line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
|
|
|
|
|
|
package Algorithm::Genetic::Diploid::Population; |
2
|
2
|
|
|
2
|
|
11
|
use strict; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
90
|
|
3
|
2
|
|
|
2
|
|
11
|
use List::Util qw'sum shuffle'; |
|
2
|
|
|
|
|
5
|
|
|
2
|
|
|
|
|
156
|
|
4
|
2
|
|
|
2
|
|
11
|
use Algorithm::Genetic::Diploid::Base; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
65
|
|
5
|
2
|
|
|
2
|
|
12
|
use base 'Algorithm::Genetic::Diploid::Base'; |
|
2
|
|
|
|
|
3
|
|
|
2
|
|
|
|
|
1747
|
|
6
|
|
|
|
|
|
|
|
7
|
|
|
|
|
|
|
my $log = __PACKAGE__->logger; |
8
|
|
|
|
|
|
|
|
9
|
|
|
|
|
|
|
=head1 NAME |
10
|
|
|
|
|
|
|
|
11
|
|
|
|
|
|
|
Algorithm::Genetic::Diploid::Population - A population of individuals that turns over |
12
|
|
|
|
|
|
|
|
13
|
|
|
|
|
|
|
=head1 METHODS |
14
|
|
|
|
|
|
|
|
15
|
|
|
|
|
|
|
=over |
16
|
|
|
|
|
|
|
|
17
|
|
|
|
|
|
|
=item new |
18
|
|
|
|
|
|
|
|
19
|
|
|
|
|
|
|
Constructor takes named arguments, creates a default, empty list of individuals |
20
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
=cut |
22
|
|
|
|
|
|
|
|
23
|
|
|
|
|
|
|
sub new { |
24
|
|
|
|
|
|
|
shift->SUPER::new( |
25
|
1
|
|
|
1
|
1
|
9
|
'individuals' => [], |
26
|
|
|
|
|
|
|
@_, |
27
|
|
|
|
|
|
|
); |
28
|
|
|
|
|
|
|
} |
29
|
|
|
|
|
|
|
|
30
|
|
|
|
|
|
|
=item individuals |
31
|
|
|
|
|
|
|
|
32
|
|
|
|
|
|
|
Getter and setter for the list of individuals |
33
|
|
|
|
|
|
|
|
34
|
|
|
|
|
|
|
=cut |
35
|
|
|
|
|
|
|
|
36
|
|
|
|
|
|
|
sub individuals { |
37
|
151
|
|
|
151
|
1
|
276
|
my $self = shift; |
38
|
151
|
100
|
|
|
|
397
|
if ( @_ ) { |
39
|
51
|
|
|
|
|
189
|
$self->{'individuals'} = \@_; |
40
|
51
|
|
|
|
|
842
|
$log->debug("assigning ".scalar(@_)." individuals to population"); |
41
|
|
|
|
|
|
|
} |
42
|
151
|
|
|
|
|
281
|
return @{ $self->{'individuals'} }; |
|
151
|
|
|
|
|
674
|
|
43
|
|
|
|
|
|
|
} |
44
|
|
|
|
|
|
|
|
45
|
|
|
|
|
|
|
=item turnover |
46
|
|
|
|
|
|
|
|
47
|
|
|
|
|
|
|
Moves the population on to the next generation, i.e. |
48
|
|
|
|
|
|
|
1. compute fitness of all individuals |
49
|
|
|
|
|
|
|
2. mate up to reproduction rate in proportion to fitness |
50
|
|
|
|
|
|
|
|
51
|
|
|
|
|
|
|
=cut |
52
|
|
|
|
|
|
|
|
53
|
|
|
|
|
|
|
sub turnover { |
54
|
50
|
|
|
50
|
1
|
110
|
my ( $self, $gen, $env, $optimum ) = @_; |
55
|
50
|
|
|
|
|
201
|
my $log = $self->logger; |
56
|
50
|
|
|
|
|
322
|
$log->debug("going to breed generation $gen against optimum $optimum"); |
57
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
# sort all individuals by fitness, creates array refs |
59
|
|
|
|
|
|
|
