| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
package Algorithm::MasterMind::Evo; |
|
2
|
|
|
|
|
|
|
|
|
3
|
1
|
|
|
1
|
|
792
|
use warnings; |
|
|
1
|
|
|
|
|
3
|
|
|
|
1
|
|
|
|
|
29
|
|
|
4
|
1
|
|
|
1
|
|
4
|
use strict; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
53
|
|
|
5
|
1
|
|
|
1
|
|
5
|
use Carp; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
51
|
|
|
6
|
|
|
|
|
|
|
|
|
7
|
1
|
|
|
|
|
6
|
use lib qw(../../lib ../../../../Algorithm-Evolutionary/lib/ |
|
8
|
|
|
|
|
|
|
../../Algorithm-Evolutionary/lib/ |
|
9
|
1
|
|
|
1
|
|
7
|
../../../lib); |
|
|
1
|
|
|
|
|
1
|
|
|
10
|
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
our $VERSION = sprintf "%d.%03d", q$Revision: 1.14 $ =~ /(\d+)\.(\d+)/g; |
|
12
|
|
|
|
|
|
|
|
|
13
|
1
|
|
|
1
|
|
271
|
use base 'Algorithm::MasterMind::Evolutionary_Base'; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
459
|
|
|
14
|
|
|
|
|
|
|
use Algorithm::MasterMind qw(partitions); |
|
15
|
|
|
|
|
|
|
|
|
16
|
|
|
|
|
|
|
use Algorithm::Evolutionary qw(Op::String_Mutation |
|
17
|
|
|
|
|
|
|
Op::Permutation |
|
18
|
|
|
|
|
|
|
Op::Uniform_Crossover_Diff |
|
19
|
|
|
|
|
|
|
Op::Breeder_Diverser |
|
20
|
|
|
|
|
|
|
Op::Replace_Different |
|
21
|
|
|
|
|
|
|
Op::Tournament_Selection |
|
22
|
|
|
|
|
|
|
Individual::String ); |
|
23
|
|
|
|
|
|
|
|
|
24
|
|
|
|
|
|
|
use Algorithm::Combinatorics qw(permutations); |
|
25
|
|
|
|
|
|
|
use Algorithm::MasterMind::Partition::Most; |
|
26
|
|
|
|
|
|
|
use Clone qw(clone); |
|
27
|
|
|
|
|
|
|
|
|
28
|
|
|
|
|
|
|
# --------------------------------------------------------------------------- |
|
29
|
|
|
|
|
|
|
use constant { MAX_CONSISTENT_SET => 20, # This number 20 was computed in NICSO paper, valid for default 4-6 mastermind |
|
30
|
|
|
|
|
|
|
MAX_GENERATIONS_RESET => 100, |
|
31
|
|
|
|
|
|
|
MAX_GENERATIONS_EQUAL => 3} ; |
|
32
|
|
|
|
|
|
|
|
|
33
|
|
|
|
|
|
|
sub factorial { |
|
34
|
|
|
|
|
|
|
my $value = shift; |
|
35
|
|
|
|
|
|
|
my $factorial = 1; |
|
36
|
|
|
|
|
|
|
$factorial *= $_ foreach 1..$value; |
|
37
|
|
|
|
|
|
|
return $factorial; |
|
38
|
|
|
|
|
|
|
} |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
|
|
41
|
|
|
|
|
|
|
sub initialize { |
|
42
|
|
|
|
|
|
|
my $self = shift; |
|
43
|
|
|
|
|
|
|
my $options = shift; |
|
44
|
|
|
|
|
|
|
for my $o ( keys %$options ) { |
|
45
|
|
|
|
|
|
|
$self->{"_$o"} = clone($options->{$o}); |
|
46
|
|
|
|
|
|
|
} |
|
47
|
|
|
|
|
|
|
croak "No population" if $self->{'_pop_size'} == 0; |
|
48
|
|
|
|
|
|
|
