| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Algorithm::GoldenSection; | 
| 2 |  |  |  |  |  |  |  | 
| 3 | 1 |  |  | 1 |  | 32439 | use warnings; | 
|  | 1 |  |  |  |  | 3 |  | 
|  | 1 |  |  |  |  | 35 |  | 
| 4 | 1 |  |  | 1 |  | 6 | use strict; | 
|  | 1 |  |  |  |  | 6 |  | 
|  | 1 |  |  |  |  | 37 |  | 
| 5 | 1 |  |  | 1 |  | 5 | use Carp; | 
|  | 1 |  |  |  |  | 5 |  | 
|  | 1 |  |  |  |  | 100 |  | 
| 6 | 1 |  |  | 1 |  | 1156 | use Readonly; | 
|  | 1 |  |  |  |  | 4387 |  | 
|  | 1 |  |  |  |  | 179 |  | 
| 7 |  |  |  |  |  |  |  | 
| 8 | 1 |  |  | 1 |  | 1043 | use version; our $VERSION = qv('0.0.2'); | 
|  | 1 |  |  |  |  | 2560 |  | 
|  | 1 |  |  |  |  | 21 |  | 
| 9 |  |  |  |  |  |  |  | 
| 10 |  |  |  |  |  |  | =head1 NAME | 
| 11 |  |  |  |  |  |  |  | 
| 12 |  |  |  |  |  |  | Algorithm::GoldenSection - Golden Section Search Algorithm for one-dimensional minimisation. | 
| 13 |  |  |  |  |  |  |  | 
| 14 |  |  |  |  |  |  | =cut | 
| 15 |  |  |  |  |  |  | =head1 VERSION | 
| 16 |  |  |  |  |  |  |  | 
| 17 |  |  |  |  |  |  | This document describes Algorithm::GoldenSection version 0.0.2 | 
| 18 |  |  |  |  |  |  |  | 
| 19 |  |  |  |  |  |  | =cut | 
| 20 |  |  |  |  |  |  | =head1 DESCRIPTION | 
| 21 |  |  |  |  |  |  |  | 
| 22 |  |  |  |  |  |  | This module is an implementation of the Golden Section Search Algorithm for finding minima of a unimodal function. | 
| 23 |  |  |  |  |  |  | In order to isolate a minimum of a univariate functions the minimum must first be isolated. | 
| 24 |  |  |  |  |  |  | Consequently the program first bounds a minimum - i.e. the program initially creates a triplet of points: | 
| 25 |  |  |  |  |  |  | x_low < x_int < x_high, such that f(x_int) is lower than both f(x_low) and f(x_high). Thus we ensure that there | 
| 26 |  |  |  |  |  |  | is a local minimum within the interval: x_low-x_high. The program then uses the Golde Section Search algorithm | 
| 27 |  |  |  |  |  |  | to successively narrow down on the bounded region to find the minimum. | 
| 28 |  |  |  |  |  |  | See http://en.wikipedia.org/wiki/Golden_section_search and | 
| 29 |  |  |  |  |  |  | http://www.gnu.org/software/gsl/manual/html_node/One-dimensional-Minimization.html. | 
| 30 |  |  |  |  |  |  |  | 
| 31 |  |  |  |  |  |  | The module provides a Perl5OO interface. Simply construct a Algorithm::GoldenSection object with appropriate parameters | 
| 32 |  |  |  |  |  |  | - see L. Then call the minimise C. This returns a LIST of the value of x at the minimum, the value of | 
| 33 |  |  |  |  |  |  | f(x) at the minimum and the number of iterations used to isolate the minimum. | 
| 34 |  |  |  |  |  |  |  | 
| 35 |  |  |  |  |  |  | =cut | 
