| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Algorithm::Simplex::PDL; |
|
2
|
2
|
|
|
2
|
|
724
|
use Moo; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
10
|
|
|
3
|
2
|
|
|
2
|
|
510
|
use MooX::Types::MooseLike::Base qw( ArrayRef Str ); |
|
|
2
|
|
|
|
|
2
|
|
|
|
2
|
|
|
|
|
128
|
|
|
4
|
|
|
|
|
|
|
extends 'Algorithm::Simplex'; |
|
5
|
|
|
|
|
|
|
with 'Algorithm::Simplex::Role::Solve'; |
|
6
|
2
|
|
|
2
|
|
11
|
use PDL::Lite; |
|
|
2
|
|
|
|
|
8
|
|
|
|
2
|
|
|
|
|
18
|
|
|
7
|
2
|
|
|
2
|
|
243
|
use namespace::clean; |
|
|
2
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
12
|
|
|
8
|
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 Name |
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
Algorithm::Simplex::PDL - PDL model of the Simplex Algorithm |
|
12
|
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=cut |
|
14
|
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
# TODO: Probably need EPSILON for zero approximation check like in Float model. |
|
16
|
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
has '+tableau' => ( |
|
18
|
|
|
|
|
|
|
isa => sub { $_[0]->isa('PDL') }, |
|
19
|
|
|
|
|
|
|
coerce => sub { PDL->pdl($_[0]) }, |
|
20
|
|
|
|
|
|
|
); |
|
21
|
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
has '+display_tableau' => ( |
|
23
|
|
|
|
|
|
|
isa => ArrayRef [ ArrayRef [Str] ], |
|
24
|
|
|
|
|
|
|
coerce => sub { &display_piddle($_[0]) }, |
|
25
|
|
|
|
|
|
|
); |
|
26
|
|
|
|
|
|
|
|
|
27
|
|
|
|
|
|
|
=head1 Methods |
|
28
|
|
|
|
|
|
|
|
|
29
|
|
|
|
|
|
|
=head2 _build_number_of_rows |
|
30
|
|
|
|
|
|
|
|
|
31
|
|
|
|
|
|
|
Set the number of rows. This is actually for the A matrix in Ax <= y. |
|
32
|
|
|
|
|
|
|
So the number is one less than the total number of rows in the tableau. |
|
33
|
|
|
|
|
|
|
The same holds for number of columns. |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
=cut |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
sub _build_number_of_rows { |
|
38
|
12
|
|
|
12
|
|
113
|
my $self = shift; |
|
39
|
12
|
|
|
|
|
172
|
my ($number_of_columns, $number_of_rows) = ($self->tableau->dims); |
|
40
|
12
|
|
|
|
|
428
|
return $number_of_rows - 1; |
|
41
|
|
|
|
|
|
|
} |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
=head2 _build_number_of_columns |
|
44
|
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
set the number of columns given the tableau matrix |
|
46
|
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
=cut |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
sub _build_number_of_columns { |
|
50
|
12
|
|
|
12
|
|
111
|
my $self = shift; |
|
51
|
12
|
|
|
|
|
187
|
my ($number_of_columns, $number_of_rows) = ($self->tableau->dims); |
|
52
|
12
|
|
|
|
|
678
|
return $number_of_columns - 1; |
|
53
|
|
|
|
|
|
|
} |
|
54
|
|
|
|
|
|
|
|
|
55
|
|
|
|
|
|
|
=head2 pivot |
|
56
|
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
Do the algebra of a Tucker/Bland pivot. i.e. Traverse from one node to and |
|
58
|
|
|
|
|
|
|
adjacent node along the Simplex of feasible solutions. This pivot method |
|
59
|
|
|
|
|
|
|
is particular to this PDL model. |
|
60
|
|
|
|
|
|
|
|
|
61
|
|
|
|
|
|
|
=cut |
|
62
|
|
|
|
|
|
|
|
|
63
|
|
|
|
|
|
|
sub pivot { |
|
64
|
|
|
|
|
|
|
my $self = shift; |
