line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::NaiveBayes::Model::Frequency; |
2
|
|
|
|
|
|
|
|
3
|
2
|
|
|
2
|
|
10
|
use strict; |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
77
|
|
4
|
2
|
|
|
2
|
|
967
|
use Algorithm::NaiveBayes::Util qw(sum_hash add_hash max rescale); |
|
2
|
|
|
|
|
4
|
|
|
2
|
|
|
|
|
131
|
|
5
|
2
|
|
|
2
|
|
10
|
use base qw(Algorithm::NaiveBayes); |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
1137
|
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
sub new { |
8
|
2
|
|
|
2
|
1
|
18
|
my $self = shift()->SUPER::new(@_); |
9
|
2
|
|
|
|
|
16
|
$self->training_data->{attributes} = {}; |
10
|
2
|
|
|
|
|
7
|
$self->training_data->{labels} = {}; |
11
|
2
|
|
|
|
|
16
|
return $self; |
12
|
|
|
|
|
|
|
} |
13
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
sub do_add_instance { |
15
|
5
|
|
|
5
|
0
|
8
|
my ($self, $attributes, $labels, $training_data) = @_; |
16
|
5
|
|
|
|
|
16
|
add_hash($training_data->{attributes}, $attributes); |
17
|
|
|
|
|
|
|
|
18
|
5
|
|
|
|
|
10
|
my $mylabels = $training_data->{labels}; |
19
|
5
|
|
|
|
|
21
|
foreach my $label ( @$labels ) { |
20
|
5
|
|
|
|
|
11
|
$mylabels->{$label}{count}++; |
21
|
5
|
|
100
|
|
|
221
|
add_hash($mylabels->{$label}{attributes} ||= {}, $attributes); |
22
|
|
|
|
|
|
|
} |
23
|
|
|
|
|
|
|
} |
24
|
|
|
|
|
|
|
|
25
|
|
|
|
|
|
|
sub do_train { |
26
|
2
|
|
|
2
|
0
|
2
|
my ($self, $training_data) = @_; |
27
|
2
|
|
|
|
|
4
|
my $m = {}; |
28
|
|
|
|
|
|
|
|
29
|
2
|
|
|
|
|
12
|
my $instances = $self->instances; |
30
|
2
|
|
|
|
|
3
|
my $labels = $training_data->{labels}; |
31
|
2
|
|
|
|
|
4
|
$m->{attributes} = $training_data->{attributes}; |
32
|
2
|
|
|
|
|
3
|
my $vocab_size = keys %{ $m->{attributes} }; |
|
2
|
|
|
|
|
5
|
|
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
# Calculate the log-probabilities for each category |
35
|
2
|
|
|
|
|
7
|
foreach my $label ($self->labels) { |
36
|
3
|
|
|
|
|
23
|
$m->{prior_probs}{$label} = log($labels->{$label}{count} / $instances); |
37
|
|
|
|
|
|
|
|
38
|
|
|
|
|
|
|
# Count the number of tokens in this cat |
39
|
3
|
|
|
|
|
10
|
my $label_tokens = sum_hash($labels->{$label}{attributes}); |
40
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
# Compute a smoothing term so P(word|cat)==0 can be avoided |
42
|
3
|
|
|
|
|
18
|
$m->{smoother}{$label} = -log($label_tokens + $vocab_size); |
43
|
|
|
|
|
|
|
|
44
|
|
|
|
|
|
|
# P(attr|label) = $count/$label_tokens (simple) |
45
|
|
|
|
|
|
|
# P(attr|label) = ($count + 1)/($label_tokens + $vocab_size) (with smoothing) |
46
|
|
|
|
|
|
|
# log P(attr|label) = log($count + 1) - log($label_tokens + $vocab_size) |
47
|
|
|
|
|
|
|
|
48
|
3
|
|
|
|
|
6
|
my $denominator = log($label_tokens + $vocab_size); |
49
|
|
|
|
|
|
|
|
50
|
3
|
|
|
|
|
4
|
while (my ($attribute, $count) = each %{ $labels->{$label}{attributes} }) { |
|
25
|
|
|
|
|
60
|
|
51
|
22
|
|
|
|
|
47
|
$m->{probs}{$label}{$attribute} = log($count + 1) - $denominator; |
52
|
|
|
|
|
|
|
} |
53
|
|
|
|
|
|
|
} |
54
|
2
|
|
|
|
|
8
|
return $m; |
55
|
|
|
|
|
|
|
} |
56
|
|
|
|
|
|
|
|
57
|
|
|
|
|
|
|
sub do_predict { |
58
|
2
|
|
|
2
|
0
|
3
|
my ($self, $m, $newattrs) = @_; |
59
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
# Note that we're using the log(prob) here. That's why we add instead of multiply. |
61
|
|
|
|
|
|
|
|
62
|
2
|
|
|
|
|
2
|
my %scores = %{$m->{prior_probs}}; |
|
2
|
|
|
|
|
6
|
|
63
|
2
|
|
|
|
|
486
|
while (my ($feature, $value) = each %$newattrs) { |
64
|
19
|
100
|
|
|
|
49
|
next unless exists $m->{attributes}{$feature}; # Ignore totally unseen features |
65
|
7
|
|
|
|
|
7
|
while (my ($label, $attributes) = each %{$m->{probs}}) { |
|
21
|
|
|
|
|
51
|
|
66
|
14
|
|
66
|
|
|
45
|
$scores{$label} += ($attributes->{$feature} || $m->{smoother}{$label})*$value; # P($feature|$label)**$value |
67
|
|
|
|
|
|
|
} |
68
|
|
|
|
|
|
|
} |
69
|
|
|
|
|
|
|
|
70
|
2
|
|
|
|
|
4
|
rescale(\%scores); |
71
|
|
|
|
|
|
|
|
72
|
2
|
|
|
|
|
5
|
return \%scores; |
73
|
|
|
|
|
|
|
} |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
1; |