line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
=pod |
2
|
|
|
|
|
|
|
|
3
|
|
|
|
|
|
|
=encoding UTF-8 |
4
|
|
|
|
|
|
|
|
5
|
|
|
|
|
|
|
=head1 NAME |
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
Algorithm::Networksort::Best - Optimized Sorting Networks. |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=cut |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
package Algorithm::Networksort::Best; |
12
|
|
|
|
|
|
|
|
13
|
2
|
|
|
2
|
|
2780
|
use 5.010001; |
|
2
|
|
|
|
|
5
|
|
14
|
|
|
|
|
|
|
|
15
|
2
|
|
|
2
|
|
8
|
use Algorithm::Networksort; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
10
|
|
16
|
2
|
|
|
2
|
|
786
|
use Carp; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
119
|
|
17
|
2
|
|
|
2
|
|
8
|
use Exporter; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
61
|
|
18
|
2
|
|
|
2
|
|
7
|
use vars qw(@ISA %EXPORT_TAGS @EXPORT_OK); |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
102
|
|
19
|
2
|
|
|
2
|
|
7
|
use strict; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
27
|
|
20
|
2
|
|
|
2
|
|
6
|
use warnings; |
|
2
|
|
|
|
|
2
|
|
|
2
|
|
|
|
|
4462
|
|
21
|
|
|
|
|
|
|
|
22
|
|
|
|
|
|
|
@ISA = qw(Exporter); |
23
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
%EXPORT_TAGS = ( |
25
|
|
|
|
|
|
|
'all' => [ qw( |
26
|
|
|
|
|
|
|
nwsrt_best |
27
|
|
|
|
|
|
|
nw_best_names |
28
|
|
|
|
|
|
|
nw_best_title |
29
|
|
|
|
|
|
|
) ], |
30
|
|
|
|
|
|
|
); |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
@EXPORT_OK = ( @{ $EXPORT_TAGS{'all'} } ); |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
our $VERSION = '2.01'; |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
# |
37
|
|
|
|
|
|
|
# The hashes represent each network, with a short, hopefully descriptive, key. |
38
|
|
|
|
|
|
|
# |
39
|
|
|
|
|
|
|
my %nw_best_by_name = ( |
40
|
|
|
|
|
|
|
floyd09 => { |
41
|
|
|
|
|
|
|
inputs => 9, |
42
|
|
|
|
|
|
|
depth => 9, |
43
|
|
|
|
|
|
|
title => '9-input Network by Robert W. Floyd', |
44
|
|
|
|
|
|
|
comparators => |
45
|
|
|
|
|
|
|
[[0,1], [3,4], [6,7], [1,2], [4,5], [7,8], [0,1], [3,4], |
46
|
|
|
|
|
|
|
[6,7], [0,3], [3,6], [0,3], [1,4], [4,7], [1,4], [2,5], |
47
|
|
|
|
|
|
|
[5,8], [2,5], [1,3], [5,7], [2,6], [4,6], [2,4], [2,3], |
48
|
|
|
|
|
|
|
[5,6]]}, |
49
|
|
|
|
|
|
|
senso09 => { |
50
|
|
|
|
|
|
|
inputs => 9, |
51
|
|
|
|
|
|
|
depth => 8, |
52
|
|
|
|
|
|
|
title => '9-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
53
|
|
|
|
|
|
|
comparators => |
54
|
|
|
|
|
|
|
[[2,6], [0,5], [1,4], [7,8], [0,7], [1,2], [3,5], [4,6], |
55
|
|
|
|
|
|
|
[5,8], [1,3], [6,8], [0,1], [4,5], [2,7], [3,7], [3,4], |
56
|
|
|
|
|
|
|
[5,6], [1,2], [1,3], [6,7], [4,5], [2,4], [5,6], [2,3], |
57
|
|
|
|
|
|
|
[4,5]]}, |
58
|
|
|
|
|
|
|
waksman10 => { |
59
|
|
|
|
|
|
|
inputs => 10, |
60
|
|
|
|
|
|
|
depth => 9, |
61
|
|
|
|
|
|
|
title => '10-Input Network by A. Waksman', |
62
|
|
|
|
|
|
|
comparators => |
63
|
|
|
|
|
|
|
[[4,9], [3,8], [2,7], [1,6], [0,5], [1,4], [6,9], [0,3], |
64
|
|
|
|
|
|
|
[5,8], [0,2], [3,6], [7,9], [0,1], [2,4], [5,7], [8,9], |
65
|
|
|
|
|
|
|
[1,2], [4,6], [7,8], [3,5], [2,5], [6,8], [1,3], [4,7], |
66
|
|
|
|
|
|
|
[2,3], [6,7], [3,4], [5,6], [4,5]]}, |
67
|
|
|
|
|
|
|
senso10 => { |
68
|
|
|
|
|
|
|
inputs => 10, |
69
|
|
|
|
|
|
|
depth => 8, |
70
|
|
|
|
|
|
|
title => '10-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
71
|
|
|
|
|
|
|
comparators => |
72
|
|
|
|
|
|
|
[[1,4], [7,8], [2,3], [5,6], [0,9], [2,5], [0,7], [8,9], |
73
|
|
|
|
|
|
|
[3,6], [4,9], [0,1], [0,2], [6,9], [3,5], [4,7], [1,8], |
74
|
|
|
|
|
|
|
[3,4], [5,8], [6,7], [1,2], [7,8], [1,3], [2,5], [4,6], |
75
|
|
|
|
|
|
|
[2,3], [6,7], [4,5], [3,4], [5,6]]}, |
76
|
|
|
|
|
|
|
shapirogreen11 => { |
77
|
|
|
|
|
|
|
inputs => 11, |
78
|
|
|
|
|
|
|
depth => 9, |
79
|
|
|
|
|
|
|
title => '11-Input by G. Shapiro and M. W. Green', |
80
|
|
|
|
|
|
|
comparators => |
81
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [1,3], [5,7], [0,2], |
82
|
|
|
|
|
|
|
[4,6], [8,10], [1,2], [5,6], [9,10], [1,5], [6,10], [5,9], |
83
|
|
|
|
|
|
|
[2,6], [1,5], [6,10], [0,4], [3,7], [4,8], [0,4], [1,4], |
84
|
|
|
|
|
|
|
[7,10], [3,8], [2,3], [8,9], [2,4], [7,9], [3,5], [6,8], |
85
|
|
|
|
|
|
|
[3,4], [5,6], [7,8]]}, |
86
|
|
|
|
|
|
|
senso11 => { |
87
|
|
|
|
|
|
|
inputs => 11, |
88
|
|
|
|
|
|
|
depth => 10, |
89
|
|
|
|
|
|
|
title => '11-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
90
|
|
|
|
|
|
|
comparators => |
91
|
|
|
|
|
|
|
[[0,9], [2,8], [3,7], [4,6], [1,5], [1,3], [2,4], [6,10], |
92
|
|
|
|
|
|
|
[7,8], [5,9], [0,6], [1,2], [8,10], [9,10], [0,1], [5,7], |
93
|
|
|
|
|
|
|
[3,4], [6,8], [2,6], [1,5], [7,8], [4,9], [2,3], [8,9], |
94
|
|
|
|
|
|
|
[1,2], [4,6], [3,5], [6,7], [7,8], [2,3], [4,6], [5,6], |
95
|
|
|
|
|
|
|
[3,4], [6,7], [4,5]]}, |
96
|
|
|
|
|
|
|
shapirogreen12 => { |
97
|
|
|
|
|
|
|
inputs => 12, |
98
|
|
|
|
|
|
|
depth => 9, |
99
|
|
|
|
|
|
|
title => '12-Input by G. Shapiro and M. W. Green', |
100
|
|
|
|
|
|
|
comparators => |
101
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [1,3], [5,7], |
102
|
|
|
|
|
|
|
[9,11], [0,2], [4,6], [8,10], [1,2], [5,6], [9,10], [1,5], |
103
|
|
|
|
|
|
|
[6,10], [5,9], [2,6], [1,5], [6,10], [0,4], [7,11], [3,7], |
104
|
|
|
|
|
|
|
[4,8], [0,4], [7,11], [1,4], [7,10], [3,8], [2,3], [8,9], |
105
|
|
|
|
|
|
|
[2,4], [7,9], [3,5], [6,8], [3,4], [5,6], [7,8]]}, |
106
|
|
|
|
|
|
|
senso12 => { |
107
|
|
|
|
|
|
|
inputs => 12, |
108
|
|
|
|
|
|
|
depth => 9, |
109
|
|
|
|
|
|
|
title => '12-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
110
|
|
|
|
|
|
|
comparators => |
111
|
|
|
|
|
|
|
[[0,5], [2,7], [4,10], [3,6], [8,11], [1,9], [5,6], [1,8], |
112
|
|
|
|
|
|
|
[0,3], [2,4], [9,11], [7,10], [7,9], [10,11], [1,2], [6,11], |
113
|
|
|
|
|
|
|
[0,1], [4,8], [5,8], [1,4], [3,7], [2,5], [7,10], [6,9], |