| 36 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 37 |  |  |  |  |  |  |  | 
| 38 |  |  |  |  |  |  | use Algorithm::GoldenSection; | 
| 39 |  |  |  |  |  |  |  | 
| 40 |  |  |  |  |  |  | # Create a Algorithm::GoldenSection object and pass it a CODE reference to the function to be minimised and initials values for x_low and x_int. | 
| 41 |  |  |  |  |  |  | $gs = Algorithm::GoldenSection->new( { function => sub { my $x = shift; my $b =  $x * sin($x) - 2 * cos($x); return $b }, | 
| 42 |  |  |  |  |  |  | x_low    => 4, | 
| 43 |  |  |  |  |  |  | x_int    => 4.7,} ) ; | 
| 44 |  |  |  |  |  |  |  | 
| 45 |  |  |  |  |  |  | # Call minimisation method to bracket and minimise. | 
| 46 |  |  |  |  |  |  | my ($x_min, $f_min, $iterations) = $gs->minimise; | 
| 47 |  |  |  |  |  |  |  | 
| 48 |  |  |  |  |  |  | print qq{\nMinimisation results: x a minimum = $x_min, function value at minimum = $f_min. Calculation took $iterations iterations}; | 
| 49 |  |  |  |  |  |  |  | 
| 50 |  |  |  |  |  |  | =cut | 
| 51 |  |  |  |  |  |  |  | 
| 52 |  |  |  |  |  |  | # package-scoped lexicals | 
| 53 |  |  |  |  |  |  | Readonly::Scalar my $ouro => 1.618034 ; | 
| 54 |  |  |  |  |  |  | Readonly::Scalar my $glimite => 100.0 ; | 
| 55 |  |  |  |  |  |  | Readonly::Scalar my $pequeninho => 1.0e-20 ; | 
| 56 |  |  |  |  |  |  | Readonly::Scalar my $tolerancia => 3.0e-8;  # tolerance | 
| 57 |  |  |  |  |  |  | Readonly::Scalar my $C => (3-sqrt(5))/2; | 
| 58 |  |  |  |  |  |  | Readonly::Scalar my $R => 1-$C; | 
| 59 |  |  |  |  |  |  |  | 
| 60 |  |  |  |  |  |  | #/ I had leaving things for operator precedence. you won´t see A+B*(C-D) whe you mean: A+( B*(C-D) ) - i.e. * binds more tightly that + | 
| 61 |  |  |  |  |  |  |  | 
| 62 |  |  |  |  |  |  | sub new { | 
| 63 | 0 |  |  | 0 | 0 |  | my ( $class, $h_ref ) = @_; | 
| 64 | 0 | 0 | 0 |  |  |  | croak qq{\nArguments must be passed as HASH reference.} if ( ( $h_ref ) && ( ref $h_ref ne q{HASH} ) ); | 
| 65 | 0 |  |  |  |  |  | my $self = {}; | 
| 66 | 0 |  |  |  |  |  | bless $self, $class; | 
| 67 | 0 |  |  |  |  |  | $self->_check_options($h_ref); | 
| 68 | 0 |  |  |  |  |  | return $self; | 
| 69 |  |  |  |  |  |  | } | 
| 70 |  |  |  |  |  |  |  | 
| 71 |  |  |  |  |  |  | sub _check_options { | 
| 72 |  |  |  |  |  |  |  | 
| 73 | 0 |  |  | 0 |  |  | my ( $self, $h_ref ) = @_; | 
| 74 |  |  |  |  |  |  |  | 
| 75 | 0 | 0 | 0 |  |  |  | croak qq{\nOption \x27function\x27 is obrigatory and accepts a CODE reference} | 
| 76 |  |  |  |  |  |  | if ( ( !exists $h_ref->{function} ) || ( ref $h_ref->{function} ne q{CODE} ) ); | 
| 77 | 0 | 0 | 0 |  |  |  | croak qq{\nOption \x27x_low\x27 requirements a numeric value} | 
