| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Algorithm::Simplex::Rational; |
|
2
|
2
|
|
|
2
|
|
766
|
use Moo; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
26
|
|
|
3
|
|
|
|
|
|
|
extends 'Algorithm::Simplex'; |
|
4
|
|
|
|
|
|
|
with 'Algorithm::Simplex::Role::Solve'; |
|
5
|
2
|
|
|
2
|
|
511
|
use MooX::Types::MooseLike::Base qw( InstanceOf ArrayRef Str ); |
|
|
2
|
|
|
|
|
5
|
|
|
|
2
|
|
|
|
|
117
|
|
|
6
|
2
|
|
|
2
|
|
742
|
use Math::Cephes::Fraction qw(:fract); |
|
|
2
|
|
|
|
|
11972
|
|
|
|
2
|
|
|
|
|
204
|
|
|
7
|
2
|
|
|
2
|
|
1094
|
use Math::BigRat; |
|
|
2
|
|
|
|
|
149048
|
|
|
|
2
|
|
|
|
|
10
|
|
|
8
|
2
|
|
|
2
|
|
1833
|
use namespace::clean; |
|
|
2
|
|
|
|
|
3
|
|
|
|
2
|
|
|
|
|
17
|
|
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
my $one = fract(1, 1); |
|
11
|
|
|
|
|
|
|
my $neg_one = fract(1, -1); |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
has '+tableau' => ( |
|
14
|
|
|
|
|
|
|
isa => ArrayRef [ ArrayRef [ InstanceOf ['Math::Cephes::Fraction'] ] ], |
|
15
|
|
|
|
|
|
|
coerce => sub { &make_fractions($_[0]) }, |
|
16
|
|
|
|
|
|
|
); |
|
17
|
|
|
|
|
|
|
|
|
18
|
|
|
|
|
|
|
has '+display_tableau' => ( |
|
19
|
|
|
|
|
|
|
isa => ArrayRef [ ArrayRef [Str] ], |
|
20
|
|
|
|
|
|
|
coerce => sub { &display_fractions($_[0]) }, |
|
21
|
|
|
|
|
|
|
); |
|
22
|
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
sub _build_objective_function_value { |
|
24
|
0
|
|
|
0
|
|
0
|
my $self = shift; |
|
25
|
0
|
|
|
|
|
0
|
return $self->tableau->[ $self->number_of_rows ] |
|
26
|
|
|
|
|
|
|
->[ $self->number_of_columns ]->rmul($neg_one)->as_string; |
|
27
|
|
|
|
|
|
|
} |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=head1 Name |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
Algorithm::Simplex::Rational - Rational model of the Simplex Algorithm |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
=head1 Methods |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
=head2 pivot |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
Do the algebra of a Tucker/Bland Simplex pivot. i.e. Traverse from one node |
|
38
|
|
|
|
|
|
|
to an adjacent node along the Simplex of feasible solutions. |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
=cut |
|
41
|
|
|
|
|
|
|
|
|
42
|
|
|
|
|
|
|
sub pivot { |
|
43
|
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
my $self = shift; |
|
45
|
|
|
|
|
|
|
my $pivot_row_number = shift; |
|
46
|
|
|
|
|
|
|
my $pivot_column_number = shift; |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
# Do tucker algebra on pivot row |
|
49
|
|
|
|
|
|
|
my $scale = |
|
50
|
|
|
|
|
|
|
$one->rdiv($self->tableau->[$pivot_row_number]->[$pivot_column_number]); |
|
51
|
|
|
|
|
|
|
for my $j (0 .. $self->number_of_columns) { |
|
52
|
|
|
|
|
|
|
$self->tableau->[$pivot_row_number]->[$j] = |
|
53
|
|
|
|
|
|
|
$self->tableau->[$pivot_row_number]->[$j]->rmul($scale); |
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
$self->tableau->[$pivot_row_number]->[$pivot_column_number] = $scale; |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
# Do tucker algebra elsewhere |
|