114
|
|
|
|
|
|
|
[2,3], [4,6], [8,10], [1,2], [9,10], [6,8], [3,4], [8,9], |
115
|
|
|
|
|
|
|
[2,3], [5,7], [4,5], [6,7], [7,8], [5,6], [3,4]]}, |
116
|
|
|
|
|
|
|
end13 => { |
117
|
|
|
|
|
|
|
inputs => 13, |
118
|
|
|
|
|
|
|
depth => 10, |
119
|
|
|
|
|
|
|
title => '13-Input Network Generated by the END algorithm, by Hugues Juillé', |
120
|
|
|
|
|
|
|
comparators => |
121
|
|
|
|
|
|
|
[[1,7], [9,11], [3,4], [5,8], [0,12], [2,6], [0,1], [2,3], |
122
|
|
|
|
|
|
|
[4,6], [8,11], [7,12], [5,9], [0,2], [3,7], [10,11], [1,4], |
123
|
|
|
|
|
|
|
[6,12], [7,8], [11,12], [4,9], [6,10], [3,4], [5,6], [8,9], |
124
|
|
|
|
|
|
|
[10,11], [1,7], [2,6], [9,11], [1,3], [4,7], [8,10], [0,5], |
125
|
|
|
|
|
|
|
[2,5], [6,8], [9,10], [1,2], [3,5], [7,8], [4,6], [2,3], |
126
|
|
|
|
|
|
|
[4,5], [6,7], [8,9], [3,4], [5,6]]}, |
127
|
|
|
|
|
|
|
senso13 => { |
128
|
|
|
|
|
|
|
inputs => 13, |
129
|
|
|
|
|
|
|
depth => 12, |
130
|
|
|
|
|
|
|
title => '13-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
131
|
|
|
|
|
|
|
comparators => |
132
|
|
|
|
|
|
|
[[4,8], [0,9], [3,7], [2,5], [6,11], [1,12], [0,6], [2,4], |
133
|
|
|
|
|
|
|
[5,8], [7,12], [1,3], [10,11], [9,11], [0,1], [8,12], [8,10], |
134
|
|
|
|
|
|
|
[2,8], [11,12], [0,2], [7,9], [5,9], [3,6], [3,5], [1,8], |
135
|
|
|
|
|
|
|
[4,6], [4,7], [10,11], [6,9], [3,4], [1,2], [9,11], [1,3], |
136
|
|
|
|
|
|
|
[6,10], [2,4], [2,3], [9,10], [6,8], [5,7], [5,6], [7,8], |
137
|
|
|
|
|
|
|
[3,5], [8,9], [4,5], [6,7], [5,6]]}, |
138
|
|
|
|
|
|
|
green14 => { |
139
|
|
|
|
|
|
|
inputs => 14, |
140
|
|
|
|
|
|
|
depth => 10, |
141
|
|
|
|
|
|
|
title => '14-Input Network by M. W. Green', |
142
|
|
|
|
|
|
|
comparators => |
143
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [0,2], |
144
|
|
|
|
|
|
|
[4,6], [8,10], [1,3], [5,7], [9,11], [0,4], [8,12], [1,5], |
145
|
|
|
|
|
|
|
[9,13], [2,6], [3,7], [0,8], [1,9], [2,10], [3,11], [4,12], |
146
|
|
|
|
|
|
|
[5,13], [5,10], [6,9], [3,12], [7,11], [1,2], [4,8], [1,4], |
147
|
|
|
|
|
|
|
[7,13], [2,8], [2,4], [5,6], [9,10], [11,13], [3,8], [7,12], |
148
|
|
|
|
|
|
|
[6,8], [10,12], [3,5], [7,9], [3,4], [5,6], [7,8], [9,10], |
149
|
|
|
|
|
|
|
[11,12], [6,7], [8,9]]}, |
150
|
|
|
|
|
|
|
senso14 => { |
151
|
|
|
|
|
|
|
inputs => 14, |
152
|
|
|
|
|
|
|
depth => 11, |
153
|
|
|
|
|
|
|
title => '14-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
154
|
|
|
|
|
|
|
comparators => |
155
|
|
|
|
|
|
|
[[0,6], [2,3], [8,12], [4,5], [1,10], [7,13], [9,11], [3,6], |
156
|
|
|
|
|
|
|
[4,7], [5,13], [1,8], [10,12], [0,2], [11,12], [0,9], [1,4], |
157
|
|
|
|
|
|
|
[6,13], [12,13], [0,1], [2,7], [3,5], [9,10], [3,8], [7,10], |
158
|
|
|
|
|
|
|
[5,8], [2,9], [6,11], [4,6], [8,12], [1,3], [10,11], [2,4], |
159
|
|
|
|
|
|
|
[11,12], [1,2], [8,10], [3,9], [3,4], [2,3], [10,11], [5,7], |
160
|
|
|
|
|
|
|
[7,8], [6,9], [5,6], [4,5], [8,9], [6,7], [9,10], [3,4], |
161
|
|
|
|
|
|
|
[5,6], [7,8], [6,7]]}, |
162
|
|
|
|
|
|
|
green15 => { |
163
|
|
|
|
|
|
|
inputs => 15, |
164
|
|
|
|
|
|
|
depth => 10, |
165
|
|
|
|
|
|
|
title => '15-Input Network by M. W. Green', |
166
|
|
|
|
|
|
|
comparators => |
167
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [0,2], |
168
|
|
|
|
|
|
|
[4,6], [8,10], [12,14], [1,3], [5,7], [9,11], [0,4], [8,12], |
169
|
|
|
|
|
|
|
[1,5], [9,13], [2,6], [10,14], [3,7], [0,8], [1,9], [2,10], |
170
|
|
|
|
|
|
|
[3,11], [4,12], [5,13], [6,14], [5,10], [6,9], [3,12], [13,14], |
171
|
|
|
|
|
|
|
[7,11], [1,2], [4,8], [1,4], [7,13], [2,8], [11,14], [2,4], |
172
|
|
|
|
|
|
|
[5,6], [9,10], [11,13], [3,8], [7,12], [6,8], [10,12], [3,5], |
173
|
|
|
|
|
|
|
[7,9], [3,4], [5,6], [7,8], [9,10], [11,12], [6,7], [8,9]]}, |
174
|
|
|
|
|
|
|
senso15 => { |
175
|
|
|
|
|
|
|
inputs => 15, |
176
|
|
|
|
|
|
|
depth => 10, |
177
|
|
|
|
|
|
|
title => '15-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
178
|
|
|
|
|
|
|
comparators => |
179
|
|
|
|
|
|
|
[[12,13], [5,7], [3,11], [2,10], [4,9], [6,8], [1,14], [11,14], |
180
|
|
|
|
|
|
|
[1,3], [7,10], [0,12], [4,6], [2,5], [8,9], [0,2], [9,14], |
181
|
|
|
|
|
|
|
[1,4], [0,1], [5,6], [7,8], [11,13], [3,12], [5,11], [9,10], |
182
|
|
|
|
|
|
|
[8,12], [2,4], [6,13], [3,7], [2,3], [12,14], [10,13], [1,5], |
183
|
|
|
|
|
|
|
[13,14], [1,2], [3,5], [10,12], [12,13], [2,3], [8,11], [4,9], |
184
|
|
|
|
|
|
|
[10,11], [6,7], [5,6], [4,8], [7,9], [4,5], [9,11], [11,12], |
185
|
|
|
|
|
|
|
[3,4], [6,8], [7,10], [9,10], [5,6], [7,8], [8,9], [6,7]]}, |
186
|
|
|
|
|
|
|
green16 => { |
187
|
|
|
|
|
|
|
inputs => 16, |
188
|
|
|
|
|
|
|
depth => 10, |
189
|
|
|
|
|
|
|
title => '16-Input Network by M. W. Green', |
190
|
|
|
|
|
|
|
comparators => |
191
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [14,15], |
192
|
|
|
|
|
|
|
[0,2], [4,6], [8,10], [12,14], [1,3], [5,7], [9,11], [13,15], |
193
|
|
|
|
|
|
|
[0,4], [8,12], [1,5], [9,13], [2,6], [10,14], [3,7], [11,15], |
194
|
|
|
|
|
|
|
[0,8], [1,9], [2,10], [3,11], [4,12], [5,13], [6,14], [7,15], |
195
|
|
|
|
|
|
|
[5,10], [6,9], [3,12], [13,14], [7,11], [1,2], [4,8], [1,4], |
196
|
|
|
|
|
|
|
[7,13], [2,8], [11,14], [2,4], [5,6], [9,10], [11,13], [3,8], |
197
|
|
|
|
|
|
|
[7,12], [6,8], [10,12], [3,5], [7,9], [3,4], [5,6], [7,8], |
198
|
|
|
|
|
|
|
[9,10], [11,12], [6,7], [8,9]]}, |
199
|
|
|
|
|
|
|
senso16 => { |
200
|
|
|
|
|
|
|
inputs => 16, |
201
|
|
|
|
|
|
|
depth => 10, |
202
|
|
|
|
|
|
|
title => '16-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
203
|
|
|
|
|
|
|
comparators => |
204
|
|
|
|
|
|
|
[[12,13], [5,7], [3,11], [2,10], [0,15], [4,9], [6,8], [1,14], |
205
|
|
|
|
|
|
|
[11,14], [1,3], [7,10], [0,12], [4,6], [2,5], [8,9], [13,15], |
206
|
|
|
|
|
|
|
[10,15], [0,2], [9,14], [1,4], [0,1], [14,15], [5,6], [7,8], |
207
|
|
|
|
|
|
|
[11,13], [3,12], [5,11], [9,10], [8,12], [2,4], [6,13], [3,7], |
208
|
|
|
|
|
