| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Algorithm::Simplex; | 
| 2 | 1 |  |  | 1 |  | 660 | use Moo; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 6 |  | 
| 3 | 1 |  |  | 1 |  | 1267 | use MooX::Types::MooseLike::Base qw( ArrayRef HashRef Num Int Str ); | 
|  | 1 |  |  |  |  | 7591 |  | 
|  | 1 |  |  |  |  | 109 |  | 
| 4 | 1 |  |  | 1 |  | 9 | use namespace::clean; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 8 |  | 
| 5 | 1 |  |  | 1 |  | 249 | use Carp; | 
|  | 1 |  |  |  |  | 3 |  | 
|  | 1 |  |  |  |  | 1798 |  | 
| 6 |  |  |  |  |  |  |  | 
| 7 |  |  |  |  |  |  | our $VERSION = '0.43'; | 
| 8 |  |  |  |  |  |  |  | 
| 9 |  |  |  |  |  |  | has tableau => ( | 
| 10 |  |  |  |  |  |  | is       => 'rw', | 
| 11 |  |  |  |  |  |  | isa      => ArrayRef [ ArrayRef [Num] ], | 
| 12 |  |  |  |  |  |  | required => 1, | 
| 13 |  |  |  |  |  |  | ); | 
| 14 |  |  |  |  |  |  |  | 
| 15 |  |  |  |  |  |  | has display_tableau => ( | 
| 16 |  |  |  |  |  |  | is  => 'lazy', | 
| 17 |  |  |  |  |  |  | isa => ArrayRef [ ArrayRef [Str] ], | 
| 18 |  |  |  |  |  |  | ); | 
| 19 |  |  |  |  |  |  |  | 
| 20 |  |  |  |  |  |  | has objective_function_value => ( | 
| 21 |  |  |  |  |  |  | is  => 'lazy', | 
| 22 |  |  |  |  |  |  | isa => Str, | 
| 23 |  |  |  |  |  |  | ); | 
| 24 |  |  |  |  |  |  |  | 
| 25 |  |  |  |  |  |  | has number_of_rows => ( | 
| 26 |  |  |  |  |  |  | is       => 'lazy', | 
| 27 |  |  |  |  |  |  | isa      => Int, | 
| 28 |  |  |  |  |  |  | init_arg => undef, | 
| 29 |  |  |  |  |  |  | ); | 
| 30 |  |  |  |  |  |  |  | 
| 31 |  |  |  |  |  |  | has number_of_columns => ( | 
| 32 |  |  |  |  |  |  | is       => 'lazy', | 
| 33 |  |  |  |  |  |  | isa      => Int, | 
| 34 |  |  |  |  |  |  | init_arg => undef, | 
| 35 |  |  |  |  |  |  | ); | 
| 36 |  |  |  |  |  |  |  | 
| 37 |  |  |  |  |  |  | has number_of_pivots_made => ( | 
| 38 |  |  |  |  |  |  | is      => 'rw', | 
| 39 |  |  |  |  |  |  | isa     => Int, | 
| 40 |  |  |  |  |  |  | default => sub { 0 }, | 
| 41 |  |  |  |  |  |  | ); | 
| 42 |  |  |  |  |  |  |  | 
| 43 |  |  |  |  |  |  | has EPSILON => ( | 
| 44 |  |  |  |  |  |  | is      => 'rw', | 
| 45 |  |  |  |  |  |  | isa     => Num, | 
| 46 |  |  |  |  |  |  | default => sub { 1e-13 }, | 
| 47 |  |  |  |  |  |  | ); | 
| 48 |  |  |  |  |  |  |  | 
| 49 |  |  |  |  |  |  | has MAXIMUM_PIVOTS => ( | 
| 50 |  |  |  |  |  |  | is      => 'rw', | 
| 51 |  |  |  |  |  |  | isa     => Int, | 
| 52 |  |  |  |  |  |  | default => sub { 200 }, | 
| 53 |  |  |  |  |  |  | ); | 
| 54 |  |  |  |  |  |  |  | 
| 55 |  |  |  |  |  |  | has x_variables => ( | 
| 56 |  |  |  |  |  |  | is  => 'lazy', | 
| 57 |  |  |  |  |  |  | isa => ArrayRef [ HashRef [Str] ], | 
| 58 |  |  |  |  |  |  | ); | 
| 59 |  |  |  |  |  |  | has 'y_variables' => ( | 
| 60 |  |  |  |  |  |  | is  => 'lazy', | 