58
|
|
|
|
|
|
|
for my $i (0 .. $self->number_of_rows) { |
|
59
|
|
|
|
|
|
|
if ($i != $pivot_row_number) { |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
my $neg_a_ic = |
|
62
|
|
|
|
|
|
|
$self->tableau->[$i]->[$pivot_column_number]->rmul($neg_one); |
|
63
|
|
|
|
|
|
|
for my $j (0 .. $self->number_of_columns) { |
|
64
|
|
|
|
|
|
|
$self->tableau->[$i]->[$j] = |
|
65
|
|
|
|
|
|
|
$self->tableau->[$i]->[$j]->radd( |
|
66
|
|
|
|
|
|
|
$neg_a_ic->rmul($self->tableau->[$pivot_row_number]->[$j])); |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
$self->tableau->[$i]->[$pivot_column_number] = |
|
69
|
|
|
|
|
|
|
$neg_a_ic->rmul($scale); |
|
70
|
|
|
|
|
|
|
} |
|
71
|
|
|
|
|
|
|
} |
|
72
|
|
|
|
|
|
|
|
|
73
|
|
|
|
|
|
|
return; |
|
74
|
|
|
|
|
|
|
} |
|
75
|
|
|
|
|
|
|
after 'pivot' => sub { |
|
76
|
|
|
|
|
|
|
my $self = shift; |
|
77
|
|
|
|
|
|
|
$self->number_of_pivots_made($self->number_of_pivots_made + 1); |
|
78
|
|
|
|
|
|
|
return; |
|
79
|
|
|
|
|
|
|
}; |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
=head2 determine_simplex_pivot_columns |
|
82
|
|
|
|
|
|
|
|
|
83
|
|
|
|
|
|
|
Look at the basement row to see where positive entries exists. |
|
84
|
|
|
|
|
|
|
Columns with positive entries in the basement row are pivot column candidates. |
|
85
|
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
Should run optimality test, is_optimal, first to insure |
|
87
|
|
|
|
|
|
|
at least one positive entry exists in the basement row which then |
|
88
|
|
|
|
|
|
|
means we can increase the objective value for the maximization problem. |
|
89
|
|
|
|
|
|
|
|
|
90
|
|
|
|
|
|
|
=cut |
|
91
|
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
sub determine_simplex_pivot_columns { |
|
93
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
94
|
|
|
|
|
|
|
|
|
95
|
0
|
|
|
|
|
0
|
my @simplex_pivot_column_numbers; |
|
96
|
0
|
|
|
|
|
0
|
for my $col_num (0 .. $self->number_of_columns - 1) { |
|
97
|
0
|
|
|
|
|
0
|
my $bottom_row_fraction = |
|
98
|
|
|
|
|
|
|
$self->tableau->[ $self->number_of_rows ]->[$col_num]; |
|
99
|
|
|
|
|
|
|
my $bottom_row_numeric = |
|
100
|
0
|
|
|
|
|
0
|
$bottom_row_fraction->{n} / $bottom_row_fraction->{d}; |
|
101
|
0
|
0
|
|
|
|
0
|
if ($bottom_row_numeric > 0) { |
|
102
|
0
|
|
|
|
|
0
|
push(@simplex_pivot_column_numbers, $col_num); |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
} |
|
105
|
0
|
|
|
|
|
0
|
return (@simplex_pivot_column_numbers); |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
=head2 determine_positive_ratios |
|
109
|
|
|
|
|
|
|
|
|
110
|
|
|
|
|
|
|
Starting with the pivot column find the entry that yields the lowest |
|
111
|
|
|
|
|
|
|
positive b to entry ratio that has lowest bland number in the event of ties. |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
=cut |
|
114
|
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
sub determine_positive_ratios { |
|
116
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
117
|
0
|
|
|
|
|
0
|
my $pivot_column_number = shift; |
|
118
|
|
|
|
|
|
|
|
|
119
|
|
|
|
|
|
|