| 78 |  |  |  |  |  |  | if ( ( !exists $h_ref->{x_low} ) || ( $h_ref->{x_low} !~ /\A[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?\z/xms ) ); | 
| 79 | 0 | 0 | 0 |  |  |  | croak qq{\nOption \x27x_low\x27 requirements a numeric value} | 
| 80 |  |  |  |  |  |  | if ( ( !exists $h_ref->{x_int} ) || ( $h_ref->{x_int} !~ /\A[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?\z/xms ) ); | 
| 81 |  |  |  |  |  |  |  | 
| 82 | 0 |  |  |  |  |  | $self->{function} = $h_ref->{function}; | 
| 83 | 0 |  |  |  |  |  | $self->{x_low} = $h_ref->{x_low}; | 
| 84 | 0 |  |  |  |  |  | $self->{x_int} = $h_ref->{x_int}; | 
| 85 |  |  |  |  |  |  |  | 
| 86 |  |  |  |  |  |  | } | 
| 87 |  |  |  |  |  |  |  | 
| 88 |  |  |  |  |  |  | sub _switch { | 
| 89 |  |  |  |  |  |  | # twat did you usual of forgetting @_ and then you didn´t even return from it! | 
| 90 | 0 |  |  | 0 |  |  | my ( $a, $b, $f_a, $f_b) = @_; | 
| 91 | 0 |  |  |  |  |  | my $buf = $a; | 
| 92 | 0 |  |  |  |  |  | my $f_buf = $f_a; | 
| 93 | 0 |  |  |  |  |  | $a = $b; | 
| 94 | 0 |  |  |  |  |  | $f_a = $f_b; | 
| 95 | 0 |  |  |  |  |  | $b = $buf; | 
| 96 | 0 |  |  |  |  |  | $f_b = $f_buf; | 
| 97 | 0 |  |  |  |  |  | return ($a, $b, $f_a, $f_b); | 
| 98 |  |  |  |  |  |  | } | 
| 99 |  |  |  |  |  |  |  | 
| 100 |  |  |  |  |  |  | sub minimise { | 
| 101 |  |  |  |  |  |  |  | 
| 102 | 0 |  |  | 0 | 0 |  | my $self = shift; | 
| 103 |  |  |  |  |  |  |  | 
| 104 |  |  |  |  |  |  | #y bracket interval | 
| 105 | 0 |  |  |  |  |  | $self->_bracket; | 
| 106 |  |  |  |  |  |  |  | 
| 107 | 0 |  |  |  |  |  | my $func = $self->{function}; | 
| 108 | 0 |  |  |  |  |  | my $a = $self->{x_low}; | 
| 109 | 0 |  |  |  |  |  | my $b = $self->{x_int}; | 
| 110 | 0 |  |  |  |  |  | my $c = $self->{x_high}; | 
| 111 |  |  |  |  |  |  |  | 
| 112 | 0 |  |  |  |  |  | my $x1; | 
| 113 |  |  |  |  |  |  | my $x2; | 
| 114 |  |  |  |  |  |  | # this is not efficient code... | 
| 115 | 0 |  |  |  |  |  | my $x0 = $self->{x_low}; | 
| 116 | 0 |  |  |  |  |  | my $x3 = $self->{x_high}; | 
| 117 |  |  |  |  |  |  |  | 
| 118 | 0 | 0 |  |  |  |  | if ( abs($c-$b) > abs($b-$a) ) { | 
| 119 | 0 |  |  |  |  |  | $x1 = $b; | 
| 120 |  |  |  |  |  |  | #y create new point to try | 
| 121 | 0 |  |  |  |  |  | $x2 = $b + ( $C * ($c-$b) ); | 
| 122 |  |  |  |  |  |  | } | 
| 123 |  |  |  |  |  |  | else { | 
| 124 | 0 |  |  |  |  |  | $x2 = $b; | 
| 125 |  |  |  |  |  |  | #y create new point to try | 
| 126 | 0 |  |  |  |  |  | $x1 = $b - ( $C * ($b-$a) ); | 
| 127 |  |  |  |  |  |  | } | 
| 128 |  |  |  |  |  |  |  | 
| 129 |  |  |  |  |  |  | #y initial function evaluations | 
| 130 | 0 |  |  |  |  |  | my $f1 = $func->($x1); | 
| 131 | 0 |  |  |  |  |  | my $f2 = $func->($x2); | 
| 132 |  |  |  |  |  |  |  | 