| 61 |  |  |  |  |  |  | isa => ArrayRef [ HashRef [Str] ], | 
| 62 |  |  |  |  |  |  | ); | 
| 63 |  |  |  |  |  |  | has u_variables => ( | 
| 64 |  |  |  |  |  |  | is  => 'lazy', | 
| 65 |  |  |  |  |  |  | isa => ArrayRef [ HashRef [Str] ], | 
| 66 |  |  |  |  |  |  | ); | 
| 67 |  |  |  |  |  |  | has v_variables => ( | 
| 68 |  |  |  |  |  |  | is  => 'lazy', | 
| 69 |  |  |  |  |  |  | isa => ArrayRef [ HashRef [Str] ], | 
| 70 |  |  |  |  |  |  | ); | 
| 71 |  |  |  |  |  |  |  | 
| 72 |  |  |  |  |  |  | =head1 Name | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | Algorithm::Simplex - Simplex Algorithm Implementation using Tucker Tableaux | 
| 75 |  |  |  |  |  |  |  | 
| 76 |  |  |  |  |  |  | =head1 Synopsis | 
| 77 |  |  |  |  |  |  |  | 
| 78 |  |  |  |  |  |  | Given a linear program formulated as a Tucker tableau, a 2D matrix or | 
| 79 |  |  |  |  |  |  | ArrayRef[ArrayRef] in Perl, seek an optimal solution. | 
| 80 |  |  |  |  |  |  |  | 
| 81 |  |  |  |  |  |  | use Algorithm::Simplex::Rational; | 
| 82 |  |  |  |  |  |  | my $matrix = [ | 
| 83 |  |  |  |  |  |  | [ 5,  2,  30], | 
| 84 |  |  |  |  |  |  | [ 3,  4,  20], | 
| 85 |  |  |  |  |  |  | [10,  8,   0], | 
| 86 |  |  |  |  |  |  | ]; | 
| 87 |  |  |  |  |  |  | my $tableau = Algorithm::Simplex::Rational->new( tableau => $matrix ); | 
| 88 |  |  |  |  |  |  | $tableau->solve; | 
| 89 |  |  |  |  |  |  | my ($primal_solution, $dual_solution) = $tableau->current_solution; | 
| 90 |  |  |  |  |  |  |  | 
| 91 |  |  |  |  |  |  | =head1 Methods | 
| 92 |  |  |  |  |  |  |  | 
| 93 |  |  |  |  |  |  | =head2 _build_number_of_rows | 
| 94 |  |  |  |  |  |  |  | 
| 95 |  |  |  |  |  |  | Set the number of rows. | 
| 96 |  |  |  |  |  |  | This number represent the number of rows of the | 
| 97 |  |  |  |  |  |  | coefficient matrix.  It is one less than the full tableau. | 
| 98 |  |  |  |  |  |  |  | 
| 99 |  |  |  |  |  |  | =cut | 
| 100 |  |  |  |  |  |  |  | 
| 101 |  |  |  |  |  |  | sub _build_number_of_rows { | 
| 102 | 2 |  |  | 2 |  | 483 | my $self = shift; | 
| 103 |  |  |  |  |  |  |  | 
| 104 | 2 |  |  |  |  | 2 | return scalar @{ $self->tableau } - 1; | 
|  | 2 |  |  |  |  | 24 |  | 
| 105 |  |  |  |  |  |  | } | 
| 106 |  |  |  |  |  |  |  | 
| 107 |  |  |  |  |  |  | =head2 _build_number_of_columns | 
| 108 |  |  |  |  |  |  |  | 
| 109 |  |  |  |  |  |  | Set the number of columns given the tableau matrix. | 
| 110 |  |  |  |  |  |  | This number represent the number of columns of the | 
| 111 |  |  |  |  |  |  | coefficient matrix. | 
| 112 |  |  |  |  |  |  |  | 
| 113 |  |  |  |  |  |  | =cut | 
| 114 |  |  |  |  |  |  |  | 
| 115 |  |  |  |  |  |  | sub _build_number_of_columns { | 
| 116 | 2 |  |  | 2 |  | 485 | my $self = shift; | 
| 117 |  |  |  |  |  |  |  | 
| 118 | 2 |  |  |  |  | 3 | return scalar @{ $self->tableau->[0] } - 1; | 
|  | 2 |  |  |  |  | 35 |  | 