|
65
|
|
|
|
|
|
|
my $pivot_row_number = shift; |
|
66
|
|
|
|
|
|
|
my $pivot_column_number = shift; |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
my $pdl_A = $self->tableau; |
|
69
|
|
|
|
|
|
|
my $neg_one = PDL->zeroes(1); |
|
70
|
|
|
|
|
|
|
$neg_one -= 1; |
|
71
|
|
|
|
|
|
|
|
|
72
|
|
|
|
|
|
|
my $scale_copy = |
|
73
|
|
|
|
|
|
|
$pdl_A->slice("($pivot_column_number),($pivot_row_number)")->copy; |
|
74
|
|
|
|
|
|
|
my $scale = $pdl_A->slice("($pivot_column_number),($pivot_row_number)"); |
|
75
|
|
|
|
|
|
|
my $pivot_row = $pdl_A->slice(":,($pivot_row_number)"); |
|
76
|
|
|
|
|
|
|
$pivot_row /= $scale_copy; |
|
77
|
|
|
|
|
|
|
$scale /= $scale_copy; |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
# peform pivot algebra in non-pivot rows |
|
80
|
|
|
|
|
|
|
for my $i (0 .. $self->number_of_rows) { |
|
81
|
|
|
|
|
|
|
if ($i != $pivot_row_number) { |
|
82
|
|
|
|
|
|
|
my $a_ic_copy = $pdl_A->slice("($pivot_column_number),($i)")->copy; |
|
83
|
|
|
|
|
|
|
my $a_ic = $pdl_A->slice("($pivot_column_number),($i)"); |
|
84
|
|
|
|
|
|
|
my $change_row = $pdl_A->slice(":,($i)"); |
|
85
|
|
|
|
|
|
|
my $diff_term = $a_ic x $pivot_row; |
|
86
|
|
|
|
|
|
|
$change_row -= $diff_term; |
|
87
|
|
|
|
|
|
|
my $tmp = $neg_one x $a_ic_copy; |
|
88
|
|
|
|
|
|
|
$a_ic .= $tmp; # $scale_copy; |
|
89
|
|
|
|
|
|
|
$a_ic /= $scale_copy; |
|
90
|
|
|
|
|
|
|
} |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
return $pdl_A; |
|
94
|
|
|
|
|
|
|
} |
|
95
|
|
|
|
|
|
|
|
|
96
|
|
|
|
|
|
|
# Count pivots made |
|
97
|
|
|
|
|
|
|
after 'pivot' => sub { |
|
98
|
|
|
|
|
|
|
my $self = shift; |
|
99
|
|
|
|
|
|
|
$self->number_of_pivots_made($self->number_of_pivots_made + 1); |
|
100
|
|
|
|
|
|
|
return; |
|
101
|
|
|
|
|
|
|
}; |
|
102
|
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
=head2 is_optimal |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
Return 1 if the current solution is optimal, 0 otherwise. |
|
106
|
|
|
|
|
|
|
|
|
107
|
|
|
|
|
|
|
=cut |
|
108
|
|
|
|
|
|
|
|
|
109
|
|
|
|
|
|
|
sub is_optimal { |
|
110
|
12
|
|
|
12
|
1
|
114
|
my $self = shift; |
|
111
|
12
|
|
|
|
|
212
|
my $T_pdl = $self->tableau; |
|
112
|
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
# Look at basement row to see if no positive entries exists. |
|
114
|
12
|
|
|
|
|
246
|
my $n_cols_A = $self->number_of_columns - 1; |
|
115
|
12
|
|
|
|
|
586
|
my $number_of_rows = $self->number_of_rows; |
|
116
|
12
|
|
|
|
|
452
|
my $basement_row = $T_pdl->slice("0:$n_cols_A,($number_of_rows)"); |
|
117
|
12
|
|
|
|
|
355
|
my @basement_row = $basement_row->list; |
|
118
|
12
|
|
|
|
|
325
|
foreach my $profit_coefficient (@basement_row) { |
|
119
|
40
|
50
|
|
|
|
87
|
if ($profit_coefficient > 0) { |
|
120
|
0
|
|
|
|
|
0
|
return 0; |
|
121
|
|
|
|
|
|
|
} |
|
122
|
|
|
|
|
|
|
} |
|
123
|
|
|
|
|
|
|
|
|
124
|
12
|
|
|
|
|
120
|
return 1; |
|
125
|
|
|
|
|
|
|
} |
|
126
|
|
|
|
|
|
|
|
|
127
|
|
|
|
|
|
|
=head2 determine_simplex_pivot_columns |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
Look at the basement row to see where positive entries exists. |
|
130
|
|
|
|
|
|
|
Columns with positive entries in the basement row are pivot column candidates. |
|
131
|
|
|
|
|
|
|
|
|
132
|
|
|
|