|
|
49
|
|
|
|
|
|
|
# Variation operators |
|
50
|
|
|
|
|
|
|
my $mutation_rate = $options->{'mutation_rate'} || 1; |
|
51
|
|
|
|
|
|
|
my $permutation_rate = $options->{'permutation_rate'} || 0; |
|
52
|
|
|
|
|
|
|
my $permutation_iters = $options->{'permutation_iterations'} || factorial($options->{'length'}) - 1 ; |
|
53
|
|
|
|
|
|
|
my $xover_rate = $options->{'xover_rate'} || 1; |
|
54
|
|
|
|
|
|
|
my $max_number_of_consistent = $options->{'consistent_set_card'} |
|
55
|
|
|
|
|
|
|
|| MAX_CONSISTENT_SET; |
|
56
|
|
|
|
|
|
|
$self->{'_replacement_rate'}= $self->{'_replacement_rate'} || 0.25; |
|
57
|
|
|
|
|
|
|
my $m = new Algorithm::Evolutionary::Op::String_Mutation $mutation_rate ; # Rate = 1 |
|
58
|
|
|
|
|
|
|
my $c = Algorithm::Evolutionary::Op::Uniform_Crossover_Diff->new( $options->{'length'}/2, $xover_rate ); |
|
59
|
|
|
|
|
|
|
my $operators = [$m,$c]; |
|
60
|
|
|
|
|
|
|
if ( $permutation_rate > 0 ) { |
|
61
|
|
|
|
|
|
|
my $p = new Algorithm::Evolutionary::Op::Permutation $permutation_rate, $permutation_iters; |
|
62
|
|
|
|
|
|
|
push @$operators, $p; |
|
63
|
|
|
|
|
|
|
} |
|
64
|
|
|
|
|
|
|
my $select = new Algorithm::Evolutionary::Op::Tournament_Selection $self->{'_tournament_size'} || 2; |
|
65
|
|
|
|
|
|
|
if (! $self->{'_ga'} ) { # Not given as an option |
|
66
|
|
|
|
|
|
|
$self->{'_ga'} = new Algorithm::Evolutionary::Op::Breeder_Diverser( $operators, $select ); |
|
67
|
|
|
|
|
|
|
} |
|
68
|
|
|
|
|
|
|
$self->{'_replacer'} = new Algorithm::Evolutionary::Op::Replace_Different; |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
if (!$self->{'_distance'}) { |
|
71
|
|
|
|
|
|
|
$self->{'_distance'} = 'distance_taxicab'; |
|
72
|
|
|
|
|
|
|
} |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
$self->{'_max_consistent'} = $max_number_of_consistent; |
|
75
|
|
|
|
|
|
|
} |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
sub compute_fitness { |
|
78
|
|
|
|
|
|
|
my $pop = shift; |
|
79
|
|
|
|
|
|
|
#Compute min |
|
80
|
|
|
|
|
|
|
my $min_distance = 0; |
|
81
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
|
82
|
|
|
|
|
|
|
$min_distance = ( $p->{'_distance'} < $min_distance )? |
|
83
|
|
|
|
|
|
|
$p->{'_distance'}: |
|
84
|
|
|
|
|
|
|
$min_distance; |
|
85
|
|
|
|
|
|
|
} |
|
86
|
|
|
|
|
|
|
|
|
87
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
|
88
|
|
|
|
|
|
|
$p->Fitness( $p->{'_distance'}+ |
|
89
|
|
|
|
|
|
|
($p->{'_partitions'}?$p->{'_partitions'}:0)- |
|
90
|
|
|
|
|
|
|
$min_distance + 1); |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