|
|
[2,3], [12,14], [10,13], [1,5], [13,14], [1,2], [3,5], [10,12], |
209
|
|
|
|
|
|
|
[12,13], [2,3], [8,11], [4,9], [10,11], [6,7], [5,6], [4,8], |
210
|
|
|
|
|
|
|
[7,9], [4,5], [9,11], [11,12], [3,4], [6,8], [7,10], [9,10], |
211
|
|
|
|
|
|
|
[5,6], [7,8], [8,9], [6,7]]}, |
212
|
|
|
|
|
|
|
senso17 => { |
213
|
|
|
|
|
|
|
inputs => 17, |
214
|
|
|
|
|
|
|
depth => 17, |
215
|
|
|
|
|
|
|
title => '17-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
216
|
|
|
|
|
|
|
comparators => |
217
|
|
|
|
|
|
|
[[5,11], [4,9], [7,12], [0,14], [2,16], [1,15], [3,8], [6,13], |
218
|
|
|
|
|
|
|
[3,10], [8,13], [4,7], [9,12], [0,2], [14,16], [1,6], [10,15], |
219
|
|
|
|
|
|
|
[3,5], [11,13], [0,4], [12,16], [1,3], [13,15], [0,1], [15,16], |
220
|
|
|
|
|
|
|
[2,9], [7,14], [5,10], [6,11], [5,7], [6,8], [8,10], [2,3], |
221
|
|
|
|
|
|
|
[8,14], [9,11], [12,13], [4,6], [10,14], [4,5], [7,9], [11,13], |
222
|
|
|
|
|
|
|
[1,2], [14,15], [1,8], [13,15], [1,4], [2,5], [11,14], [13,14], |
223
|
|
|
|
|
|
|
[2,4], [6,12], [9,12], [3,10], [3,8], [6,7], [10,12], [3,6], |
224
|
|
|
|
|
|
|
[3,4], [12,13], [10,11], [5,6], [11,12], [4,5], [7,8], [8,9], |
225
|
|
|
|
|
|
|
[6,8], [9,11], [5,7], [6,7], [9,10], [8,9], [7,8]]}, |
226
|
|
|
|
|
|
|
sat17 => { |
227
|
|
|
|
|
|
|
inputs => 17, |
228
|
|
|
|
|
|
|
depth => 10, |
229
|
|
|
|
|
|
|
title => '17-Input Network by M. Codish, L. Cruz-Filipe, T. Ehlers, M. Müller, P. Schneider-Kamp', |
230
|
|
|
|
|
|
|
comparators => |
231
|
|
|
|
|
|
|
[[1,2], [3,4], [5,6], [7,8], [9,10], [11,12], [13,14], [15,16], |
232
|
|
|
|
|
|
|
[2,4], [6,8], [10,12], [14,16], [1,3], [5,7], [9,11], [13,15], |
233
|
|
|
|
|
|
|
[4,8], [12,16], [3,7], [11,15], [2,6], [10,14], [1,5], [9,13], |
234
|
|
|
|
|
|
|
[0,3], [4,7], [8,16], [1,13], [14,15], [6,12], [5,11], [2,10], |
235
|
|
|
|
|
|
|
[1,16], [3,6], [7,15], [4,14], [0,13], [2,5], [8,9], [10,11], |
236
|
|
|
|
|
|
|
[0,1], [2,8], [9,15], [3,4], [7,11], [12,14], [6,13], [5,10], |
237
|
|
|
|
|
|
|
[2,15], [4,10], [11,13], [3,8], [9,12], [1,5], [6,7], [1,3], |
238
|
|
|
|
|
|
|
[4,6], [7,9], [10,11], [13,15], [0,2], [5,8], [12,14], [0,1], |
239
|
|
|
|
|
|
|
[2,3], [4,5], [6,8], [9,11], [12,13], [14,15], [7,10], [1,2], |
240
|
|
|
|
|
|
|
[3,4], [5,6], [7,8], [9,10], [11,12], [13,14], [15,16]]}, |
241
|
|
|
|
|
|
|
alhajbaddar18 => { |
242
|
|
|
|
|
|
|
inputs => 18, |
243
|
|
|
|
|
|
|
depth => 11, |
244
|
|
|
|
|
|
|
title => '18-Input Network by Sherenaz Waleed Al-Haj Baddar', |
245
|
|
|
|
|
|
|
comparators => |
246
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [14,15], |
247
|
|
|
|
|
|
|
[16,17], [0,2], [1,3], [4,6], [5,7], [8,10], [9,11], [12,17], |
248
|
|
|
|
|
|
|
[13,14], [15,16], [0,4], [1,5], [2,6], [3,7], [9,10], [8,12], |
249
|
|
|
|
|
|
|
[11,16], [13,15], [14,17], [7,16], [6,17], [3,5], [10,14], [11,12], |
250
|
|
|
|
|
|
|
[9,15], [2,4], [1,13], [0,8], [16,17], [7,14], [5,12], [3,15], |
251
|
|
|
|
|
|
|
[6,13], [4,10], [2,11], [8,9], [0,1], [1,8], [14,16], [6,9], |
252
|
|
|
|
|
|
|
[7,13], [5,11], [3,10], [4,15], [4,8], [14,15], [5,9], [7,11], |
253
|
|
|
|
|
|
|
[1,2], [12,16], [3,6], [10,13], [5,8], [11,14], [2,3], [12,13], |
254
|
|
|
|
|
|
|
[6,7], [9,10], [7,9], [3,5], [12,14], [2,4], [13,15], [6,8], |
255
|
|
|
|
|
|
|
[10,11], [13,14], [11,12], [9,10], [7,8], [5,6], [3,4], [12,13], |
256
|
|
|
|
|
|
|
[10,11], [8,9], [6,7], [4,5]]}, |
257
|
|
|
|
|
|
|
senso18 => { |
258
|
|
|
|
|
|
|
inputs => 18, |
259
|
|
|
|
|
|
|
depth => 15, |
260
|
|
|
|
|
|
|
title => '18-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
261
|
|
|
|
|
|
|
comparators => |
262
|
|
|
|
|
|
|
[[4,12], [5,13], [0,7], [10,17], [2,3], [14,15], [6,8], [9,11], |
263
|
|
|
|
|
|
|
[1,16], [2,6], [11,15], [1,9], [8,16], [4,10], [7,13], [3,12], |
264
|
|
|
|
|
|
|
[5,14], [0,2], [15,17], [1,4], [13,16], [0,5], [12,17], [0,1], |
265
|
|
|
|
|
|
|
[16,17], [3,7], [10,14], [6,9], [8,11], [2,15], [3,8], [9,14], |
266
|
|
|
|
|
|
|
[4,5], [12,13], [6,10], [2,6], [7,11], [1,4], [13,16], [14,15], |
267
|
|
|
|
|
|
|
[2,3], [11,15], [15,16], [1,2], [11,14], [3,6], [13,14], [3,4], |
268
|
|
|
|
|
|
|
[14,15], [2,3], [5,6], [11,12], [7,9], [8,10], [9,10], [7,8], |
269
|
|
|
|
|
|
|
[5,11], [6,12], [10,12], [5,7], [12,14], [3,5], [10,13], [4,7], |
270
|
|
|
|
|
|
|
[12,13], [4,5], [8,9], [6,9], [8,11], [9,12], [5,8], [6,7], |
271
|
|
|
|
|
|
|
[10,11], [6,8], [9,11], [7,10], [9,10], [7,8]]}, |
272
|
|
|
|
|
|
|
senso19 => { |
273
|
|
|
|
|
|
|
inputs => 19, |
274
|
|
|
|
|
|
|
depth => 15, |
275
|
|
|
|
|
|
|
title => '19-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
276
|
|
|
|
|
|
|
comparators => |
277
|
|
|
|
|
|
|
[[4,10], [3,12], [0,16], [7,14], [8,11], [6,13], [15,17], [1,5], |
278
|
|
|
|
|
|
|
[9,18], [2,5], [11,16], [7,9], [1,2], [6,15], [10,12], [3,4], |
279
|
|
|
|
|
|
|
[13,17], [0,8], [14,18], [5,16], [3,7], [17,18], [1,6], [4,15], |
280
|
|
|
|
|
|
|
[0,1], [12,16], [0,3], [16,18], [2,11], [9,10], [13,14], [6,8], |
281
|
|
|
|
|
|
|
[7,13], [2,9], [11,15], [1,7], [5,10], [12,17], [8,14], [4,6], |
282
|
|
|
|
|
|
|
[10,14], [3,4], [15,16], [1,2], [14,17], [1,3], [16,17], [5,7], |
283
|
|
|
|
|
|
|
[6,13], [5,6], [10,15], [2,4], [14,15], [2,5], [11,12], [15,16], |
284
|
|
|
|
|
|
|
[2,3], [8,9], [7,13], [9,12], [8,11], [9,10], [13,14], [5,8], |
285
|
|
|
|
|
|
|
[12,14], [14,15], [3,5], [4,6], [10,13], [4,8], [4,5], [13,14], |
286
|
|
|
|
|
|
|
[7,11], [6,11], [6,9], [7,8], [11,12], [6,7], [12,13], [5,6], |
287
|
|
|
|
|
|
|
[9,10], [10,11], [11,12], [8,9], [7,8], [9,10]]}, |
288
|
|
|
|
|
|
|
senso20 => { |
289
|
|
|
|
|
|
|
inputs => 20, |
290
|
|
|
|
|
|
|
depth => 14, |
291
|
|
|
|
|
|
|
title => '20-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
292
|
|
|
|
|
|
|
comparators => |
293
|
|
|
|
|
|
|
[[2,11], [8,17], [0,10], [9,19], [4,5], [14,15], [3,6], [13,16], |
294
|
|
|
|
|
|
|