| 119 |  |  |  |  |  |  | } | 
| 120 |  |  |  |  |  |  |  | 
| 121 |  |  |  |  |  |  | =head2 _build_x_variables | 
| 122 |  |  |  |  |  |  |  | 
| 123 |  |  |  |  |  |  | Set x variable names for the given tableau, x1, x2 ... xn | 
| 124 |  |  |  |  |  |  | These are the decision variables of the maximization problem. | 
| 125 |  |  |  |  |  |  | The maximization problem is read horizontally in a Tucker tableau. | 
| 126 |  |  |  |  |  |  |  | 
| 127 |  |  |  |  |  |  | =cut | 
| 128 |  |  |  |  |  |  |  | 
| 129 |  |  |  |  |  |  | sub _build_x_variables { | 
| 130 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 131 |  |  |  |  |  |  |  | 
| 132 | 0 |  |  |  |  |  | my $x_vars; | 
| 133 | 0 |  |  |  |  |  | for my $j (0 .. $self->number_of_columns - 1) { | 
| 134 | 0 |  |  |  |  |  | my $x_index = $j + 1; | 
| 135 | 0 |  |  |  |  |  | $x_vars->[$j]->{'generic'} = 'x' . $x_index; | 
| 136 |  |  |  |  |  |  | } | 
| 137 | 0 |  |  |  |  |  | return $x_vars; | 
| 138 |  |  |  |  |  |  | } | 
| 139 |  |  |  |  |  |  |  | 
| 140 |  |  |  |  |  |  | =head2 _build_y_variables | 
| 141 |  |  |  |  |  |  |  | 
| 142 |  |  |  |  |  |  | Set y variable names for the given tableau. | 
| 143 |  |  |  |  |  |  | These are the slack variables of the maximization problem. | 
| 144 |  |  |  |  |  |  |  | 
| 145 |  |  |  |  |  |  | =cut | 
| 146 |  |  |  |  |  |  |  | 
| 147 |  |  |  |  |  |  | sub _build_y_variables { | 
| 148 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 149 |  |  |  |  |  |  |  | 
| 150 | 0 |  |  |  |  |  | my $y_vars; | 
| 151 | 0 |  |  |  |  |  | for my $i (0 .. $self->number_of_rows - 1) { | 
| 152 | 0 |  |  |  |  |  | my $y_index = $i + 1; | 
| 153 | 0 |  |  |  |  |  | $y_vars->[$i]->{'generic'} = 'y' . $y_index; | 
| 154 |  |  |  |  |  |  | } | 
| 155 | 0 |  |  |  |  |  | return $y_vars; | 
| 156 |  |  |  |  |  |  | } | 
| 157 |  |  |  |  |  |  |  | 
| 158 |  |  |  |  |  |  | =head2 _build_u_variables | 
| 159 |  |  |  |  |  |  |  | 
| 160 |  |  |  |  |  |  | Set u variable names for the given tableau. | 
| 161 |  |  |  |  |  |  | These are the slack variables of the minimization problem. | 
| 162 |  |  |  |  |  |  |  | 
| 163 |  |  |  |  |  |  | =cut | 
| 164 |  |  |  |  |  |  |  | 
| 165 |  |  |  |  |  |  | sub _build_u_variables { | 
| 166 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 167 |  |  |  |  |  |  |  | 
| 168 | 0 |  |  |  |  |  | my $u_vars; | 
| 169 | 0 |  |  |  |  |  | for my $j (0 .. $self->number_of_columns - 1) { | 
| 170 | 0 |  |  |  |  |  | my $u_index = $j + 1; | 
| 171 | 0 |  |  |  |  |  | $u_vars->[$j]->{'generic'} = 'u' . $u_index; | 
| 172 |  |  |  |  |  |  | } | 
| 173 | 0 |  |  |  |  |  | return $u_vars; | 
| 174 |  |  |  |  |  |  | } | 
| 175 |  |  |  |  |  |  |  | 
| 176 |  |  |  |  |  |  | =head2 _build_v_variables | 
| 177 |  |  |  |  |  |  |  | 
