| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Algorithm::LibLinear::Model; | 
| 2 |  |  |  |  |  |  |  | 
| 3 | 3 |  |  | 3 |  | 65 | use 5.014; | 
|  | 3 |  |  |  |  | 12 |  | 
|  | 3 |  |  |  |  | 133 |  | 
| 4 | 3 |  |  | 3 |  | 18 | use Algorithm::LibLinear;  # For Algorithm::LibLinear::Model::Raw | 
|  | 3 |  |  |  |  | 5 |  | 
|  | 3 |  |  |  |  | 70 |  | 
| 5 | 3 |  |  | 3 |  | 17 | use Algorithm::LibLinear::Types; | 
|  | 3 |  |  |  |  | 7 |  | 
|  | 3 |  |  |  |  | 60 |  | 
| 6 | 3 |  |  | 3 |  | 16 | use Carp qw//; | 
|  | 3 |  |  |  |  | 3 |  | 
|  | 3 |  |  |  |  | 44 |  | 
| 7 | 3 |  |  | 3 |  | 13 | use Smart::Args; | 
|  | 3 |  |  |  |  | 4 |  | 
|  | 3 |  |  |  |  | 1103 |  | 
| 8 |  |  |  |  |  |  |  | 
| 9 |  |  |  |  |  |  | sub new { | 
| 10 | 6 |  |  | 6 | 0 | 3765 | args | 
| 11 |  |  |  |  |  |  | my $class => 'ClassName', | 
| 12 |  |  |  |  |  |  | my $raw_model => 'Algorithm::LibLinear::Model::Raw'; | 
| 13 |  |  |  |  |  |  |  | 
| 14 | 6 |  |  |  |  | 308550 | bless +{ raw_model => $raw_model, } => $class; | 
| 15 |  |  |  |  |  |  | } | 
| 16 |  |  |  |  |  |  |  | 
| 17 |  |  |  |  |  |  | sub load { | 
| 18 | 2 |  |  | 2 | 1 | 26 | args | 
| 19 |  |  |  |  |  |  | my $class => 'ClassName', | 
| 20 |  |  |  |  |  |  | my $filename => 'Str'; | 
| 21 |  |  |  |  |  |  |  | 
| 22 | 2 |  |  |  |  | 429 | my $raw_model = Algorithm::LibLinear::Model::Raw->load($filename); | 
| 23 | 1 |  |  |  |  | 7 | $class->new(raw_model => $raw_model); | 
| 24 |  |  |  |  |  |  | } | 
| 25 |  |  |  |  |  |  |  | 
| 26 | 1 |  |  | 1 | 1 | 12 | sub class_labels { $_[0]->raw_model->class_labels } | 
| 27 |  |  |  |  |  |  |  | 
| 28 | 1 |  |  | 1 | 1 | 8 | sub is_probability_model { $_[0]->raw_model->is_probability_model } | 
| 29 |  |  |  |  |  |  |  | 
| 30 | 1 |  |  | 1 | 1 | 5 | sub num_classes { $_[0]->raw_model->num_classes } | 
| 31 |  |  |  |  |  |  |  | 
| 32 | 1 |  |  | 1 | 1 | 4 | sub num_features { $_[0]->raw_model->num_features } | 
| 33 |  |  |  |  |  |  |  | 
| 34 | 6 |  |  | 6 | 0 | 280 | sub raw_model { $_[0]->{raw_model} } | 
| 35 |  |  |  |  |  |  |  | 
| 36 |  |  |  |  |  |  | sub predict { | 
| 37 | 1 |  |  | 1 | 1 | 4 | args | 
| 38 |  |  |  |  |  |  | my $self, | 
| 39 |  |  |  |  |  |  | my $feature => 'Algorithm::LibLinear::Feature'; | 
| 40 |  |  |  |  |  |  |  | 
| 41 | 1 |  |  |  |  | 13 | $self->raw_model->predict($feature); | 
| 42 |  |  |  |  |  |  | } | 
| 43 |  |  |  |  |  |  |  | 
| 44 |  |  |  |  |  |  | sub predict_probability { | 
| 45 | 0 |  |  | 0 | 0 | 0 | args | 
| 46 |  |  |  |  |  |  | my $self, | 
| 47 |  |  |  |  |  |  | my $feature => 'Algorithm::LibLinear::Feature'; | 
| 48 |  |  |  |  |  |  |  | 
| 49 | 0 | 0 |  |  |  | 0 | unless ($self->is_probability_model) { | 
| 50 | 0 |  |  |  |  | 0 | Carp::carp( | 
| 51 |  |  |  |  |  |  | 'This method only makes sense when the model is configured for' | 
| 52 |  |  |  |  |  |  | . ' classification based on logistic regression.' | 