[1,12], [7,18], [3,14], [5,16], [0,1], [18,19], [4,13], [6,15], |
295
|
|
|
|
|
|
|
[7,9], [10,12], [2,8], [11,17], [4,7], [12,15], [0,3], [16,19], |
296
|
|
|
|
|
|
|
[0,2], [17,19], [0,4], [15,19], [1,14], [5,18], [8,10], [9,11], |
297
|
|
|
|
|
|
|
[6,13], [5,9], [10,14], [1,3], [16,18], [6,8], [11,13], [2,7], |
298
|
|
|
|
|
|
|
[12,17], [1,5], [1,2], [14,18], [4,6], [13,15], [17,18], [15,18], |
299
|
|
|
|
|
|
|
[1,4], [3,9], [10,16], [2,3], [16,17], [13,17], [2,6], [15,17], |
300
|
|
|
|
|
|
|
[2,4], [7,8], [11,12], [5,10], [9,14], [8,12], [7,11], [3,7], |
301
|
|
|
|
|
|
|
[12,16], [3,5], [14,16], [15,16], [3,4], [5,6], [13,14], [14,15], |
302
|
|
|
|
|
|
|
[4,5], [10,11], [8,9], [11,12], [7,8], [7,10], [9,12], [5,7], |
303
|
|
|
|
|
|
|
[12,14], [9,13], [6,10], [6,7], [10,11], [12,13], [8,9], [9,11], |
304
|
|
|
|
|
|
|
[11,12], [8,10], [7,8], [9,10]]}, |
305
|
|
|
|
|
|
|
sat20 => { |
306
|
|
|
|
|
|
|
inputs => 20, |
307
|
|
|
|
|
|
|
depth => 11, |
308
|
|
|
|
|
|
|
title => '20-Input Network by M. Codish, L. Cruz-Filipe, T. Ehlers, M. Müller, P. Schneider-Kamp', |
309
|
|
|
|
|
|
|
comparators => |
310
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [14,15], |
311
|
|
|
|
|
|
|
[16,17], [18,19], [1,3], [5,7], [9,11], [13,15], [17,19], [0,2], |
312
|
|
|
|
|
|
|
[4,6], [8,10], [12,14], [16,18], [3,7], [9,10], [15,19], [2,6], |
313
|
|
|
|
|
|
|
[14,18], [1,5], [13,17], [0,4], [12,16], [7,19], [6,18], [5,17], |
314
|
|
|
|
|
|
|
[4,16], [3,15], [2,14], [1,13], [0,12], [2,19], [3,8], [11,16], |
315
|
|
|
|
|
|
|
[17,18], [1,4], [5,15], [9,14], [10,13], [6,12], [0,19], [1,18], |
316
|
|
|
|
|
|
|
[2,6], [7,15], [16,17], [3,4], [8,14], [5,9], [10,11], [12,13], |
317
|
|
|
|
|
|
|
[1,3], [4,5], [9,12], [13,16], [17,18], [0,15], [7,14], [8,11], |
318
|
|
|
|
|
|
|
[6,10], [0,1], [3,6], [7,13], [14,17], [18,19], [2,4], [5,10], |
319
|
|
|
|
|
|
|
[11,12], [15,16], [8,9], [2,3], [4,8], [9,11], [12,15], [16,18], |
320
|
|
|
|
|
|
|
[1,17], [5,6], [7,10], [13,14], [1,3], [4,5], [7,9], [10,11], |
321
|
|
|
|
|
|
|
[12,13], [14,15], [16,17], [18,19], [0,2], [6,8], [1,2], [3,4], |
322
|
|
|
|
|
|
|
[5,6], [7,8], [9,10], [11,12], [13,14], [15,16]]}, |
323
|
|
|
|
|
|
|
senso21 => { |
324
|
|
|
|
|
|
|
inputs => 21, |
325
|
|
|
|
|
|
|
depth => 20, |
326
|
|
|
|
|
|
|
title => '21-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
327
|
|
|
|
|
|
|
comparators => |
328
|
|
|
|
|
|
|
[[5,9], [11,15], [1,19], [2,14], [6,18], [0,17], [3,20], [4,8], |
329
|
|
|
|
|
|
|
[12,16], [7,13], [1,7], [13,19], [2,11], [9,18], [4,12], [8,16], |
330
|
|
|
|
|
|
|
[3,5], [15,17], [0,10], [10,20], [0,6], [14,20], [2,3], [17,18], |
331
|
|
|
|
|
|
|
[1,4], [16,19], [0,1], [19,20], [0,2], [18,20], [7,8], [12,13], |
332
|
|
|
|
|
|
|
[9,10], [4,11], [5,6], [14,15], [10,11], [5,12], [8,15], [6,13], |
333
|
|
|
|
|
|
|
[7,14], [16,17], [1,3], [4,9], [5,7], [13,15], [11,18], [17,19], |
334
|
|
|
|
|
|
|
[1,2], [18,19], [4,5], [1,4], [15,19], [13,17], [2,7], [11,17], |
335
|
|
|
|
|
|
|
[9,14], [4,5], [15,18], [17,18], [2,4], [6,10], [8,16], [3,12], |
336
|
|
|
|
|
|
|
[10,14], [12,16], [3,8], [6,9], [14,16], [8,12], [3,6], [4,5], |
337
|
|
|
|
|
|
|
[15,16], [16,17], [3,4], [11,13], [5,7], [13,15], [6,7], [15,16], |
338
|
|
|
|
|
|
|
[4,5], [10,11], [9,11], [8,9], [11,12], [12,14], [8,10], [6,8], |
339
|
|
|
|
|
|
|
[14,15], [5,6], [12,13], [13,14], [6,8], [7,9], [10,11], [7,10], |
340
|
|
|
|
|
|
|
[7,8], [9,13], [11,12], [9,12], [9,11], [9,10]]}, |
341
|
|
|
|
|
|
|
alhajbaddar22 => { |
342
|
|
|
|
|
|
|
inputs => 22, |
343
|
|
|
|
|
|
|
depth => 12, |
344
|
|
|
|
|
|
|
title => '22-Input Network by Sherenaz Waleed Al-Haj Baddar', |
345
|
|
|
|
|
|
|
comparators => |
346
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [14,15], |
347
|
|
|
|
|
|
|
[16,17], [18,19], [20,21], [2,4], [1,3], [0,5], [6,8], [7,9], |
348
|
|
|
|
|
|
|
[10,12], [11,13], [14,16], [15,17], [18,20], [19,21], [6,10], [7,11], |
349
|
|
|
|
|
|
|
[8,12], [9,13], [14,18], [15,19], [16,20], [17,21], [3,5], [1,4], |
350
|
|
|
|
|
|
|
[0,2], [9,17], [7,15], [11,19], [8,16], [3,12], [0,10], [1,18], |
351
|
|
|
|
|
|
|
[5,20], [13,21], [6,14], [2,4], [0,7], [17,20], [3,15], [9,18], |
352
|
|
|
|
|
|
|
[2,11], [4,16], [5,10], [1,8], [12,19], [13,14], [20,21], [0,6], |
353
|
|
|
|
|
|
|
[3,8], [12,18], [2,13], [14,16], [5,9], [10,15], [4,7], [11,17], |
354
|
|
|
|
|
|
|
[16,20], [18,19], [15,17], [12,14], [10,11], [7,9], [8,13], [4,5], |
355
|
|
|
|
|
|
|
[1,3], [2,6], [19,20], [16,17], [15,18], [11,14], [9,13], [10,12], |
356
|
|
|
|
|
|
|
[7,8], [3,5], [4,6], [1,2], [18,19], [14,16], [13,15], [11,12], |
357
|
|
|
|
|
|
|
[8,9], [5,10], [6,7], [2,3], [17,19], [16,18], [14,15], [12,13], |
358
|
|
|
|
|
|
|
[9,11], [8,10], [5,7], [3,6], [2,4], [17,18], [15,16], [13,14], |
359
|
|
|
|
|
|
|
[11,12], [9,10], [7,8], [5,6], [3,4], [16,17], [14,15], [12,13], |
360
|
|
|
|
|
|
|
[10,11], [8,9], [6,7], [4,5]]}, |
361
|
|
|
|
|
|
|
senso22 => { |
362
|
|
|
|
|
|
|
inputs => 22, |
363
|
|
|
|
|
|
|
depth => 15, |
364
|
|
|
|
|
|
|
title => '22-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
365
|
|
|
|
|
|
|
comparators => |
366
|
|
|
|
|
|
|
[[10,11], [2,8], [13,19], [3,15], [6,18], [1,16], [5,20], [0,17], |
367
|
|
|
|
|
|
|
[4,21], [7,9], [12,14], [0,4], [17,21], [3,12], [9,18], [1,2], |
368
|
|
|
|
|
|
|
[19,20], [7,13], [8,14], [5,6], [15,16], [5,7], [14,16], [1,10], |
369
|
|
|
|
|
|
|
[11,20], [0,3], [18,21], [0,5], [16,21], [0,1], [20,21], [6,8], |
370
|
|
|
|
|
|
|
[13,15], [2,4], [17,19], [9,11], [10,12], [2,7], [14,19], [3,9], |
371
|
|
|
|
|
|
|
[12,18], [6,13], [8,15], [4,11], [10,17], [5,10], [11,16], [3,6], |
372
|
|
|
|
|
|
|
[15,18], [1,2], [19,20], [1,3], [18,20], [1,5], [16,20], [2,6], |
373
|
|
|
|
|
|
|
[15,19], [11,18], [2,5], [16,19], [3,10], [2,3], [18,19], [9,12], |
374
|
|
|
|
|
|
|