|
|
|
Should run optimality test, is_optimal, first to insure |
|
133
|
|
|
|
|
|
|
at least one positive entry exists in the basement row which then |
|
134
|
|
|
|
|
|
|
means we can increase the objective value for the maximization problem. |
|
135
|
|
|
|
|
|
|
|
|
136
|
|
|
|
|
|
|
=cut |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
sub determine_simplex_pivot_columns { |
|
139
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
140
|
|
|
|
|
|
|
|
|
141
|
0
|
|
|
|
|
|
my @simplex_pivot_column_numbers; |
|
142
|
0
|
|
|
|
|
|
my $n_cols_A = $self->number_of_columns - 1; |
|
143
|
0
|
|
|
|
|
|
my $number_of_rows = $self->number_of_rows; |
|
144
|
0
|
|
|
|
|
|
my $basement_row = $self->tableau->slice("0:$n_cols_A,($number_of_rows)"); |
|
145
|
0
|
|
|
|
|
|
my @basement_row = $basement_row->list; |
|
146
|
0
|
|
|
|
|
|
my $column_number = 0; |
|
147
|
0
|
|
|
|
|
|
foreach my $profit_coefficient (@basement_row) { |
|
148
|
|
|
|
|
|
|
|
|
149
|
0
|
0
|
|
|
|
|
if ($profit_coefficient > 0) { |
|
150
|
0
|
|
|
|
|
|
push @simplex_pivot_column_numbers, $column_number; |
|
151
|
|
|
|
|
|
|
} |
|
152
|
0
|
|
|
|
|
|
$column_number++; |
|
153
|
|
|
|
|
|
|
} |
|
154
|
|
|
|
|
|
|
|
|
155
|
0
|
|
|
|
|
|
return @simplex_pivot_column_numbers; |
|
156
|
|
|
|
|
|
|
} |
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
=head2 determine_positive_ratios |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
Starting with the pivot column find the entry that yields the lowest |
|
161
|
|
|
|
|
|
|
positive b to entry ratio that has lowest bland number in the event of ties. |
|
162
|
|
|
|
|
|
|
|
|
163
|
|
|
|
|
|
|
=cut |
|
164
|
|
|
|
|
|
|
|
|
165
|
|
|
|
|
|
|
sub determine_positive_ratios { |
|
166
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
167
|
0
|
|
|
|
|
|
my $pivot_column_number = shift; |
|
168
|
|
|
|
|
|
|
|
|
169
|
0
|
|
|
|
|
|
my $n_rows_A = $self->number_of_rows - 1; |
|
170
|
0
|
|
|
|
|
|
my $number_of_columns = $self->number_of_columns; |
|
171
|
0
|
|
|
|
|
|
my $pivot_column = |
|
172
|
|
|
|
|
|
|
$self->tableau->slice("($pivot_column_number),0:$n_rows_A"); |
|
173
|
0
|
|
|
|
|
|
my @pivot_column = $pivot_column->list; |
|
174
|
0
|
|
|
|
|
|
my $constant_column = |
|
175
|
|
|
|
|
|
|
$self->tableau->slice("($number_of_columns),0:$n_rows_A"); |
|
176
|
0
|
|
|
|
|
|
my @constant_column = $constant_column->list; |
|
177
|
0
|
|
|
|
|
|
my $row_number = 0; |
|
178
|
0
|
|
|
|
|
|
my @positive_ratio_row_numbers; |
|
179
|
|
|
|
|
|
|
my @positive_ratios; |
|
180
|
|
|
|
|
|
|
|
|
181
|
0
|
|
|
|
|
|
foreach my $i (0 .. $n_rows_A) { |
|
182
|
0
|
0
|
|
|
|
|
if ($pivot_column[$i] > 0) { |
|
183
|
0
|
|
|
|
|
|
push @positive_ratios, ($constant_column[$i] / $pivot_column[$i]); |
|
184
|
0
|
|
|
|
|
|
push @positive_ratio_row_numbers, $i; |
|
185
|
|
|
|
|
|
|
} |
|
186
|
|
|
|
|
|
|
} |
|
187
|
0
|
|
|
|
|
|
return (\@positive_ratios, \@positive_ratio_row_numbers); |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
=head2 display_pdl |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
Given a Piddle return it as a string in a Matrix like format. |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
=cut |
|
195
|
|
|
|
|
|
|
|
|
196
|
|
|
|
|
|
|
sub display_pdl { |
|
197