} |
|
93
|
|
|
|
|
|
|
#---------------------------------------------------------------------------- |
|
94
|
|
|
|
|
|
|
sub eliminate_last_played { |
|
95
|
|
|
|
|
|
|
my $self = shift; |
|
96
|
|
|
|
|
|
|
my $last_played = $self->{'_last'}; |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
for my $p ( @{$self->{'_pop'}} ) { |
|
99
|
|
|
|
|
|
|
if ($p->{'_str'} eq $last_played ) { |
|
100
|
|
|
|
|
|
|
$p = new Algorithm::Evolutionary::Individual::String( $self->{'_alphabet'}, $self->{'_length'} ); |
|
101
|
|
|
|
|
|
|
} |
|
102
|
|
|
|
|
|
|
} |
|
103
|
|
|
|
|
|
|
} |
|
104
|
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
#---------------------------------------------------------------------------- |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
sub issue_next { |
|
109
|
|
|
|
|
|
|
my $self = shift; |
|
110
|
|
|
|
|
|
|
my @rules = @{$self->{'_rules'}}; |
|
111
|
|
|
|
|
|
|
my @alphabet = @{$self->{'_alphabet'}}; |
|
112
|
|
|
|
|
|
|
my $length = $self->{'_length'}; |
|
113
|
|
|
|
|
|
|
my $pop = $self->{'_pop'}; |
|
114
|
|
|
|
|
|
|
my $rules = $self->number_of_rules(); |
|
115
|
|
|
|
|
|
|
my $ga = $self->{'_ga'}; |
|
116
|
|
|
|
|
|
|
my $max_number_of_consistent = $self->{'_max_consistent'}; |
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
my $last_rule = $rules[$#rules]; |
|
119
|
|
|
|
|
|
|
my $alphabet_size = @{$self->{'_alphabet'}}; |
|
120
|
|
|
|
|
|
|
|
|
121
|
|
|
|
|
|
|
if ( $self->{'_played_out'} ) { |
|
122
|
|
|
|
|
|
|
$self->eliminate_last_played; |
|
123
|
|
|
|
|
|
|
} |
|
124
|
|
|
|
|
|
|
#Check for combination guessed right except for permutation |
|
125
|
|
|
|
|
|
|
if ($last_rule->{'blacks'}+$last_rule->{'whites'} == $length ) { |
|
126
|
|
|
|
|
|
|
if ( ! $self->{'_consistent_endgame'} ) { |
|
127
|
|
|
|
|
|
|
my %permutations; |
|
128
|
|
|
|
|
|
|
map( $permutations{$_} = 1, |
|
129
|
|
|
|
|
|
|
map(join("",@$_), |
|
130
|
|
|
|
|
|
|
permutations([ split( //, $last_rule->{'combination'} ) ] ) ) ); |
|
131
|
|
|
|
|
|
|
my @permutations = keys %permutations; |
|
132
|
|
|
|
|
|
|
$self->{'_endgame'} = |
|
133
|
|
|
|
|
|
|
Algorithm::MasterMind::Partition::Most->start_from( { evaluated => $self->{'_evaluated'}, |
|
134
|
|
|
|
|
|
|
alphabet => \@alphabet, |
|
135
|
|
|
|
|
|
|
rules => $self->{'_rules'}, |
|
136
|
|
|
|
|
|
|
consistent => \@permutations} ); |
|
137
|
|
|
|
|
|
|
} else { |
|
138
|
|
|
|
|
|
|
$self->{'_endgame'} = |
|
139
|
|
|
|
|
|
|
Algorithm::MasterMind::Partition::Most->start_from( { evaluated => $self->{'_evaluated'}, |