# Build Ratios and Choose row(s) that yields min for the bland simplex column as a candidate pivot point. |
|
120
|
|
|
|
|
|
|
# To be a Simplex pivot we must not consider negative entries |
|
121
|
0
|
|
|
|
|
0
|
my @positive_ratios; |
|
122
|
|
|
|
|
|
|
my @positive_ratio_row_numbers; |
|
123
|
|
|
|
|
|
|
|
|
124
|
|
|
|
|
|
|
#print "Column: $possible_pivot_column\n"; |
|
125
|
0
|
|
|
|
|
0
|
for my $row_num (0 .. $self->number_of_rows - 1) { |
|
126
|
0
|
|
|
|
|
0
|
my $bottom_row_fraction = |
|
127
|
|
|
|
|
|
|
$self->tableau->[$row_num]->[$pivot_column_number]; |
|
128
|
|
|
|
|
|
|
my $bottom_row_numeric = |
|
129
|
0
|
|
|
|
|
0
|
$bottom_row_fraction->{n} / $bottom_row_fraction->{d}; |
|
130
|
|
|
|
|
|
|
|
|
131
|
0
|
0
|
|
|
|
0
|
if ($bottom_row_numeric > 0) { |
|
132
|
|
|
|
|
|
|
push( |
|
133
|
|
|
|
|
|
|
@positive_ratios, |
|
134
|
|
|
|
|
|
|
( |
|
135
|
|
|
|
|
|
|
$self->tableau->[$row_num]->[ $self->number_of_columns ] |
|
136
|
|
|
|
|
|
|
->{n} * |
|
137
|
|
|
|
|
|
|
$self->tableau->[$row_num]->[$pivot_column_number]->{d} |
|
138
|
|
|
|
|
|
|
) / ( |
|
139
|
|
|
|
|
|
|
$self->tableau->[$row_num]->[$pivot_column_number]->{n} * |
|
140
|
|
|
|
|
|
|
$self->tableau->[$row_num]->[ $self->number_of_columns ] |
|
141
|
|
|
|
|
|
|
->{d} |
|
142
|
|
|
|
|
|
|
) |
|
143
|
0
|
|
|
|
|
0
|
); |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
# Track the rows that give ratios |
|
146
|
0
|
|
|
|
|
0
|
push @positive_ratio_row_numbers, $row_num; |
|
147
|
|
|
|
|
|
|
} |
|
148
|
|
|
|
|
|
|
} |
|
149
|
0
|
|
|
|
|
0
|
return (\@positive_ratios, \@positive_ratio_row_numbers); |
|
150
|
|
|
|
|
|
|
} |
|
151
|
|
|
|
|
|
|
|
|
152
|
|
|
|
|
|
|
=head2 is_optimal |
|
153
|
|
|
|
|
|
|
|
|
154
|
|
|
|
|
|
|
Return 1 if the current solution is optimal, 0 otherwise. |
|
155
|
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
Check basement row for having all non-positive entries which |
|
157
|
|
|
|
|
|
|
would => optimal (while in phase 2). |
|
158
|
|
|
|
|
|
|
|
|
159
|
|
|
|
|
|
|
=cut |
|
160
|
|
|
|
|
|
|
|
|
161
|
|
|
|
|
|
|
sub is_optimal { |
|
162
|
12
|
|
|
12
|
1
|
2745
|
my $self = shift; |
|
163
|
|
|
|
|
|
|
|
|
164
|
12
|
|
|
|
|
241
|
for my $j (0 .. $self->number_of_columns - 1) { |
|
165
|
40
|
|
|
|
|
1302
|
my $basement_row_fraction = |
|
166
|
|
|
|
|
|
|
$self->tableau->[ $self->number_of_rows ]->[$j]; |
|
167
|
|
|
|
|
|
|
my $basement_row_numeric = |
|
168
|
40
|
|
|
|
|
1439
|
$basement_row_fraction->{n} / $basement_row_fraction->{d}; |
|
169
|
40
|
50
|
|
|
|
739
|
if ($basement_row_numeric > 0) { |
|
170
|
0
|
|
|
|
|
0
|
return 0; |
|
171
|
|
|
|
|
|
|
} |
|
172
|
|
|
|
|
|
|
} |
|
173
|
12
|
|
|
|
|
45
|
return 1; |
|
174
|
|
|
|
|
|
|
} |
|
175
|
|
|
|
|
|
|
|
|
176
|
|
|
|
|
|
|
=head2 current_solution |
|
177
|
|
|
|
|
|
|
|
|
178
|
|
|
|
|
|
|
Return both the primal (max) and dual (min) solutions for the tableau. |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=cut |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
sub current_solution { |
|
183
|
0
|
|
|
0
|
1
|
0
|
my $self = shift; |
|
184
|
|
|
|
|
|
|
|
|
185
|
|
|
|
|
|
|