| 178 |  |  |  |  |  |  | Set v variable names for the given tableau: v1, v2 ... vm | 
| 179 |  |  |  |  |  |  | These are the decision variables for the minimization problem. | 
| 180 |  |  |  |  |  |  | The minimization problem is read horizontally in a Tucker tableau. | 
| 181 |  |  |  |  |  |  |  | 
| 182 |  |  |  |  |  |  | =cut | 
| 183 |  |  |  |  |  |  |  | 
| 184 |  |  |  |  |  |  | sub _build_v_variables { | 
| 185 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 186 |  |  |  |  |  |  |  | 
| 187 | 0 |  |  |  |  |  | my $v_vars; | 
| 188 | 0 |  |  |  |  |  | for my $i (0 .. $self->number_of_rows - 1) { | 
| 189 | 0 |  |  |  |  |  | my $v_index = $i + 1; | 
| 190 | 0 |  |  |  |  |  | $v_vars->[$i]->{'generic'} = 'v' . $v_index; | 
| 191 |  |  |  |  |  |  | } | 
| 192 | 0 |  |  |  |  |  | return $v_vars; | 
| 193 |  |  |  |  |  |  | } | 
| 194 |  |  |  |  |  |  |  | 
| 195 |  |  |  |  |  |  | sub _build_display_tableau { | 
| 196 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 197 | 0 |  |  |  |  |  | return $self->tableau; | 
| 198 |  |  |  |  |  |  | } | 
| 199 |  |  |  |  |  |  |  | 
| 200 |  |  |  |  |  |  | sub _build_objective_function_value { | 
| 201 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 202 | 0 |  |  |  |  |  | return $self->display_tableau->[ $self->number_of_rows ] | 
| 203 |  |  |  |  |  |  | ->[ $self->number_of_columns ] * (-1); | 
| 204 |  |  |  |  |  |  | } | 
| 205 |  |  |  |  |  |  |  | 
| 206 |  |  |  |  |  |  | =head2 get_bland_number_for | 
| 207 |  |  |  |  |  |  |  | 
| 208 |  |  |  |  |  |  | Given a column number (which represents a u variable) build the bland number | 
| 209 |  |  |  |  |  |  | from the generic variable name. | 
| 210 |  |  |  |  |  |  |  | 
| 211 |  |  |  |  |  |  | =cut | 
| 212 |  |  |  |  |  |  |  | 
| 213 |  |  |  |  |  |  | sub get_bland_number_for { | 
| 214 | 0 |  |  | 0 | 1 |  | my $self          = shift; | 
| 215 | 0 |  |  |  |  |  | my $variable_type = shift; | 
| 216 | 0 |  |  |  |  |  | my $variables     = $variable_type . '_variables'; | 
| 217 | 0 |  |  |  |  |  | my $index         = shift; | 
| 218 | 0 |  |  |  |  |  | my $generic_name  = $self->$variables->[$index]->{'generic'}; | 
| 219 |  |  |  |  |  |  |  | 
| 220 | 0 |  |  |  |  |  | my ($var, $num); | 
| 221 | 0 | 0 |  |  |  |  | if ($generic_name =~ m{(.)(\d+)}mxs) { | 
| 222 | 0 |  |  |  |  |  | $var = $1; | 
| 223 | 0 |  |  |  |  |  | $num = $2; | 
| 224 |  |  |  |  |  |  | } | 
| 225 |  |  |  |  |  |  | else { | 
| 226 | 0 |  |  |  |  |  | croak "The generic variable names have format issues.\n"; | 
| 227 |  |  |  |  |  |  | } | 
| 228 | 0 | 0 |  |  |  |  | my $start_num = | 
|  |  | 0 |  |  |  |  |  | 
|  |  | 0 |  |  |  |  |  | 
|  |  | 0 |  |  |  |  |  | 
| 229 |  |  |  |  |  |  | $var eq 'x' ? 1 | 
| 230 |  |  |  |  |  |  | : $var eq 'y' ? 2 | 
| 231 |  |  |  |  |  |  | : $var eq 'v' ? 4 | 
| 232 |  |  |  |  |  |  | : $var eq 'u' ? 3 | 