| 133 | 0 |  |  |  |  |  | my $counter = 0; | 
| 134 |  |  |  |  |  |  |  | 
| 135 |  |  |  |  |  |  | #y start iterating... | 
| 136 | 0 |  |  |  |  |  | while ( abs($x3-$x0) > ( $tolerancia * ( abs($x1) + abs($x2) ) ) ) { | 
| 137 |  |  |  |  |  |  |  | 
| 138 |  |  |  |  |  |  | #y lets increment here just to make it easier - hence start with 0 | 
| 139 | 0 |  |  |  |  |  | $counter++; | 
| 140 |  |  |  |  |  |  |  | 
| 141 |  |  |  |  |  |  | #y a possible outcome | 
| 142 | 0 | 0 |  |  |  |  | if ( $f2 < $f1 ) { | 
| 143 |  |  |  |  |  |  |  | 
| 144 |  |  |  |  |  |  | ######################################### | 
| 145 |  |  |  |  |  |  | #y choose one of the two - but why the fuck-up with $R multiplication?!? | 
| 146 |  |  |  |  |  |  | ######################################### | 
| 147 |  |  |  |  |  |  | #y the following is identical to: | 
| 148 | 0 |  |  |  |  |  | $x0 = $x1; | 
| 149 | 0 |  |  |  |  |  | $x1 = $x2; | 
| 150 | 0 |  |  |  |  |  | $x2 = ($R*$x2) + ($C*$x3); # | 
| 151 | 0 |  |  |  |  |  | $f1 = $f2; | 
| 152 | 0 |  |  |  |  |  | $f2 = $func->($x2); | 
| 153 |  |  |  |  |  |  | ######################################### | 
| 154 |  |  |  |  |  |  | #            my $x_temp = ($R*$x2) + ($C*$x3); | 
| 155 |  |  |  |  |  |  | #            &_shft3(\$x0,\$x1,\$x2,\$x_temp); | 
| 156 |  |  |  |  |  |  | #            my $f_x_temp = $func->($x2); | 
| 157 |  |  |  |  |  |  | #            &_shft2(\$f1,\$f2,\$f_x_temp); | 
| 158 |  |  |  |  |  |  | ######################################### | 
| 159 |  |  |  |  |  |  | } | 
| 160 |  |  |  |  |  |  | #y other possibility | 
| 161 |  |  |  |  |  |  | else { | 
| 162 |  |  |  |  |  |  |  | 
| 163 |  |  |  |  |  |  | ######################################### | 
| 164 | 0 |  |  |  |  |  | $x3 = $x2; | 
| 165 | 0 |  |  |  |  |  | $x2 = $x1; | 
| 166 | 0 |  |  |  |  |  | $x1 = ($R*$x1) + ($C*$x0); | 
| 167 | 0 |  |  |  |  |  | $f2 = $f1; | 
| 168 | 0 |  |  |  |  |  | $f1 = $func->($x1); | 
| 169 |  |  |  |  |  |  | ######################################### | 
| 170 |  |  |  |  |  |  | #            my $x_temp = ($R*$x1) + ($C*$x0); | 
| 171 |  |  |  |  |  |  | #            &_shft3(\$x3,\$x2,\$x1,\$x_temp); | 
| 172 |  |  |  |  |  |  | #            my $f_x_temp = $func->($x1); | 
| 173 |  |  |  |  |  |  | #            &_shft2(\$f2,\$f1,\$f_x_temp); | 
| 174 |  |  |  |  |  |  | ######################################### | 
| 175 |  |  |  |  |  |  | } | 
| 176 |  |  |  |  |  |  | } | 
| 177 |  |  |  |  |  |  |  | 
| 178 | 0 |  |  |  |  |  | my $xmin; | 
| 179 |  |  |  |  |  |  | my $fmin; | 
| 180 |  |  |  |  |  |  |  | 
| 181 |  |  |  |  |  |  | #y set final values | 
| 182 | 0 | 0 |  |  |  |  | if ($f1 < $f2) { | 
| 183 | 0 |  |  |  |  |  | $xmin = $x1; | 