# Report the Current Solution as primal dependents and dual dependents. |
|
186
|
0
|
|
|
|
|
0
|
my @y = @{ $self->y_variables }; |
|
|
0
|
|
|
|
|
0
|
|
|
187
|
0
|
|
|
|
|
0
|
my @u = @{ $self->u_variables }; |
|
|
0
|
|
|
|
|
0
|
|
|
188
|
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
# Dependent Primal Variables |
|
190
|
0
|
|
|
|
|
0
|
my %primal_solution; |
|
191
|
0
|
|
|
|
|
0
|
for my $i (0 .. $#y) { |
|
192
|
0
|
|
|
|
|
0
|
my $rational = $self->tableau->[$i]->[ $self->number_of_columns ]; |
|
193
|
0
|
|
|
|
|
0
|
$primal_solution{ $y[$i]->{generic} } = $rational->as_string; |
|
194
|
|
|
|
|
|
|
} |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
# Dependent Dual Variables |
|
197
|
0
|
|
|
|
|
0
|
my %dual_solution; |
|
198
|
0
|
|
|
|
|
0
|
for my $j (0 .. $#u) { |
|
199
|
0
|
|
|
|
|
0
|
my $rational = |
|
200
|
|
|
|
|
|
|
$self->tableau->[ $self->number_of_rows ]->[$j]->rmul($neg_one); |
|
201
|
0
|
|
|
|
|
0
|
$dual_solution{ $u[$j]->{generic} } = $rational->as_string; |
|
202
|
|
|
|
|
|
|
} |
|
203
|
|
|
|
|
|
|
|
|
204
|
0
|
|
|
|
|
0
|
return (\%primal_solution, \%dual_solution); |
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=head2 Coercions |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
=head3 make_fractions |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
Make each rational entry a Math::Cephes::Fraction object |
|
212
|
|
|
|
|
|
|
with the help of Math::BigRat |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=cut |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub make_fractions { |
|
217
|
12
|
|
|
12
|
1
|
25
|
my $tableau = shift; |
|
218
|
|
|
|
|
|
|
|
|
219
|
12
|
|
|
|
|
20
|
for my $i (0 .. scalar @{$tableau} - 1) { |
|
|
12
|
|
|
|
|
39
|
|
|
220
|
62
|
|
|
|
|
7381
|
for my $j (0 .. scalar @{ $tableau->[0] } - 1) { |
|
|
62
|
|
|
|
|
151
|
|
|
221
|
|
|
|
|
|
|
|
|
222
|
|
|
|
|
|
|
# Using Math::BigRat to make fraction from decimal |
|
223
|
276
|
|
|
|
|
35848
|
my $x = Math::BigRat->new($tableau->[$i]->[$j]); |
|
224
|
276
|
|
|
|
|
195626
|
$tableau->[$i]->[$j] = fract($x->numerator, $x->denominator); |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
} |
|
227
|
12
|
|
|
|
|
2165
|
return $tableau; |
|
228
|
|
|
|
|
|
|
} |
|
229
|
|
|
|
|
|
|
|
|
230
|
|
|
|
|
|
|
=head3 display_fractions |
|
231
|
|
|
|
|
|
|
|
|
232
|
|
|
|
|
|
|
Convert each fraction object entry into a string. |
|
233
|
|
|
|
|
|
|
|
|
234
|
|
|
|
|
|
|
=cut |
|
235
|
|
|
|
|
|
|
|
|
236
|
|
|
|
|
|
|
sub display_fractions { |
|
237
|
0
|
|
|
0
|
1
|
|
my $fraction_tableau = shift; |
|
238
|
|
|
|
|
|
|
|
|
239
|
0
|
|
|
|
|
|
my $display_tableau; |
|
240
|
0
|
|
|
|
|
|
for my $i (0 .. scalar @{$fraction_tableau} - 1) { |
|
|
0
|
|
|
|
|
|
|
|
241
|
0
|
|
|
|
|
|
for my $j (0 .. scalar @{ $fraction_tableau->[0] } - 1) { |
|
|
0
|
|
|
|
|
|
|
|
242
|
0
|
|
|
|
|
|
$display_tableau->[$i]->[$j] = |
|
243
|
|
|
|
|
|
|
$fraction_tableau->[$i]->[$j]->as_string; |
|
244
|
|
|
|
|
|
|
} |
|
245
|
|
|
|
|
|
|
} |
|
246
|
0
|
|
|
|
|
|
return $display_tableau; |
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
} |
|
249
|
|
|
|
|
|
|
|
|
250
|
|
|
|
|
|
|
1; |