[4,14], [7,17], [8,13], [12,17], [4,9], [13,14], [7,8], [4,7], |
375
|
|
|
|
|
|
|
[14,17], [4,5], [16,17], [17,18], [3,4], [6,10], [11,15], [5,6], |
376
|
|
|
|
|
|
|
[15,16], [4,5], [16,17], [9,12], [8,13], [10,13], [8,11], [7,9], |
377
|
|
|
|
|
|
|
[12,14], [7,8], [13,14], [14,16], [5,7], [9,10], [11,12], [6,9], |
378
|
|
|
|
|
|
|
[12,15], [14,15], [6,7], [8,11], [10,13], [8,9], [12,13], [7,8], |
379
|
|
|
|
|
|
|
[13,14], [10,11], [11,12], [9,10]]}, |
380
|
|
|
|
|
|
|
morwenn23 => { |
381
|
|
|
|
|
|
|
inputs => 23, |
382
|
|
|
|
|
|
|
depth => 18, |
383
|
|
|
|
|
|
|
title => '23-Input Network by Morwenn', |
384
|
|
|
|
|
|
|
comparators => |
385
|
|
|
|
|
|
|
[[0, 1], [2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12, 13], [14, 15], |
386
|
|
|
|
|
|
|
[16, 17], [18, 19], [20, 21], [1, 3], [5, 7], [9, 11], [0, 2], [4, 6], |
387
|
|
|
|
|
|
|
[8, 10], [13, 15], [17, 19], [12, 14], [16, 18], [20, 22], [1, 2], [5, 6], |
388
|
|
|
|
|
|
|
[9, 10], [13, 14], [17, 18], [21, 22], [1, 5], [6, 10], [13, 17], [18, 22], |
389
|
|
|
|
|
|
|
[5, 9], [2, 6], [17, 21], [14, 18], [1, 5], [6, 10], [0, 4], [7, 11], |
390
|
|
|
|
|
|
|
[13, 17], [18, 22], [12, 16], [3, 7], [4, 8], [15, 19], [16, 20], [0, 4], |
391
|
|
|
|
|
|
|
[7, 11], [12, 16], [1, 4], [7, 10], [3, 8], [13, 16], [19, 22], [15, 20], |
392
|
|
|
|
|
|
|
[2, 3], [8, 9], [14, 15], [20, 21], [2, 4], [7, 9], [3, 5], [6, 8], |
393
|
|
|
|
|
|
|
[14, 16], [19, 21], [15, 17], [18, 20], [3, 4], [5, 6], [7, 8], [15, 16], |
394
|
|
|
|
|
|
|
[17, 18], [19, 20], [0, 12], [1, 13], [2, 14], [3, 15], [4, 16], [5, 17], |
395
|
|
|
|
|
|
|
[6, 18], [7, 19], [8, 20], [9, 21], [10, 22], [2, 12], [3, 13], [10, 20], |
396
|
|
|
|
|
|
|
[11, 21], [4, 12], [5, 13], [6, 14], [7, 15], [8, 16], [9, 17], [10, 18], |
397
|
|
|
|
|
|
|
[11, 19], [8, 12], [9, 13], [10, 14], [11, 15], [6, 8], [10, 12], [14, 16], |
398
|
|
|
|
|
|
|
[7, 9], [11, 13], [15, 17], [1, 2], [3, 4], [5, 6], [7, 8], [9, 10], |
399
|
|
|
|
|
|
|
[11, 12], [13, 14], [15, 16], [17, 18], [19, 20], [21, 22]]}, |
400
|
|
|
|
|
|
|
senso23 => { |
401
|
|
|
|
|
|
|
inputs => 23, |
402
|
|
|
|
|
|
|
depth => 22, |
403
|
|
|
|
|
|
|
title => '23-Input Network via SENSO by V. K. Valsalam and R. Miikkulainen', |
404
|
|
|
|
|
|
|
comparators => |
405
|
|
|
|
|
|
|
[[1,20], [2,21], [5,13], [9,17], [0,7], [15,22], [4,11], [6,12], |
406
|
|
|
|
|
|
|
[10,16], [8,18], [14,19], [3,8], [4,14], [11,18], [2,6], [16,20], |
407
|
|
|
|
|
|
|
[0,9], [13,22], [5,15], [7,17], [1,10], [12,21], [8,19], [17,22], |
408
|
|
|
|
|
|
|
[0,5], [20,21], [1,2], [18,19], [3,4], [21,22], [0,1], [19,22], |
409
|
|
|
|
|
|
|
[0,3], [12,13], [9,10], [6,15], [7,16], [8,11], [11,14], [4,11], |
410
|
|
|
|
|
|
|
[6,8], [14,16], [17,20], [2,5], [9,12], [10,13], [15,18], [10,11], |
411
|
|
|
|
|
|
|
[4,7], [20,21], [1,2], [7,15], [3,9], [13,19], [16,18], [8,14], |
412
|
|
|
|
|
|
|
[4,6], [18,21], [1,4], [19,21], [1,3], [9,10], [11,13], [2,6], |
413
|
|
|
|
|
|
|
[16,20], [4,9], [13,18], [19,20], [2,3], [18,20], [2,4], [5,17], |
414
|
|
|
|
|
|
|
[12,14], [8,12], [5,7], [15,17], [5,8], [14,17], [3,5], [17,19], |
415
|
|
|
|
|
|
|
[3,4], [18,19], [6,10], [11,16], [13,16], [6,9], [16,17], [5,6], |
416
|
|
|
|
|
|
|
[4,5], [7,9], [17,18], [12,15], [14,15], [8,12], [7,8], [13,15], |
417
|
|
|
|
|
|
|
[15,17], [5,7], [9,10], [10,14], [6,11], [14,16], [15,16], [6,7], |
418
|
|
|
|
|
|
|
[10,11], [9,12], [11,13], [13,14], [8,9], [7,8], [14,15], [9,10], |
419
|
|
|
|
|
|
|
[8,9], [12,14], [11,12], [12,13], [10,11], [11,12]]}, |
420
|
|
|
|
|
|
|
morwenn24 => { |
421
|
|
|
|
|
|
|
inputs => 24, |
422
|
|
|
|
|
|
|
depth => 18, |
423
|
|
|
|
|
|
|
title => '24-Input Network by Morwenn', |
424
|
|
|
|
|
|
|
comparators => |
425
|
|
|
|
|
|
|
[[0,1], [2,3], [4,5], [6,7], [8,9], [10,11], [12,13], [14,15], |
426
|
|
|
|
|
|
|
[16,17], [18,19], [20,21], [22,23], [1,3], [5,7], [9,11], [0,2], |
427
|
|
|
|
|
|
|
[4,6], [8,10], [13,15], [17,19], [21,23], [12,14], [16,18], [20,22], |
428
|
|
|
|
|
|
|
[1,2], [5,6], [9,10], [13,14], [17,18], [21,22], [1,5], [6,10], |
429
|
|
|
|
|
|
|
[13,17], [18,22], [5,9], [2,6], [17,21], [14,18], [1,5], [6,10], |
430
|
|
|
|
|
|
|
[0,4], [7,11], [13,17], [18,22], [12,16], [19,23], [3,7], [4,8], |
431
|
|
|
|
|
|
|
[15,19], [16,20], [0,4], [7,11], [12,16], [19,23], [1,4], [7,10], |
432
|
|
|
|
|
|
|
[3,8], [13,16], [19,22], [15,20], [2,3], [8,9], [14,15], [20,21], |
433
|
|
|
|
|
|
|
[2,4], [7,9], [3,5], [6,8], [14,16], [19,21], [15,17], [18,20], |
434
|
|
|
|
|
|
|
[3,4], [5,6], [7,8], [15,16], [17,18], [19,20], [0,12], [1,13], |
435
|
|
|
|
|
|
|
[2,14], [3,15], [4,16], [5,17], [6,18], [7,19], [8,20], [9,21], |
436
|
|
|
|
|
|
|
[10,22], [11,23], [2,12], [3,13], [10,20], [11,21], [4,12], [5,13], |
437
|
|
|
|
|
|
|
[6,14], [7,15], [8,16], [9,17], [10,18], [11,19], [8,12], [9,13], |
438
|
|
|
|
|
|
|
[10,14], [11,15], [6,8], [10,12], [14,16], [7,9], [11,13], [15,17], |
439
|
|
|
|
|
|
|
[1,2], [3,4], [5,6], [7,8], [9,10], [11,12], [13,14], [15,16], |
440
|
|
|
|
|
|
|
[17,18], [19,20], [21,22]]}, |
441
|
|
|
|
|
|
|
); |
442
|
|
|
|
|
|
|
|
443
|
|
|
|
|
|
|
# |
444
|
|
|
|
|
|
|
# The hash that will return the keys by input number. |
445
|
|
|
|
|
|
|
# |
446
|
|
|
|
|
|
|
my %nw_best_by_input; |
447
|
|
|
|
|
|
|
|
448
|
|
|
|
|
|
|
# |
449
|
|
|
|
|
|
|
# Set up %nw_best_by_input. |
450
|
|
|
|
|
|
|
# |
451
|
|
|
|
|
|
|
INIT |
452
|
|
|
|
|
|
|
{ |
453
|
2
|
|
|
2
|
|
119395
|
for my $k (keys %nw_best_by_name) |
454
|
|
|
|
|
|
|
{ |
455
|
58
|
|
|
|
|
28
|
my $inputs = ${$nw_best_by_name{$k}}{inputs}; |
|
58
|
|
|
|
|
77
|
|
456
|
|
|
|
|
|
|
|
457
|
58
|
100
|
|
|
|
86
|
if (exists $nw_best_by_input{$inputs}) |
458
|
|
|
|
|
|
|
{ |
459
|
26
|
|
|
|
|
17
|
push @{$nw_best_by_input{$inputs}}, $k; |
|
26
|
|
|
|
|
42
|
|
460
|
|
|
|
|
|
|
} |
461
|
|
|
|
|
|
|
else |
462
|
|
|
|
|
|
|
{ |
463
|
32
|
|
|
|
|