| 233 |  |  |  |  |  |  | :               croak "Variable name: $var does not equal x, y, v or u"; | 
| 234 | 0 |  |  |  |  |  | my $bland_number = $start_num . $num; | 
| 235 | 0 |  |  |  |  |  | return $bland_number; | 
| 236 |  |  |  |  |  |  | } | 
| 237 |  |  |  |  |  |  |  | 
| 238 |  |  |  |  |  |  | =head2 determine_bland_pivot_column_number | 
| 239 |  |  |  |  |  |  |  | 
| 240 |  |  |  |  |  |  | Find the pivot column using Bland ordering technique to prevent cycles. | 
| 241 |  |  |  |  |  |  |  | 
| 242 |  |  |  |  |  |  | =cut | 
| 243 |  |  |  |  |  |  |  | 
| 244 |  |  |  |  |  |  | sub determine_bland_pivot_column_number { | 
| 245 | 0 |  |  | 0 | 1 |  | my ($self, @simplex_pivot_column_numbers) = @_; | 
| 246 |  |  |  |  |  |  |  | 
| 247 | 0 |  |  |  |  |  | my @bland_number_for_simplex_pivot_column; | 
| 248 | 0 |  |  |  |  |  | foreach my $col_number (@simplex_pivot_column_numbers) { | 
| 249 | 0 |  |  |  |  |  | push @bland_number_for_simplex_pivot_column, | 
| 250 |  |  |  |  |  |  | $self->get_bland_number_for('x', $col_number); | 
| 251 |  |  |  |  |  |  | } | 
| 252 |  |  |  |  |  |  |  | 
| 253 |  |  |  |  |  |  | # Pass blands number to routine that returns index of location where minimum bland occurs. | 
| 254 |  |  |  |  |  |  | # Use this index to return the bland column column number from @positive_profit_column_numbers | 
| 255 | 0 |  |  |  |  |  | my @bland_column_number_index = | 
| 256 |  |  |  |  |  |  | $self->min_index(\@bland_number_for_simplex_pivot_column); | 
| 257 | 0 |  |  |  |  |  | my $bland_column_number_index = $bland_column_number_index[0]; | 
| 258 |  |  |  |  |  |  |  | 
| 259 | 0 |  |  |  |  |  | return $simplex_pivot_column_numbers[$bland_column_number_index]; | 
| 260 |  |  |  |  |  |  | } | 
| 261 |  |  |  |  |  |  |  | 
| 262 |  |  |  |  |  |  | =head2 determine_bland_pivot_row_number | 
| 263 |  |  |  |  |  |  |  | 
| 264 |  |  |  |  |  |  | Find the pivot row using Bland ordering technique to prevent cycles. | 
| 265 |  |  |  |  |  |  |  | 
| 266 |  |  |  |  |  |  | =cut | 
| 267 |  |  |  |  |  |  |  | 
| 268 |  |  |  |  |  |  | sub determine_bland_pivot_row_number { | 
| 269 | 0 |  |  | 0 | 1 |  | my ($self, $positive_ratios, $positive_ratio_row_numbers) = @_; | 
| 270 |  |  |  |  |  |  |  | 
| 271 |  |  |  |  |  |  | # Now that we have the ratios and their respective rows we can find the min | 
| 272 |  |  |  |  |  |  | # and then select the lowest bland min if there are ties. | 
| 273 | 0 |  |  |  |  |  | my @min_indices = $self->min_index($positive_ratios); | 
| 274 | 0 |  |  |  |  |  | my @min_ratio_row_numbers = | 
| 275 | 0 |  |  |  |  |  | map { $positive_ratio_row_numbers->[$_] } @min_indices; | 
| 276 | 0 |  |  |  |  |  | my @bland_number_for_min_ratio_rows; | 
| 277 | 0 |  |  |  |  |  | foreach my $row_number (@min_ratio_row_numbers) { | 
| 278 | 0 |  |  |  |  |  | push @bland_number_for_min_ratio_rows, | 