| 53 |  |  |  |  |  |  | ); | 
| 54 |  |  |  |  |  |  | } | 
| 55 | 0 |  |  |  |  | 0 | $self->raw_model->predict_probability($feature); | 
| 56 |  |  |  |  |  |  | } | 
| 57 |  |  |  |  |  |  |  | 
| 58 |  |  |  |  |  |  | sub predict_values { | 
| 59 | 0 |  |  | 0 | 1 | 0 | args | 
| 60 |  |  |  |  |  |  | my $self, | 
| 61 |  |  |  |  |  |  | my $feature => 'Algorithm::LibLinear::Feature'; | 
| 62 |  |  |  |  |  |  |  | 
| 63 | 0 |  |  |  |  | 0 | $self->raw_model->predict_values($feature); | 
| 64 |  |  |  |  |  |  | } | 
| 65 |  |  |  |  |  |  |  | 
| 66 |  |  |  |  |  |  | sub save { | 
| 67 | 1 |  |  | 1 | 1 | 1426 | args | 
| 68 |  |  |  |  |  |  | my $self, | 
| 69 |  |  |  |  |  |  | my $filename => 'Str'; | 
| 70 |  |  |  |  |  |  |  | 
| 71 | 1 |  |  |  |  | 100 | $_[0]->raw_model->save($filename); | 
| 72 |  |  |  |  |  |  | } | 
| 73 |  |  |  |  |  |  |  | 
| 74 |  |  |  |  |  |  | 1; | 
| 75 |  |  |  |  |  |  |  | 
| 76 |  |  |  |  |  |  | __DATA__ | 
| 77 |  |  |  |  |  |  |  | 
| 78 |  |  |  |  |  |  | =head1 NAME | 
| 79 |  |  |  |  |  |  |  | 
| 80 |  |  |  |  |  |  | Algorithm::LibLinear::Model | 
| 81 |  |  |  |  |  |  |  | 
| 82 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 83 |  |  |  |  |  |  |  | 
| 84 |  |  |  |  |  |  | use Algorithm::LibLinear; | 
| 85 |  |  |  |  |  |  |  | 
| 86 |  |  |  |  |  |  | my $data_set = Algorithm::LibLinear::DataSet->load(fh => \*DATA); | 
| 87 |  |  |  |  |  |  | my $classifier = Algorithm::LibLinear->new->train(data_set => $data_set); | 
| 88 |  |  |  |  |  |  | my $classifier = Algorithm::LibLinear::Model->load(filename => 'trained.model'); | 
| 89 |  |  |  |  |  |  |  | 
| 90 |  |  |  |  |  |  | my @labels = $classifier->class_labels; | 
| 91 |  |  |  |  |  |  | $classifier->is_probability_model; | 
| 92 |  |  |  |  |  |  | say $classifier->num_classes;  # == @labels | 
| 93 |  |  |  |  |  |  | say $classifier->num_features;  # == $data_set->size | 
| 94 |  |  |  |  |  |  | my $class_label = $classifier->predict(feature => +{ 1 => 1, 2 => 1, ... }); | 
| 95 |  |  |  |  |  |  | my @probabilities = $classifier->predict_probability(feature => +{ 1 => 1, 2 => 1, ... }); | 
| 96 |  |  |  |  |  |  | my @values = $classifier->predict_values(feature => +{ 1 => 1, 2 => 1, ... }); | 
| 97 |  |  |  |  |  |  | $classifier->save(filenmae => 'trained.model'); | 
| 98 |  |  |  |  |  |  |  | 
| 99 |  |  |  |  |  |  | __DATA__ | 
| 100 |  |  |  |  |  |  | +1 1:0.708333 2:1 3:1 4:-0.320755 5:-0.105023 6:-1 7:1 8:-0.419847 9:-1 10:-0.225806 12:1 13:-1 | 
| 101 |  |  |  |  |  |  | -1 1:0.583333 2:-1 3:0.333333 4:-0.603774 5:1 6:-1 7:1 8:0.358779 9:-1 10:-0.483871 12:-1 13:1 | 
| 102 |  |  |  |  |  |  | +1 1:0.166667 2:1 3:-0.333333 4:-0.433962 5:-0.383562 6:-1 7:-1 8:0.0687023 9:-1 10:-0.903226 11:-1 12:-1 13:1 | 
| 103 |  |  |  |  |  |  | ... | 
| 104 |  |  |  |  |  |  |  | 
| 105 |  |  |  |  |  |  | =head1 DESCRIPTION | 
| 106 |  |  |  |  |  |  |  | 