61
|
$nw_best_by_input{$inputs} = [$k]; |
464
|
|
|
|
|
|
|
} |
465
|
|
|
|
|
|
|
#print STDERR "$inputs: " . join(", ", @{$nw_best_by_input{$inputs}}) . "\n"; |
466
|
|
|
|
|
|
|
} |
467
|
|
|
|
|
|
|
} |
468
|
|
|
|
|
|
|
|
469
|
|
|
|
|
|
|
=head1 SYNOPSIS |
470
|
|
|
|
|
|
|
|
471
|
|
|
|
|
|
|
use Algorithm::Networksort; |
472
|
|
|
|
|
|
|
use Algorithm::Networksort::Best qw(:all); |
473
|
|
|
|
|
|
|
|
474
|
|
|
|
|
|
|
my $inputs = 9; |
475
|
|
|
|
|
|
|
|
476
|
|
|
|
|
|
|
# |
477
|
|
|
|
|
|
|
# First find if any networks exist for the size you want. |
478
|
|
|
|
|
|
|
# |
479
|
|
|
|
|
|
|
my @nwkeys = nw_best_names($inputs); |
480
|
|
|
|
|
|
|
|
481
|
|
|
|
|
|
|
# |
482
|
|
|
|
|
|
|
# For each sorting network, show the comparators. |
483
|
|
|
|
|
|
|
# |
484
|
|
|
|
|
|
|
for my $name (@nwkeys) |
485
|
|
|
|
|
|
|
{ |
486
|
|
|
|
|
|
|
my $nw = nwsrt_best(name => $name); |
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
# |
489
|
|
|
|
|
|
|
# Print the list, and print the graph of the list. |
490
|
|
|
|
|
|
|
# |
491
|
|
|
|
|
|
|
print $nw->title(), "\n", $nw->formatted(), "\n\n"; |
492
|
|
|
|
|
|
|
print $nw->graph_text(), "\n\n"; |
493
|
|
|
|
|
|
|
} |
494
|
|
|
|
|
|
|
|
495
|
|
|
|
|
|
|
=head1 DESCRIPTION |
496
|
|
|
|
|
|
|
|
497
|
|
|
|
|
|
|
For some inputs, sorting networks have been discovered that are more efficient |
498
|
|
|
|
|
|
|
than those generated by rote algorithms. The "Best" module allows you to use |
499
|
|
|
|
|
|
|
those networks instead. |
500
|
|
|
|
|
|
|
|
501
|
|
|
|
|
|
|
There is no guarantee that it will return the best network for |
502
|
|
|
|
|
|
|
all cases. Usually "best" means that the module will return a lower number of |
503
|
|
|
|
|
|
|
comparators for the number of inputs than the algorithms in Algorithm::Networksort |
504
|
|
|
|
|
|
|
will return. Some will simply have a lower number of comparators, others may have |
505
|
|
|
|
|
|
|
a smaller depth but an equal or greater number of comparators. |
506
|
|
|
|
|
|
|
|
507
|
|
|
|
|
|
|
The current networks are: |
508
|
|
|
|
|
|
|
|
509
|
|
|
|
|
|
|
=head2 9-Input Networks |
510
|
|
|
|
|
|
|
|
511
|
|
|
|
|
|
|
=over 4 |
512
|
|
|
|
|
|
|
|
513
|
|
|
|
|
|
|
=item 'floyd09' |
514
|
|
|
|
|
|
|
|
515
|
|
|
|
|
|
|
A 9-input network of depth 9 discovered by R. W. Floyd. |
516
|
|
|
|
|
|
|
|
517
|
|
|
|
|
|
|
=item 'senso09' |
518
|
|
|
|
|
|
|
|
519
|
|
|
|
|
|
|
A 9-input network of depth 8 found using the SENSO program by |
520
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
521
|
|
|
|
|
|
|
|
522
|
|
|
|
|
|
|
=back |
523
|
|
|
|
|
|
|
|
524
|
|
|
|
|
|
|
=head2 10-Input Networks |
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
=over 4 |
527
|
|
|
|
|
|
|
|
528
|
|
|
|
|
|
|
=item 'waksman10' |
529
|
|
|
|
|
|
|
|
530
|
|
|
|
|
|
|
a 10-input network of depth 9 found by A. Waksman. |
531
|
|
|
|
|
|
|
|
532
|
|
|
|
|
|
|
=item 'senso10' |
533
|
|
|
|
|
|
|
|
534
|
|
|
|
|
|
|
A 10-input network of depth 8 found using the SENSO program by |
535
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
536
|
|
|
|
|
|
|
|
537
|
|
|
|
|
|
|
=back |
538
|
|
|
|
|
|
|
|
539
|
|
|
|
|
|
|
=head2 11-Input Networks |
540
|
|
|
|
|
|
|
|
541
|
|
|
|
|
|
|
=over 4 |
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
=item 'shapirogreen11' |
544
|
|
|
|
|
|
|
|
545
|
|
|
|
|
|
|
An 11-input network of depth 9 found by G. Shapiro and M. W. Green. |
546
|
|
|
|
|
|
|
|
547
|
|
|
|
|
|
|
=item 'senso11' |
548
|
|
|
|
|
|
|
|
549
|
|
|
|
|
|
|
A 11-input network of depth 10 found using the SENSO program by |
550
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
551
|
|
|
|
|
|
|
|
552
|
|
|
|
|
|
|
=back |
553
|
|
|
|
|
|
|
|
554
|
|
|
|
|
|
|
=head2 12-Input Networks |
555
|
|
|
|
|
|
|
|
556
|
|
|
|
|
|
|
=over 4 |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
=item 'shapirogreen12' |
559
|
|
|
|
|
|
|
|
560
|
|
|
|
|
|
|
A 12-input network of depth 9 found by G. Shapiro and M. W. Green. |
561
|
|
|
|
|
|
|
|
562
|
|
|
|
|
|
|
=item 'senso12' |
563
|
|
|
|
|
|
|
|
564
|
|
|
|
|
|
|
A 12-input network of depth 9 found using the SENSO program by |
565
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
566
|
|
|
|
|
|
|
|
567
|
|
|
|
|
|
|
=back |
568
|
|
|
|
|
|
|
|
569
|
|
|
|
|
|
|
=head2 13-Input Networks |
570
|
|
|
|
|
|
|
|
571
|
|
|
|
|
|
|
=over 4 |
572
|
|
|
|
|
|
|
|
573
|
|
|
|
|
|
|
=item 'end13' |
574
|
|
|
|
|
|
|
|
575
|
|
|
|
|
|
|
A 13-input network of depth 10 generated by the END algorithm, by Hugues Juillé. |
576
|
|
|
|
|
|
|
|
577
|
|
|
|
|
|
|
=item 'senso13' |
578
|
|
|
|
|
|
|
|
579
|
|
|
|
|
|
|
A 13-input network of depth 12 found using the SENSO program by |
580
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
581
|
|
|
|
|
|
|
|
582
|
|
|
|
|
|
|
=back |
583
|
|
|
|
|
|
|
|
584
|
|
|
|
|
|
|
=head2 14-Input Networks |
585
|
|
|
|
|
|
|
|
586
|
|
|
|
|
|
|
=over 4 |
587
|
|
|
|
|
|
|
|
588
|
|
|
|
|
|
|
=item 'green14' |
589
|
|
|
|
|
|
|
|
590
|
|
|
|
|
|
|
A 14-input network of depth 10 created by taking the 16-input network of |
591
|
|
|
|
|
|
|
M. W. Green and removing inputs 15 and 16. |
592
|
|
|
|
|
|
|
|
593
|
|
|
|
|
|
|
=item 'senso14' |
594
|
|
|
|
|
|
|
|
595
|
|
|
|
|
|
|
A 14-input network of depth 11 found using the SENSO program by |
596
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
597
|
|
|
|
|
|
|
|
598
|
|
|
|
|
|
|
=back |
599
|
|
|
|
|
|
|
|
600
|
|
|
|
|
|
|
=head2 15-Input Networks |
601
|
|
|
|
|
|
|
|
602
|
|
|
|
|
|
|
=over 4 |
603
|
|
|
|
|
|
|
|
604
|
|
|
|
|
|
|
=item 'green15' |
605
|
|
|
|
|
|
|
|
606
|
|
|
|
|
|
|
A 15-input network of depth 10 created by taking the 16-input network of |
607
|
|
|
|
|
|
|
M. W. Green and removing the 16th input. |
608
|
|
|
|
|
|
|
|
609
|
|
|
|
|
|
|
=item 'senso15' |
610
|
|
|
|
|
|
|
|
611
|
|
|
|
|
|
|