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
198
|
0
|
|
|
|
|
|
my $pdl = $self->tableau; |
|
199
|
0
|
|
|
|
|
|
my $output = "$pdl"; |
|
200
|
0
|
|
|
|
|
|
return $output; |
|
201
|
|
|
|
|
|
|
} |
|
202
|
|
|
|
|
|
|
|
|
203
|
|
|
|
|
|
|
=head2 current_solution |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
Return both the primal (max) and dual (min) solutions for the tableau. |
|
206
|
|
|
|
|
|
|
|
|
207
|
|
|
|
|
|
|
=cut |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
sub current_solution { |
|
210
|
0
|
|
|
0
|
1
|
|
my $self = shift; |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
# Report the Current Solution as primal dependents and dual dependents. |
|
213
|
0
|
|
|
|
|
|
my @y = @{ $self->y_variables }; |
|
|
0
|
|
|
|
|
|
|
|
214
|
0
|
|
|
|
|
|
my @u = @{ $self->u_variables }; |
|
|
0
|
|
|
|
|
|
|
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
# Dependent Primal Variables |
|
217
|
0
|
|
|
|
|
|
my $n_rows_A = $self->number_of_rows - 1; |
|
218
|
0
|
|
|
|
|
|
my $number_of_columns = $self->number_of_columns; |
|
219
|
0
|
|
|
|
|
|
my $constant_column = |
|
220
|
|
|
|
|
|
|
$self->tableau->slice("($number_of_columns),0:$n_rows_A"); |
|
221
|
0
|
|
|
|
|
|
my @constant_column = $constant_column->list; |
|
222
|
0
|
|
|
|
|
|
my %primal_solution; |
|
223
|
0
|
|
|
|
|
|
for my $i (0 .. $#y) { |
|
224
|
0
|
|
|
|
|
|
$primal_solution{ $y[$i]->{generic} } = $constant_column[$i]; |
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
# Dependent Dual Variables |
|
228
|
0
|
|
|
|
|
|
my $n_cols_A = $self->number_of_columns - 1; |
|
229
|
0
|
|
|
|
|
|
my $number_of_rows = $self->number_of_rows; |
|
230
|
0
|
|
|
|
|
|
my $basement_row = $self->tableau->slice("0:$n_cols_A,($number_of_rows)"); |
|
231
|
0
|
|
|
|
|
|
my @basement_row = $basement_row->list; |
|
232
|
0
|
|
|
|
|
|
my %dual_solution; |
|
233
|
0
|
|
|
|
|
|
for my $j (0 .. $#u) { |
|
234
|
0
|
|
|
|
|
|
$dual_solution{ $u[$j]->{generic} } = $basement_row[$j] * (-1); |
|
235
|
|
|
|
|
|
|
} |
|
236
|
|
|
|
|
|
|
|
|
237
|
0
|
|
|
|
|
|
return (\%primal_solution, \%dual_solution); |
|
238
|
|
|
|
|
|
|
} |
|
239
|
|
|
|
|
|
|
|
|
240
|
|
|
|
|
|
|
=head2 display_piddle |
|
241
|
|
|
|
|
|
|
|
|
242
|
|
|
|
|
|
|
Coercion: convert a PDL into an ArrayRef[ArrayRef[Num]] |
|
243
|
|
|
|
|
|
|
|
|
244
|
|
|
|
|
|
|
=cut |
|
245
|
|
|
|
|
|
|
|
|
246
|
|
|
|
|
|
|
sub display_piddle { |
|
247
|
0
|
|
|
0
|
1
|
|
my $piddle_tableau = shift; |
|
248
|
|
|
|
|
|
|
|
|
249
|
0
|
|
|
|
|
|
my @display_tableau; |
|
250
|
0
|
|
|
|
|
|
my ($number_of_columns, $number_of_rows) = ($piddle_tableau->dims); |
|
251
|
0
|
|
|
|
|
|
my $number_of_zero_based_rows = $number_of_rows - 1; |
|
252
|
0
|
|
|
|
|
|
my $number_of_zero_based_columns = $number_of_columns - 1; |
|
253
|
0
|
|
|
|
|
|
for my $i (0 .. $number_of_zero_based_rows) { |
|
254
|
0
|
|
|
|
|
|
my $row = |
|
255
|
|
|
|
|
|
|
$piddle_tableau->slice("0:$number_of_zero_based_columns,($i)"); |
|
256
|
0
|
|
|
|
|
|
my @row = $row->list; |
|
257
|
0
|
|
|
|
|
|
push @display_tableau, \@row; |
|
258
|
|
|
|
|
|
|
} |
|
259
|
|
|
|
|
|
|
|
|
260
|
0
|
|
|
|
|
|
return \@display_tableau; |
|
261
|
|
|
|
|
|
|
} |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
1; |