| 
188
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub ema_omitted {  | 
| 
189
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($f, $k) = @_;  | 
| 
190
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return $f ** ($k + 1);  | 
| 
191
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
192
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
193
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # alpha=2/(N+1)  | 
| 
194
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub N_to_alpha {  | 
| 
195
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($N) = @_;  | 
| 
196
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return 2 / ($N + 1);  | 
| 
197
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
198
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # f=1-2/(N+1), rearranged to f=(N-1)/(N+1).  | 
| 
199
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub N_to_f {  | 
| 
200
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($N) = @_;  | 
| 
201
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return  ($N - 1) / ($N + 1);  | 
| 
202
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
203
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # N = 2/alpha - 1  | 
| 
204
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub alpha_to_N {  | 
| 
205
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($alpha) = @_;  | 
| 
206
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return 2 / $alpha - 1;  | 
| 
207
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
208
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # convert a $N in J. Welles Wilder's reckoning to one in the standard form  | 
| 
209
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # Wilder alpha=1/W, alpha=2/(N+1), so N=2*W-1  | 
| 
210
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub N_from_Wilder_N {  | 
| 
211
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($W) = @_;  | 
| 
212
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return 2*$W - 1;  | 
| 
213
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
214
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 sub N_to_Wilder_N {  | 
| 
215
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   my ($N) = @_;  | 
| 
216
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
   return ($N+1)/2;  | 
| 
217
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 }  | 
| 
218
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
219
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 1;  | 
| 
220
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 __END__  | 
| 
221
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
    | 
| 
222
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # =head1 NAME  | 
| 
223
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
224
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # App::Chart::Series::Derived::EMA -- exponential moving average  | 
| 
225
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
226
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # =head1 SYNOPSIS  | 
| 
227
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
228
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #  my $series = $parent->EMA($N);  | 
| 
229
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
230
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # =head1 DESCRIPTION  | 
| 
231
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
232
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # ...  | 
| 
233
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
234
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # =head1 SEE ALSO  | 
| 
235
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
236
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # L<App::Chart::Series>, L<App::Chart::Series::Derived::SMA>  | 
| 
237
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 #   | 
| 
238
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 
 | 
 # =cut  |