A 15-input network of depth 10 found using the SENSO program by |
612
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
613
|
|
|
|
|
|
|
|
614
|
|
|
|
|
|
|
=back |
615
|
|
|
|
|
|
|
|
616
|
|
|
|
|
|
|
=head2 16-Input Networks |
617
|
|
|
|
|
|
|
|
618
|
|
|
|
|
|
|
=over 4 |
619
|
|
|
|
|
|
|
|
620
|
|
|
|
|
|
|
=item 'green16' |
621
|
|
|
|
|
|
|
|
622
|
|
|
|
|
|
|
A 16-input network of depth 10 found by M. W. Green. |
623
|
|
|
|
|
|
|
|
624
|
|
|
|
|
|
|
=item 'senso16' |
625
|
|
|
|
|
|
|
|
626
|
|
|
|
|
|
|
A 16-input network of depth 10 found using the SENSO program by |
627
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
628
|
|
|
|
|
|
|
|
629
|
|
|
|
|
|
|
=back |
630
|
|
|
|
|
|
|
|
631
|
|
|
|
|
|
|
=head2 17-Input Networks |
632
|
|
|
|
|
|
|
|
633
|
|
|
|
|
|
|
=over 4 |
634
|
|
|
|
|
|
|
|
635
|
|
|
|
|
|
|
=item 'senso17' |
636
|
|
|
|
|
|
|
|
637
|
|
|
|
|
|
|
A 17-input network of depth 17 found using the SENSO program by |
638
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
639
|
|
|
|
|
|
|
|
640
|
|
|
|
|
|
|
=item 'sat17' |
641
|
|
|
|
|
|
|
|
642
|
|
|
|
|
|
|
17-input network of depth 10 found by M. Codish, L. Cruz-Filipe, T. Ehlers, |
643
|
|
|
|
|
|
|
M. Müller, P. Schneider-Kamp. |
644
|
|
|
|
|
|
|
|
645
|
|
|
|
|
|
|
=back |
646
|
|
|
|
|
|
|
|
647
|
|
|
|
|
|
|
=head2 18-Input Networks |
648
|
|
|
|
|
|
|
|
649
|
|
|
|
|
|
|
=over 4 |
650
|
|
|
|
|
|
|
|
651
|
|
|
|
|
|
|
=item 'alhajbaddar18' |
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
18-input network of depth 11 found by Sherenaz Waleed Al-Haj Baddar. |
654
|
|
|
|
|
|
|
|
655
|
|
|
|
|
|
|
=item 'senso18' |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
A 18-input network of depth 15 found using the SENSO program by |
658
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
659
|
|
|
|
|
|
|
|
660
|
|
|
|
|
|
|
=back |
661
|
|
|
|
|
|
|
|
662
|
|
|
|
|
|
|
=head2 19-Input Networks |
663
|
|
|
|
|
|
|
|
664
|
|
|
|
|
|
|
=over 4 |
665
|
|
|
|
|
|
|
|
666
|
|
|
|
|
|
|
=item 'senso19' |
667
|
|
|
|
|
|
|
|
668
|
|
|
|
|
|
|
A 19-input network of depth 15 found using the SENSO program by |
669
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
670
|
|
|
|
|
|
|
|
671
|
|
|
|
|
|
|
=back |
672
|
|
|
|
|
|
|
|
673
|
|
|
|
|
|
|
=head2 20-Input Networks |
674
|
|
|
|
|
|
|
|
675
|
|
|
|
|
|
|
=over 4 |
676
|
|
|
|
|
|
|
|
677
|
|
|
|
|
|
|
=item 'sat20' |
678
|
|
|
|
|
|
|
|
679
|
|
|
|
|
|
|
20-input network of depth 11 found by M. Codish, L. Cruz-Filipe, T. Ehlers, M. Müller, P. Schneider-Kamp. |
680
|
|
|
|
|
|
|
|
681
|
|
|
|
|
|
|
=item 'senso20' |
682
|
|
|
|
|
|
|
|
683
|
|
|
|
|
|
|
A 20-input network of depth 14 found using the SENSO program by |
684
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
685
|
|
|
|
|
|
|
|
686
|
|
|
|
|
|
|
=back |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
=head2 21-Input Networks |
689
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
=over 4 |
691
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
=item 'senso21' |
693
|
|
|
|
|
|
|
|
694
|
|
|
|
|
|
|
A 21-input network of depth 20 found using the SENSO program by |
695
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
696
|
|
|
|
|
|
|
|
697
|
|
|
|
|
|
|
=back |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
=head2 22-Input Networks |
700
|
|
|
|
|
|
|
|
701
|
|
|
|
|
|
|
=over 4 |
702
|
|
|
|
|
|
|
|
703
|
|
|
|
|
|
|
=item 'alhajbaddar22' |
704
|
|
|
|
|
|
|
|
705
|
|
|
|
|
|
|
22-input network of depth 12 found by Sherenaz Waleed Al-Haj Baddar. |
706
|
|
|
|
|
|
|
|
707
|
|
|
|
|
|
|
=item 'senso22' |
708
|
|
|
|
|
|
|
|
709
|
|
|
|
|
|
|
A 22-input network of depth 15 found using the SENSO program by |
710
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
711
|
|
|
|
|
|
|
|
712
|
|
|
|
|
|
|
=back |
713
|
|
|
|
|
|
|
|
714
|
|
|
|
|
|
|
=head2 23-Input Networks |
715
|
|
|
|
|
|
|
|
716
|
|
|
|
|
|
|
=over 4 |
717
|
|
|
|
|
|
|
|
718
|
|
|
|
|
|
|
=item 'morwenn23' |
719
|
|
|
|
|
|
|
|
720
|
|
|
|
|
|
|
A 23-input network of depth 18 found by Morwenn, by taking the 24-input |
721
|
|
|
|
|
|
|
network and removing the final input. |
722
|
|
|
|
|
|
|
|
723
|
|
|
|
|
|
|
=item 'senso23' |
724
|
|
|
|
|
|
|
|
725
|
|
|
|
|
|
|
A 23-input network of depth 22 found using the SENSO program by |
726
|
|
|
|
|
|
|
V. K. Valsalam and R. Miikkulaainen. |
727
|
|
|
|
|
|
|
|
728
|
|
|
|
|
|
|
=back |
729
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
=head2 24-Input Networks |
731
|
|
|
|
|
|
|
|
732
|
|
|
|
|
|
|
=over 4 |
733
|
|
|
|
|
|
|
|
734
|
|
|
|
|
|
|
=item 'morwenn24' |
735
|
|
|
|
|
|
|
|
736
|
|
|
|
|
|
|
A 24-input network of depth 18 found by Morwenn |
737
|
|
|
|
|
|
|
L<https://github.com/Morwenn/cpp-sort/wiki/Original-research#sorting-networks-23-and-24>. |
738
|
|
|
|
|
|
|
|
739
|
|
|
|
|
|
|
=back |
740
|
|
|
|
|
|
|
|
741
|
|
|
|
|
|
|
=head2 Export |
742
|
|
|
|
|
|
|
|
743
|
|
|
|
|
|
|
None by default. There is only one available export tag, ':all', which |
744
|
|
|
|
|
|
|
exports the functions to create and use sorting networks. The functions are |
745
|
|
|
|
|
|
|
nwsrt_best(), nw_best_names(), and nw_best_title(). |
746
|
|
|
|
|
|
|
|
747
|
|
|
|
|
|
|
=head2 Functions |
748
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
=head3 nwsrt_best |
750
|
|
|
|
|
|
|
|
751
|
|
|
|
|
|
|
Return the Algorithm::Networksort object, given a key name. Also takes |
752
|
|
|
|
|
|
|
an optional title to override the default. |
753
|
|
|
|
|
|
|
|
754
|
|
|
|
|
|
|
$nw = nwsrt_best(name => 'floyd09', title => "Compare depth to Bose-Nelson"); |
755
|
|
|
|
|
|
|
|
756
|
|
|
|
|
|
|
=cut |
757
|
|
|
|
|
|
|
|
758
|
|
|
|
|
|
|
sub nwsrt_best |
759
|
|
|
|
|
|
|
{ |
760
|
0
|
|
|
0
|
1
|
0
|
my(%opts) = @_; |
761
|
|
|
|
|
|
|
|
762
|
0
|
0
|
|
|
|
0
|
croak "No network chosen" unless (exists $opts{name}); |
763
|
0
|
|
|
|
|
0