| 107 |  |  |  |  |  |  | This class represents a classifier or an estimated function generated as a return value of L<Algorithm::LibLinear>'s C<train> method. | 
| 108 |  |  |  |  |  |  |  | 
| 109 |  |  |  |  |  |  | If you have model files generated by LIBLINEAR's C<train> command or this class's C<save> method, you can C<load> them. | 
| 110 |  |  |  |  |  |  |  | 
| 111 |  |  |  |  |  |  | =head1 METHOD | 
| 112 |  |  |  |  |  |  |  | 
| 113 |  |  |  |  |  |  | Note that the constructor of this class is B<not> a part of public API. You can get a instance via C<< Algorithm::LibLinaear->train >>. i.e., C<Algorithm::LibLinear> is a factory class. | 
| 114 |  |  |  |  |  |  |  | 
| 115 |  |  |  |  |  |  | =head2 load(filename => $path) | 
| 116 |  |  |  |  |  |  |  | 
| 117 |  |  |  |  |  |  | Class method. Load a LIBLINEAR's model file and returns an instance of this class. | 
| 118 |  |  |  |  |  |  |  | 
| 119 |  |  |  |  |  |  | =head2 class_labels | 
| 120 |  |  |  |  |  |  |  | 
| 121 |  |  |  |  |  |  | Returns an ArrayRef of class labels, each of them could be returned by C<predict> and C<predict_values>. | 
| 122 |  |  |  |  |  |  |  | 
| 123 |  |  |  |  |  |  | =head2 is_probability_model | 
| 124 |  |  |  |  |  |  |  | 
| 125 |  |  |  |  |  |  | Returns true if the model is trained as a classifier based on logistic regression, false otherwise. | 
| 126 |  |  |  |  |  |  |  | 
| 127 |  |  |  |  |  |  | =head2 num_classes | 
| 128 |  |  |  |  |  |  |  | 
| 129 |  |  |  |  |  |  | The number of class labels. | 
| 130 |  |  |  |  |  |  |  | 
| 131 |  |  |  |  |  |  | =head2 num_features | 
| 132 |  |  |  |  |  |  |  | 
| 133 |  |  |  |  |  |  | The number of features contained in training set. | 
| 134 |  |  |  |  |  |  |  | 
| 135 |  |  |  |  |  |  | =head2 predict(feature => $hashref) | 
| 136 |  |  |  |  |  |  |  | 
| 137 |  |  |  |  |  |  | In case of classification, returns predicted class label. | 
| 138 |  |  |  |  |  |  |  | 
| 139 |  |  |  |  |  |  | In case of regression, returns value of estimated function given feature. | 
| 140 |  |  |  |  |  |  |  | 
| 141 |  |  |  |  |  |  | =head2 predict_probabilities(feature => $hashref) | 
| 142 |  |  |  |  |  |  |  | 
| 143 |  |  |  |  |  |  | Returns an ArrayRef of probabilities of the feature belonging to corresponding class. | 
| 144 |  |  |  |  |  |  |  | 
| 145 |  |  |  |  |  |  | This method will raise an error if the model is not a classifier based on logistic regression (i.e., C<< not $classifier->is_probability_model >>.) | 
| 146 |  |  |  |  |  |  |  | 
| 147 |  |  |  |  |  |  | =head2 predict_values(feature => $hashref) | 
| 148 |  |  |  |  |  |  |  | 
| 149 |  |  |  |  |  |  | Returns an ArrayRef of decision values of each class (higher is better). | 
| 150 |  |  |  |  |  |  |  | 
| 151 |  |  |  |  |  |  | =head2 save(filename => $path) | 
| 152 |  |  |  |  |  |  |  | 
| 153 |  |  |  |  |  |  | Writes the model out as a LIBLINEAR model file. | 
| 154 |  |  |  |  |  |  |  | 
| 155 |  |  |  |  |  |  | =cut |