|
140
|
|
|
|
|
|
|
alphabet => \@alphabet, |
|
141
|
|
|
|
|
|
|
rules => $self->{'_rules'}, |
|
142
|
|
|
|
|
|
|
consistent => $self->{'_consistent_endgame'} } ); |
|
143
|
|
|
|
|
|
|
} |
|
144
|
|
|
|
|
|
|
my $string = $self->{'_endgame'}->issue_next(); |
|
145
|
|
|
|
|
|
|
$self->{'_consistent_endgame'} = $self->{'_endgame'}->{'_consistent'}; |
|
146
|
|
|
|
|
|
|
$self->{'_evaluated'} = $self->{'_endgame'}->{'_evaluated'}; |
|
147
|
|
|
|
|
|
|
return $self->{'_last'} = $string; |
|
148
|
|
|
|
|
|
|
} else { |
|
149
|
|
|
|
|
|
|
#Check for no pegs |
|
150
|
|
|
|
|
|
|
if ($last_rule->{'blacks'}+$last_rule->{'whites'} == 0 ) { |
|
151
|
|
|
|
|
|
|
my %these_colors; |
|
152
|
|
|
|
|
|
|
map ( $these_colors{$_} = 1, split( //, $last_rule->{'combination'} ) ); |
|
153
|
|
|
|
|
|
|
for (my $i = 0; $i < @{$self->{'_alphabet'}}; $i++ ) { |
|
154
|
|
|
|
|
|
|
if ($these_colors{$self->{'_alphabet'}->[$i]} ) { |
|
155
|
|
|
|
|
|
|
delete $self->{'_alphabet'}->[$i] ; |
|
156
|
|
|
|
|
|
|
} |
|
157
|
|
|
|
|
|
|
} |
|
158
|
|
|
|
|
|
|
@{$self->{'_alphabet'}} = grep( $_, @{$self->{'_alphabet'}} ); # Eliminate nulls |
|
159
|
|
|
|
|
|
|
if ( @{$self->{'_alphabet'}} == 1 ) { # It could happen, and has happened |
|
160
|
|
|
|
|
|
|
return $self->{'_alphabet'}->[0] x $length; |
|
161
|
|
|
|
|
|
|
} |
|
162
|
|
|
|
|
|
|
if ( @{$self->{'_alphabet'}} < $alphabet_size ) { |
|
163
|
|
|
|
|
|
|
$self->realphabet; |
|
164
|
|
|
|
|
|
|
if ( !$self->{'_noshrink'} ) { |
|
165
|
|
|
|
|
|
|
my $shrinkage = @{$self->{'_alphabet'}} /$alphabet_size; |
|
166
|
|
|
|
|
|
|
print "Shrinking to size ", @$pop * $shrinkage |
|
167
|
|
|
|
|
|
|
," with alphabet ", join( " ", @{$self->{'_alphabet'}} ), "\n"; |
|
168
|
|
|
|
|
|
|
$self->shrink_to( (scalar @$pop) * $shrinkage ); |
|
169
|
|
|
|
|
|
|
} |
|
170
|
|
|
|
|
|
|
} |
|
171
|
|
|
|
|
|
|
|
|
172
|
|
|
|
|
|
|
} |
|
173
|
|
|
|
|
|
|
|
|
174
|
|
|
|
|
|
|
#Recalculate distances, new turn |
|
175
|
|
|
|
|
|
|
my (%consistent ); |
|
176
|
|
|
|
|
|
|
my $partitions; |
|
177
|
|
|
|
|
|
|
my $distance = $self->{'_distance'}; |
|
178
|
|
|
|
|
|
|
# print "Evaluating all \n"; |
|
179
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
|
180
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
|
181
|
|
|
|
|
|
|
# ($p->{'_distance'}, $p->{'_matches'}) = @{$self->distance( $p )}; |
|
182
|
|
|
|
|
|
|
# print "$p->{'_distance'}, $p->{'_matches'}) = $p->{'_str'} \n"; |
|
183
|
|
|
|
|
|
|
if ($p->{'_matches'} == $rules) { |