| 279 |  |  |  |  |  |  | $self->get_bland_number_for('y', $row_number); | 
| 280 |  |  |  |  |  |  | } | 
| 281 |  |  |  |  |  |  |  | 
| 282 |  |  |  |  |  |  | # Pass blands number to routine that returns index of location where minimum bland occurs. | 
| 283 |  |  |  |  |  |  | # Use this index to return the bland row number. | 
| 284 | 0 |  |  |  |  |  | my @bland_min_ratio_row_index = | 
| 285 |  |  |  |  |  |  | $self->min_index(\@bland_number_for_min_ratio_rows); | 
| 286 | 0 |  |  |  |  |  | my $bland_min_ratio_row_index = $bland_min_ratio_row_index[0]; | 
| 287 | 0 |  |  |  |  |  | return $min_ratio_row_numbers[$bland_min_ratio_row_index]; | 
| 288 |  |  |  |  |  |  | } | 
| 289 |  |  |  |  |  |  |  | 
| 290 |  |  |  |  |  |  | =head2 min_index | 
| 291 |  |  |  |  |  |  |  | 
| 292 |  |  |  |  |  |  | Determine the index of the element with minimal value. | 
| 293 |  |  |  |  |  |  | Used when finding bland pivots. | 
| 294 |  |  |  |  |  |  |  | 
| 295 |  |  |  |  |  |  | =cut | 
| 296 |  |  |  |  |  |  |  | 
| 297 |  |  |  |  |  |  | sub min_index { | 
| 298 | 0 |  |  | 0 | 1 |  | my ($self, $l) = @_; | 
| 299 | 0 |  |  |  |  |  | my $n = @{$l}; | 
|  | 0 |  |  |  |  |  |  | 
| 300 | 0 | 0 |  |  |  |  | if (!$n) { | 
| 301 | 0 |  |  |  |  |  | return (); | 
| 302 |  |  |  |  |  |  | } | 
| 303 | 0 |  |  |  |  |  | my $v_min = $l->[0]; | 
| 304 | 0 |  |  |  |  |  | my @i_min = (0); | 
| 305 |  |  |  |  |  |  |  | 
| 306 | 0 |  |  |  |  |  | for my $i (1 .. $n - 1) { | 
| 307 | 0 | 0 |  |  |  |  | if ($l->[$i] < $v_min) { | 
|  |  | 0 |  |  |  |  |  | 
| 308 | 0 |  |  |  |  |  | $v_min = $l->[$i]; | 
| 309 | 0 |  |  |  |  |  | @i_min = ($i); | 
| 310 |  |  |  |  |  |  | } | 
| 311 |  |  |  |  |  |  | elsif ($l->[$i] == $v_min) { | 
| 312 | 0 |  |  |  |  |  | push @i_min, $i; | 
| 313 |  |  |  |  |  |  | } | 
| 314 |  |  |  |  |  |  | } | 
| 315 | 0 |  |  |  |  |  | return @i_min; | 
| 316 |  |  |  |  |  |  |  | 
| 317 |  |  |  |  |  |  | } | 
| 318 |  |  |  |  |  |  |  | 
| 319 |  |  |  |  |  |  | =head2 exchange_pivot_variables | 
| 320 |  |  |  |  |  |  |  | 
| 321 |  |  |  |  |  |  | Exchange the variables when a pivot is done.  The method pivot() does the | 
| 322 |  |  |  |  |  |  | algrebra while this method does the variable swapping, and thus tracking of | 
| 323 |  |  |  |  |  |  | what variables take on non-zero values.  This is needed to accurately report | 
| 324 |  |  |  |  |  |  | an optimal solution. | 
| 325 |  |  |  |  |  |  |  | 
| 326 |  |  |  |  |  |  | =cut | 
| 327 |  |  |  |  |  |  |  | 
| 328 |  |  |  |  |  |  | sub exchange_pivot_variables { | 
| 329 | 0 |  |  | 0 | 1 |  | my $self                = shift; | 
| 330 | 0 |  |  |  |  |  | my $pivot_row_number    = shift; | 
| 331 | 0 |  |  |  |  |  | my $pivot_column_number = shift; | 
| 332 |  |  |  |  |  |  |  | 