| 184 | 0 |  |  |  |  |  | $fmin = $f1; | 
| 185 |  |  |  |  |  |  | } | 
| 186 |  |  |  |  |  |  | else { | 
| 187 | 0 |  |  |  |  |  | $xmin = $x2; | 
| 188 | 0 |  |  |  |  |  | $fmin = $f2; | 
| 189 |  |  |  |  |  |  | } | 
| 190 |  |  |  |  |  |  |  | 
| 191 | 0 |  |  |  |  |  | return $xmin, $fmin, $counter; | 
| 192 |  |  |  |  |  |  | } | 
| 193 |  |  |  |  |  |  |  | 
| 194 |  |  |  |  |  |  | sub _bracket { | 
| 195 |  |  |  |  |  |  |  | 
| 196 | 0 |  |  | 0 |  |  | my $self = shift; | 
| 197 |  |  |  |  |  |  |  | 
| 198 | 0 |  |  |  |  |  | my $function = $self->{function}; | 
| 199 | 0 |  |  |  |  |  | $a = $self->{x_low}; | 
| 200 | 0 |  |  |  |  |  | $b = $self->{x_int}; | 
| 201 |  |  |  |  |  |  |  | 
| 202 | 0 |  |  |  |  |  | my $f_u; | 
| 203 | 0 |  |  |  |  |  | my $f_a = $function->($a); | 
| 204 | 0 |  |  |  |  |  | my $f_b = $function->($b); | 
| 205 |  |  |  |  |  |  |  | 
| 206 |  |  |  |  |  |  | #y that is downhill | 
| 207 | 0 | 0 |  |  |  |  | if ($f_b > $f_a ) { | 
| 208 |  |  |  |  |  |  | #print qq{\n\n**** in this case fb is higher than fa - thus we are going uphill so we need to swap them****\n}; | 
| 209 | 0 |  |  |  |  |  | print qq{\n\nswitch $a, $b, $f_a and $f_b}; | 
| 210 | 0 |  |  |  |  |  | ( $a, $b, $f_a, $f_b) = _switch( $a, $b, $f_a, $f_b); | 
| 211 | 0 |  |  |  |  |  | print qq{\n\nswitch $a, $b, $f_a and $f_b}; | 
| 212 |  |  |  |  |  |  | } | 
| 213 |  |  |  |  |  |  |  | 
| 214 |  |  |  |  |  |  | # has higher precedence that + thus: $c = $b+$ouro*($b-$a);  is the same as $c = $b+($gold*($b-$a)); - same in C/C++ | 
| 215 |  |  |  |  |  |  |  | 
| 216 |  |  |  |  |  |  | #y WE MAKE A GUESS AT A VALUE OF C | 
| 217 | 0 |  |  |  |  |  | my $c = $b + ( $ouro * ($b-$a) ); # c 26.18034 and f_c 21.6787847478271 | 
| 218 |  |  |  |  |  |  |  | 
| 219 | 0 |  |  |  |  |  | my $f_c = $function->($c); | 
| 220 |  |  |  |  |  |  |  | 
| 221 |  |  |  |  |  |  | # (1) by SWAPPING we are sure that f(a) > f(b)! - (2) BUT we must also have f(b) < f(c) in order to have _bracketed our MINIMUM | 
| 222 |  |  |  |  |  |  |  | 
| 223 | 0 |  |  |  |  |  | while ( $f_b > $f_c ) { | 
| 224 |  |  |  |  |  |  |  | 
| 225 |  |  |  |  |  |  | #y compute u by parabolic extrapolation - tiny is there just to stop ilegal divisions by 0 | 
| 226 | 0 |  |  |  |  |  | my $r = ($b-$a) * ($f_b-$f_c); | 
| 227 | 0 |  |  |  |  |  | my $q = ($b-$c) * ($f_b-$f_a); | 
| 228 | 0 |  |  |  |  |  | my $u = $b - ( ( $b - $c ) * $q - ( $b - $a ) * $r )  / ( 2.0 * &_sign ( &_max ( abs ($q-$r), $pequeninho ), $q-$r ) ); | 
| 229 | 0 |  |  |  |  |  | my $ulim = $b + ( $glimite * ($c-$b) ); | 
| 230 |  |  |  |  |  |  |  | 
| 231 |  |  |  |  |  |  | #y test the possibilities! | 