|
184
|
|
|
|
|
|
|
push @{$consistent{$p->{'_str'}}}, $p; |
|
185
|
|
|
|
|
|
|
} else { |
|
186
|
|
|
|
|
|
|
$p->{'_partitions'} = 0; |
|
187
|
|
|
|
|
|
|
} |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
my $number_of_consistent = keys %consistent; |
|
191
|
|
|
|
|
|
|
if ( $number_of_consistent > 1 ) { |
|
192
|
|
|
|
|
|
|
$partitions = partitions( keys %consistent ); |
|
193
|
|
|
|
|
|
|
# Need this to compute fitness |
|
194
|
|
|
|
|
|
|
for my $c ( keys %$partitions ) { |
|
195
|
|
|
|
|
|
|
for my $p ( @{$consistent{$c}} ) { |
|
196
|
|
|
|
|
|
|
$p->{'_partitions'} = scalar (keys %{$partitions->{$c}}); |
|
197
|
|
|
|
|
|
|
} |
|
198
|
|
|
|
|
|
|
} |
|
199
|
|
|
|
|
|
|
} elsif ( $number_of_consistent == 1 ) { |
|
200
|
|
|
|
|
|
|
for my $c ( keys %consistent ) { |
|
201
|
|
|
|
|
|
|
for my $p ( @{$consistent{$c}} ) { |
|
202
|
|
|
|
|
|
|
$p->{'_partitions'} = 1; |
|
203
|
|
|
|
|
|
|
} |
|
204
|
|
|
|
|
|
|
} |
|
205
|
|
|
|
|
|
|
} |
|
206
|
|
|
|
|
|
|
my $generations_equal = 0; |
|
207
|
|
|
|
|
|
|
my $this_number_of_consistent = $number_of_consistent; |
|
208
|
|
|
|
|
|
|
|
|
209
|
|
|
|
|
|
|
while ( $this_number_of_consistent < $max_number_of_consistent ) { |
|
210
|
|
|
|
|
|
|
|
|
211
|
|
|
|
|
|
|
compute_fitness( $pop ); |
|
212
|
|
|
|
|
|
|
my $new_pop = $ga->apply( $pop, @$pop * $self->{'_replacement_rate'} ); #Apply GA |
|
213
|
|
|
|
|
|
|
for my $p ( @$new_pop ) { |
|
214
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
|
215
|
|
|
|
|
|
|
if ($p->{'_matches'} == $rules) { |
|
216
|
|
|
|
|
|
|
push @{$consistent{$p->{'_str'}}}, $p; |
|
217
|
|
|
|
|
|
|
} else { |
|
218
|
|
|
|
|
|
|
$p->{'_partitions'} = 0; |
|
219
|
|
|
|
|
|
|
} |
|
220
|
|
|
|
|
|
|
} |
|
221
|
|
|
|
|
|
|
$pop = $self->{'_replacer'}->apply( $pop, $new_pop ); |
|
222
|
|
|
|
|
|
|
$this_number_of_consistent = keys %consistent; |
|
223
|
|
|
|
|
|
|
if ( $this_number_of_consistent == $number_of_consistent ) { |
|
224
|
|
|
|
|
|
|
$generations_equal++; |
|
225
|
|
|
|
|
|
|
} else { |
|
226
|
|
|
|
|
|
|
$generations_equal = 0; |
|
227
|
|
|
|
|
|
|
$number_of_consistent = $this_number_of_consistent; |
|
228
|
|
|
|
|
|
|
# Compute number of partitions |
|
229
|
|
|
|
|
|
|
if ( $number_of_consistent > 1 ) { |
|
230
|
|
|
|
|
|
|
$partitions = partitions( keys %consistent ); |
|
231
|
|
|
|
|
|
|
} else { |
|
232
|
|
|
|
|
|
|
$partitions->{(keys %consistent )[0]} = { "allblacks" => 1}; # I know, this is a hack |
|
233
|
|
|
|
|
|
|
} |
|
234
|
|
|
|
|
|
|
} |
|
235
|