| 333 |  |  |  |  |  |  | # exchange variables based on $pivot_column_number and $pivot_row_number | 
| 334 | 0 |  |  |  |  |  | my $increasing_primal_variable = $self->x_variables->[$pivot_column_number]; | 
| 335 | 0 |  |  |  |  |  | my $zeroeing_primal_variable   = $self->y_variables->[$pivot_row_number]; | 
| 336 | 0 |  |  |  |  |  | $self->x_variables->[$pivot_column_number] = $zeroeing_primal_variable; | 
| 337 | 0 |  |  |  |  |  | $self->y_variables->[$pivot_row_number]    = $increasing_primal_variable; | 
| 338 |  |  |  |  |  |  |  | 
| 339 | 0 |  |  |  |  |  | my $increasing_dual_variable = $self->v_variables->[$pivot_row_number]; | 
| 340 | 0 |  |  |  |  |  | my $zeroeing_dual_variable   = $self->u_variables->[$pivot_column_number]; | 
| 341 | 0 |  |  |  |  |  | $self->v_variables->[$pivot_row_number]    = $zeroeing_dual_variable; | 
| 342 | 0 |  |  |  |  |  | $self->u_variables->[$pivot_column_number] = $increasing_dual_variable; | 
| 343 | 0 |  |  |  |  |  | return; | 
| 344 |  |  |  |  |  |  | } | 
| 345 |  |  |  |  |  |  |  | 
| 346 |  |  |  |  |  |  | =head2 get_row_and_column_numbers | 
| 347 |  |  |  |  |  |  |  | 
| 348 |  |  |  |  |  |  | Get the dimensions of the tableau. | 
| 349 |  |  |  |  |  |  |  | 
| 350 |  |  |  |  |  |  | =cut | 
| 351 |  |  |  |  |  |  |  | 
| 352 |  |  |  |  |  |  | sub get_row_and_column_numbers { | 
| 353 | 0 |  |  | 0 | 1 |  | my $self = shift; | 
| 354 | 0 |  |  |  |  |  | return $self->number_of_rows, $self->number_of_columns; | 
| 355 |  |  |  |  |  |  | } | 
| 356 |  |  |  |  |  |  |  | 
| 357 |  |  |  |  |  |  | =head2 determine_bland_pivot_row_and_column_numbers | 
| 358 |  |  |  |  |  |  |  | 
| 359 |  |  |  |  |  |  | Higher level function that uses others to return the (bland) pivot point. | 
| 360 |  |  |  |  |  |  |  | 
| 361 |  |  |  |  |  |  | =cut | 
| 362 |  |  |  |  |  |  |  | 
| 363 |  |  |  |  |  |  | sub determine_bland_pivot_row_and_column_numbers { | 
| 364 | 0 |  |  | 0 | 1 |  | my $self = shift; | 
| 365 |  |  |  |  |  |  |  | 
| 366 | 0 |  |  |  |  |  | my @simplex_pivot_columns = $self->determine_simplex_pivot_columns; | 
| 367 | 0 |  |  |  |  |  | my $pivot_column_number = | 
| 368 |  |  |  |  |  |  | $self->determine_bland_pivot_column_number(@simplex_pivot_columns); | 
| 369 | 0 |  |  |  |  |  | my ($positive_ratios, $positive_ratio_row_numbers) = | 
| 370 |  |  |  |  |  |  | $self->determine_positive_ratios($pivot_column_number); | 
| 371 | 0 |  |  |  |  |  | my $pivot_row_number = | 
| 372 |  |  |  |  |  |  | $self->determine_bland_pivot_row_number($positive_ratios, | 
| 373 |  |  |  |  |  |  | $positive_ratio_row_numbers); | 
| 374 |  |  |  |  |  |  |  | 
| 375 | 0 |  |  |  |  |  | return ($pivot_row_number, $pivot_column_number); | 
| 376 |  |  |  |  |  |  | } | 
| 377 |  |  |  |  |  |  |  | 
| 378 |  |  |  |  |  |  | 1; | 
| 379 |  |  |  |  |  |  |  | 
| 380 |  |  |  |  |  |  | __END__ |