| 232 |  |  |  |  |  |  |  | 
| 233 | 0 | 0 |  |  |  |  | if ( ($b-$u)*($u-$c) > 0.0 ) {      #y parabolic u is between b and c | 
|  |  | 0 |  |  |  |  |  | 
|  |  | 0 |  |  |  |  |  | 
| 234 | 0 |  |  |  |  |  | $f_u = $function->($u); | 
| 235 |  |  |  |  |  |  |  | 
| 236 |  |  |  |  |  |  | #y have a minimium between b and c - i.e. is f(u) < f(c) - if so: | 
| 237 | 0 | 0 |  |  |  |  | if ( $f_u  < $f_c ) { | 
|  |  | 0 |  |  |  |  |  | 
| 238 |  |  |  |  |  |  |  | 
| 239 | 0 |  |  |  |  |  | $a = $b; | 
| 240 | 0 |  |  |  |  |  | $b = $u; | 
| 241 | 0 |  |  |  |  |  | $f_a = $f_b; | 
| 242 | 0 |  |  |  |  |  | $f_b = $f_u; | 
| 243 |  |  |  |  |  |  |  | 
| 244 |  |  |  |  |  |  | #/ we´re going to return early here so as we aren´t using any package-scoped vars we will need to feed the object here | 
| 245 | 0 |  |  |  |  |  | $self->{x_low} = $a; | 
| 246 | 0 |  |  |  |  |  | $self->{x_int} = $b; | 
| 247 | 0 |  |  |  |  |  | $self->{x_high} = $c; | 
| 248 |  |  |  |  |  |  |  | 
| 249 |  |  |  |  |  |  | return | 
| 250 | 0 |  |  |  |  |  | } | 
| 251 |  |  |  |  |  |  | elsif ( $f_u > $f_b ) { | 
| 252 | 0 |  |  |  |  |  | $c = $u; | 
| 253 | 0 |  |  |  |  |  | $f_c = $f_u; | 
| 254 |  |  |  |  |  |  |  | 
| 255 |  |  |  |  |  |  | #/ we´re going to return early here so as we aren´t using any package-scoped vars we will need to feed the object here | 
| 256 | 0 |  |  |  |  |  | $self->{x_low} = $a; | 
| 257 | 0 |  |  |  |  |  | $self->{x_int} = $b; | 
| 258 | 0 |  |  |  |  |  | $self->{x_high} = $c; | 
| 259 |  |  |  |  |  |  |  | 
| 260 |  |  |  |  |  |  | return | 
| 261 | 0 |  |  |  |  |  | } | 
| 262 |  |  |  |  |  |  |  | 
| 263 |  |  |  |  |  |  | #y parabolic fit was useless in this case - so we use a default magnification | 
| 264 | 0 |  |  |  |  |  | $u = $c + ( $ouro * ($c-$b) ); | 
| 265 | 0 |  |  |  |  |  | $f_u = $function->($u); | 
| 266 |  |  |  |  |  |  | } | 
| 267 |  |  |  |  |  |  |  | 
| 268 |  |  |  |  |  |  | #y parabolic fit is between c and is not allowed | 
| 269 |  |  |  |  |  |  | elsif  ( ($c-$u)*($u-$ulim) > 0 ) { | 
| 270 |  |  |  |  |  |  |  | 
| 271 | 0 |  |  |  |  |  | $f_u = $function->($u); | 
| 272 |  |  |  |  |  |  |  | 
| 273 | 0 | 0 |  |  |  |  | if ( $f_u < $f_c ) { | 
| 274 |  |  |  |  |  |  |  | 
| 275 | 0 |  |  |  |  |  | my $u_other = $u + ( $ouro * ($u-$c) ); | 
| 276 |  |  |  |  |  |  | #/ this should make b = c, c = u  and u = u_other | 
| 277 | 0 |  |  |  |  |  | &_shft3(\$b,\$c,\$u,$u_other); | 
| 278 |  |  |  |  |  |  | #/ so as u is now u_other this shouldn´t be a prob | 
| 279 | 0 |  |  |  |  |  | my $f_u_other = $function->($u_other); | 
| 280 | 0 |  |  |  |  |  | &_shft3(\$f_b,\$f_c,\$f_u, \$f_u_other); | 
| 281 |  |  |  |  |  |  | } | 