|
|
|
|
|
|
for my $c ( keys %consistent ) { |
|
236
|
|
|
|
|
|
|
for my $p ( @{$consistent{$c}}) { |
|
237
|
|
|
|
|
|
|
$p->{'_partitions'} = scalar (keys %{$partitions->{$c}}); |
|
238
|
|
|
|
|
|
|
} |
|
239
|
|
|
|
|
|
|
} |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
if ($generations_equal == MAX_GENERATIONS_RESET ) { #reset pop |
|
242
|
|
|
|
|
|
|
# Print for debugging |
|
243
|
|
|
|
|
|
|
my %population; |
|
244
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
|
245
|
|
|
|
|
|
|
$population{$p->{'_str'}}++; |
|
246
|
|
|
|
|
|
|
} |
|
247
|
|
|
|
|
|
|
for my $s ( sort { $population{$b} <=> $population{$a} } keys %population ) { |
|
248
|
|
|
|
|
|
|
print $s, ": ", $population{$s}, " C\n"; |
|
249
|
|
|
|
|
|
|
} |
|
250
|
|
|
|
|
|
|
print "Reset\n\n"; |
|
251
|
|
|
|
|
|
|
#Do the thing |
|
252
|
|
|
|
|
|
|
$ga->reset( $pop ); |
|
253
|
|
|
|
|
|
|
for my $p ( @$pop ) { |
|
254
|
|
|
|
|
|
|
($p->{'_distance'}, $p->{'_matches'}) = @{$self->$distance( $p->{'_str'} )}; |
|
255
|
|
|
|
|
|
|
} |
|
256
|
|
|
|
|
|
|
$generations_equal = 0; |
|
257
|
|
|
|
|
|
|
} |
|
258
|
|
|
|
|
|
|
last if ( $generations_equal >= MAX_GENERATIONS_EQUAL ) |
|
259
|
|
|
|
|
|
|
&& ( $this_number_of_consistent >= 1 ) ; |
|
260
|
|
|
|
|
|
|
} # end while |
|
261
|
|
|
|
|
|
|
|
|
262
|
|
|
|
|
|
|
$self->{'_consistent'} = \%consistent; #This mainly for outside info |
|
263
|
|
|
|
|
|
|
if ( $this_number_of_consistent > 1 ) { |
|
264
|
|
|
|
|
|
|
my $max_partitions = 0; |
|
265
|
|
|
|
|
|
|
my %max_c; |
|
266
|
|
|
|
|
|
|
for my $c ( keys %$partitions ) { |
|
267
|
|
|
|
|
|
|
my $this_max = keys %{$partitions->{$c}}; |
|
268
|
|
|
|
|
|
|
$max_c{$c} = $this_max; |
|
269
|
|
|
|
|
|
|
if ( $this_max > $max_partitions ) { |
|
270
|
|
|
|
|
|
|
$max_partitions = $this_max; |
|
271
|
|
|
|
|
|
|
} |
|
272
|
|
|
|
|
|
|
} |
|
273
|
|
|
|
|
|
|
# Find all partitions with that max |
|
274
|
|
|
|
|
|
|
my @max_c = grep( $max_c{$_} == $max_partitions, keys %max_c ); |
|
275
|
|
|
|
|
|
|
# Break ties |
|
276
|
|
|
|
|
|
|
my $string = $max_c[ rand( @max_c )]; |
|
277
|
|
|
|
|
|
|
# Obtain next |
|
278
|
|
|
|
|
|
|
return $self->{'_last'} = $string; |
|
279
|
|
|
|
|
|
|
} else { |
|
280
|
|
|
|
|
|
|
return $self->{'_last'} = (keys %consistent)[0]; |
|
281
|
|
|
|
|
|
|
} |
|
282
|
|
|
|
|
|
|
} |
|
283
|
|
|
|
|
|
|
} |
|
284
|
|
|
|
|
|
|
|
|
285
|
|
|
|
|
|
|
"some blacks, 1 white"; # Magic true value required at end of module |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
__END__ |