|
my $name = $opts{name}; |
764
|
|
|
|
|
|
|
|
765
|
0
|
0
|
|
|
|
0
|
croak "Unknown network name '$name'" unless (exists $nw_best_by_name{$name}); |
766
|
0
|
|
|
|
|
0
|
my %nw_struct = %{ $nw_best_by_name{$name} }; |
|
0
|
|
|
|
|
0
|
|
767
|
0
|
|
0
|
|
|
0
|
my $title = $opts{title} // $nw_struct{title}; |
768
|
|
|
|
|
|
|
|
769
|
|
|
|
|
|
|
return Algorithm::Networksort->new( |
770
|
|
|
|
|
|
|
algorithm => 'none', |
771
|
|
|
|
|
|
|
inputs => $nw_struct{inputs}, |
772
|
|
|
|
|
|
|
comparators => $nw_struct{comparators}, |
773
|
|
|
|
|
|
|
depth => $nw_struct{depth}, |
774
|
0
|
|
|
|
|
0
|
title => $title, |
775
|
|
|
|
|
|
|
nwid => $name, |
776
|
|
|
|
|
|
|
); |
777
|
|
|
|
|
|
|
} |
778
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
=head3 nw_best_names |
780
|
|
|
|
|
|
|
|
781
|
|
|
|
|
|
|
Return the list of keys for sorting networks of a giving input size. |
782
|
|
|
|
|
|
|
|
783
|
|
|
|
|
|
|
@names = nw_best_names(13); |
784
|
|
|
|
|
|
|
|
785
|
|
|
|
|
|
|
Each name key is a valid option for the name argument of nwsrt_best(). |
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
An unlikely example: |
788
|
|
|
|
|
|
|
|
789
|
|
|
|
|
|
|
my $inputs = 12; |
790
|
|
|
|
|
|
|
|
791
|
|
|
|
|
|
|
for my $name (nwsrt_best_names()) |
792
|
|
|
|
|
|
|
{ |
793
|
|
|
|
|
|
|
my $nw = nwsrt_best(inputs => $inputs, name => $name); |
794
|
|
|
|
|
|
|
print $nw->title(), "\n", $nw, "\n"; |
795
|
|
|
|
|
|
|
} |
796
|
|
|
|
|
|
|
|
797
|
|
|
|
|
|
|
=cut |
798
|
|
|
|
|
|
|
|
799
|
|
|
|
|
|
|
sub nw_best_names |
800
|
|
|
|
|
|
|
{ |
801
|
1
|
|
|
1
|
1
|
988
|
my($inputs) = @_; |
802
|
|
|
|
|
|
|
|
803
|
1
|
50
|
|
|
|
16
|
return keys %nw_best_by_name unless (defined $inputs); |
804
|
|
|
|
|
|
|
|
805
|
0
|
0
|
|
|
|
|
unless (exists $nw_best_by_input{$inputs}) |
806
|
|
|
|
|
|
|
{ |
807
|
0
|
|
|
|
|
|
carp "No 'best' sorting networks exist for size $inputs"; |
808
|
0
|
|
|
|
|
|
return (); |
809
|
|
|
|
|
|
|
} |
810
|
|
|
|
|
|
|
|
811
|
0
|
|
|
|
|
|
return @{$nw_best_by_input{$inputs}}; |
|
0
|
|
|
|
|
|
|
812
|
|
|
|
|
|
|
} |
813
|
|
|
|
|
|
|
|
814
|
|
|
|
|
|
|
=head3 nw_best_title |
815
|
|
|
|
|
|
|
|
816
|
|
|
|
|
|
|
Return a descriptive title for the network, given a name key. |
817
|
|
|
|
|
|
|
|
818
|
|
|
|
|
|
|
$title = nw_best_title($key); |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
These are the titles for the available networks. By themselves, they provide |
821
|
|
|
|
|
|
|
a readable list of choices for an interactive program. They are not to be |
822
|
|
|
|
|
|
|
confused with a sorting network's title, which may be set by the programmer. |
823
|
|
|
|
|
|
|
|
824
|
|
|
|
|
|
|
=cut |
825
|
|
|
|
|
|
|
|
826
|
|
|
|
|
|
|
sub nw_best_title |
827
|
|
|
|
|
|
|
{ |
828
|
0
|
|
|
0
|
1
|
|
my $key = shift; |
829
|
|
|
|
|
|
|
|
830
|
0
|
0
|
|
|
|
|
unless (exists $nw_best_by_name{$key}) |
831
|
|
|
|
|
|
|
{ |
832
|
0
|
|
|
|
|
|
carp "Unknown 'best' name '$key'."; |
833
|
0
|
|
|
|
|
|
return ""; |
834
|
|
|
|
|
|
|
} |
835
|
|
|
|
|
|
|
|
836
|
0
|
|
|
|
|
|
return $nw_best_by_name{$key}{title}; |
837
|
|
|
|
|
|
|
} |
838
|
|
|
|
|
|
|
|
839
|
|
|
|
|
|
|
1; |
840
|
|
|
|
|
|
|
__END__ |
841
|
|
|
|
|
|
|
|
842
|
|
|
|
|
|
|
=head1 ACKNOWLEDGMENTS |
843
|
|
|
|
|
|
|
|
844
|
|
|
|
|
|
|
L<Doug Hoyte|https://github.com/hoytech> pointed out Sherenaz Waleed |
845
|
|
|
|
|
|
|
Al-Haj Baddar's paper. |
846
|
|
|
|
|
|
|
|
847
|
|
|
|
|
|
|
L<Morwenn|https://github.com/Morwenn> found for me the SAT and SENSO |
848
|
|
|
|
|
|
|
papers, contributed 23-input and 24-input sorting networks, and caught |
849
|
|
|
|
|
|
|
documentation errors. |
850
|
|
|
|
|
|
|
|
851
|
|
|
|
|
|
|
=head1 SEE ALSO |
852
|
|
|
|
|
|
|
|
853
|
|
|
|
|
|
|
=head2 Non-algorithmic discoveries |
854
|
|
|
|
|
|
|
|
855
|
|
|
|
|
|
|
=over 3 |
856
|
|
|
|
|
|
|
|
857
|
|
|
|
|
|
|
=item |
858
|
|
|
|
|
|
|
|
859
|
|
|
|
|
|
|
The networks by Floyd, Green, Shapiro, and Waksman are in |
860
|
|
|
|
|
|
|
Donald E. Knuth's B<The Art of Computer Programming, Vol. 3: |
861
|
|
|
|
|
|
|
Sorting and Searching> (2nd ed.), Addison Wesley Longman Publishing Co., Inc., |
862
|
|
|
|
|
|
|
Redwood City, CA, 1998. |
863
|
|
|
|
|
|
|
|
864
|
|
|
|
|
|
|
=item |
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
The Evolving Non-Determinism (END) algorithm by Hugues Juillé has found |
867
|
|
|
|
|
|
|
more efficient sorting networks: |
868
|
|
|
|
|
|
|
L<http://www.cs.brandeis.edu/~hugues/sorting_networks.html>. |
869
|
|
|
|
|
|
|
|
870
|
|
|
|
|
|
|
=item |
871
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
The 18 and 22 input networks found by Sherenaz Waleed Al-Haj Baddar |
873
|
|
|
|
|
|
|
are described in her dissertation "Finding Better Sorting Networks" at |
874
|
|
|
|
|
|
|
L<http://etd.ohiolink.edu/view.cgi?acc_num=kent1239814529>. |
875
|
|
|
|
|
|
|
|
876
|
|
|
|
|
|
|
=item |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
The Symmetry and Evolution based Network Sort Optimization (SENSO) found more |
879
|
|
|
|
|
|
|
networks for inputs of 9 through 23. |
880
|
|
|
|
|
|
|
|
881
|
|
|
|
|
|
|
=item |
882
|
|
|
|
|
|
|
|
883
|
|
|
|
|
|
|
Morwenn's 23 and 24-input networks are described at |
884
|
|
|
|
|
|
|
L<https://github.com/Morwenn/cpp-sort/wiki/Original-research#sorting-networks-23-and-24>. |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
=item |
887
|
|
|
|
|
|
|
|
888
|
|
|
|
|
|
|
Ian Parberry, "A computer assisted optimal depth lower bound for sorting |
889
|
|
|
|
|
|
|
networks with nine inputs", L<http://www.eng.unt.edu/ian/pubs/snverify.pdf>. |
890
|
|
|
|
|
|
|
|
891
|
|
|
|
|
|
|
=back |
892
|
|
|
|
|
|
|
|
893
|
|
|
|
|
|
|
=head1 AUTHOR |
894
|
|
|
|
|
|
|
|
895
|
|
|
|
|
|
|
John M. Gamble may be found at B<jgamble@cpan.org> |
896
|
|
|
|
|
|
|
|
897
|
|
|
|
|
|
|
=cut |
898
|
|
|
|
|
|
|
|