| 282 |  |  |  |  |  |  | } | 
| 283 |  |  |  |  |  |  |  | 
| 284 |  |  |  |  |  |  | #y limit parabolic u to max allowed | 
| 285 |  |  |  |  |  |  | elsif ( ($u-$ulim)*($ulim-$c) >= 0.0 ) { | 
| 286 | 0 |  |  |  |  |  | $u = $ulim; | 
| 287 | 0 |  |  |  |  |  | $f_u = $function->($u); | 
| 288 |  |  |  |  |  |  | } | 
| 289 |  |  |  |  |  |  |  | 
| 290 |  |  |  |  |  |  | #y reject parabolic u | 
| 291 |  |  |  |  |  |  | else { | 
| 292 | 0 |  |  |  |  |  | $u = $c + ( $ouro * ($c-$b) ); | 
| 293 | 0 |  |  |  |  |  | $f_u = $function->($u); | 
| 294 |  |  |  |  |  |  | } | 
| 295 |  |  |  |  |  |  |  | 
| 296 |  |  |  |  |  |  | #y eliminate oldest points and will continue}; | 
| 297 |  |  |  |  |  |  |  | 
| 298 | 0 |  |  |  |  |  | &_shft3(\$a,\$b,\$c,\$u); | 
| 299 | 0 |  |  |  |  |  | &_shft3(\$f_a,\$f_b,\$f_c,\$f_u); | 
| 300 |  |  |  |  |  |  |  | 
| 301 |  |  |  |  |  |  | } | 
| 302 |  |  |  |  |  |  |  | 
| 303 | 0 | 0 | 0 |  |  |  | croak qq{\nThere is a problem - email dsth\@cantab.net.} if ( !$a || !$b || !$c );#|| ( $b > $a ) || ( $b > $c ) ); | 
|  |  |  | 0 |  |  |  |  | 
| 304 | 0 |  |  |  |  |  | $self->{x_low} = $a; | 
| 305 | 0 |  |  |  |  |  | $self->{x_int} = $b; | 
| 306 | 0 |  |  |  |  |  | $self->{x_high} = $c; | 
| 307 |  |  |  |  |  |  | } | 
| 308 |  |  |  |  |  |  |  | 
| 309 |  |  |  |  |  |  | sub _sign { | 
| 310 | 0 |  |  | 0 |  |  | my ($a, $b) = @_; | 
| 311 | 0 |  |  |  |  |  | my $val = abs $a; | 
| 312 | 0 | 0 |  |  |  |  | my $sig = $b >= 0 ? q{+} : q{-}; | 
| 313 | 0 |  |  |  |  |  | my $final = $sig.$val; | 
| 314 |  |  |  |  |  |  | # force numeric context - no real reason | 
| 315 | 0 |  |  |  |  |  | return 0+$final; | 
| 316 |  |  |  |  |  |  | } | 
| 317 |  |  |  |  |  |  |  | 
| 318 |  |  |  |  |  |  | sub _max { | 
| 319 | 0 |  |  | 0 |  |  | my ($a, $b) = @_; | 
| 320 | 0 | 0 |  |  |  |  | my $ret = $a >= $b ? $a : $b; | 
| 321 | 0 |  |  |  |  |  | return $ret; | 
| 322 |  |  |  |  |  |  | } | 
| 323 |  |  |  |  |  |  |  | 
| 324 |  |  |  |  |  |  | sub _shft3 { | 
| 325 | 0 |  |  | 0 |  |  | my ($a, $b, $c, $d) = @_; | 
| 326 | 0 |  |  |  |  |  | $$a = $$b; | 
| 327 | 0 |  |  |  |  |  | $$b = $$c; | 
| 328 | 0 |  |  |  |  |  | $$c = $$d; | 
| 329 | 0 |  |  |  |  |  | return; | 
| 330 |  |  |  |  |  |  | } | 
| 331 |  |  |  |  |  |  |  | 
| 332 |  |  |  |  |  |  | sub _shft2 { | 
| 333 | 0 |  |  | 0 |  |  | my ($a, $b, $c) = @_; | 
| 334 | 0 |  |  |  |  |  | $$a = $$b; | 
| 335 | 0 |  |  |  |  |  | $$b = $$c; | 
| 336 | 0 |  |  |  |  |  | return; | 
| 337 |  |  |  |  |  |  | } | 
| 338 |  |  |  |  |  |  |  | 
| 339 |  |  |  |  |  |  | 1; # Magic true value required at end of module | 
| 340 |  |  |  |  |  |  |  | 
| 341 |  |  |  |  |  |  | __END__ |