# where 0 element is Individual, 1 element is its fitness |
60
|
11163
|
|
|
|
|
13491
|
my @fittest = sort { $a->[1] <=> $b->[1] } |
|
2500
|
|
|
|
|
7682
|
|
61
|
50
|
|
|
|
|
152
|
map { [ $_, $_->fitness($optimum,$env) ] } |
62
|
|
|
|
|
|
|
$self->individuals; |
63
|
50
|
|
|
|
|
657
|
$log->debug("sorted current generation by fitness"); |
64
|
50
|
|
|
|
|
294
|
$log->info("*** fittest at generation $gen: ".$fittest[0]->[0]->phenotype($env)); |
65
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
# get the highest index of Individual |
67
|
|
|
|
|
|
|
# that still gets to reproduce |
68
|
50
|
|
|
|
|
277
|
my $maxidx = int( $self->experiment->reproduction_rate * $#fittest ); |
69
|
50
|
|
|
|
|
336
|
$log->debug("individuals up to index $maxidx will breed"); |
70
|
|
|
|
|
|
|
|
71
|
|
|
|
|
|
|
# take the slice of Individuals that get to reproduce |
72
|
50
|
|
|
|
|
349
|
my @breeders = @fittest[ 0 .. $maxidx ]; |
73
|
50
|
|
|
|
|
329
|
$log->debug("number of breeders: ".scalar(@breeders)); |
74
|
|
|
|
|
|
|
|
75
|
|
|
|
|
|
|
# compute the total fitness, to know how much each breeder gets to |
76
|
|
|
|
|
|
|
# contribute to the next generation |
77
|
50
|
|
|
|
|
112
|
my $total_fitness = sum map { $_->[1] } @breeders; |
|
900
|
|
|
|
|
1300
|
|
78
|
50
|
|
|
|
|
485
|
$log->debug("total fitness is $total_fitness"); |
79
|
|
|
|
|
|
|
|
80
|
|
|
|
|
|
|
# compute the population size, which we need to divide up over the |
81
|
|
|
|
|
|
|
# breeders in proportion of their fitness relative to total fitness |
82
|
50
|
|
|
|
|
175
|
my $popsize = scalar $self->individuals; |
83
|
50
|
|
|
|
|
316
|
$log->debug("population size will be $popsize"); |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
# here we make breeding pairs |
86
|
50
|
|
|
|
|
114
|
my @children; |
87
|
50
|
|
|
|
|
162
|
ORGY: while( @children < $popsize ) { |
88
|
50
|
|
|
|
|
198
|
for my $i ( 0 .. $#breeders ) { |
89
|
858
|
|
|
|
|
3299
|
my $quotum_i = $breeders[$i]->[1] / $total_fitness * $popsize * 2; |
90
|
858
|
|
|
|
|
2375
|
for my $j ( 0 .. $#breeders ) { |
91
|
15409
|
|
|
|
|
38848
|
my $quotum_j = $breeders[$j]->[1] / $total_fitness * $popsize * 2; |
92
|
15409
|
|
|
|
|
61519
|
my $count_i = $breeders[$i]->[0]->child_count; |
93
|
15409
|
|
|
|
|
59934
|
my $count_j = $breeders[$j]->[0]->child_count; |
94
|
15409
|
100
|
100
|
|
|
78450
|
if ( $count_i < $quotum_i && $count_j < $quotum_j ) { |
95
|
2500
|
|
|
|
|
12889
|
push @children, $breeders[$i]->[0]->breed($breeders[$j]->[0]); |
96
|
2500
|
|
|
|
|
28195
|
$log->debug("bred child ".scalar(@children)." by pairing $i and $j"); |
97
|
2500
|
100
|
|
|
|
13842
|
last ORGY if @children == $popsize; |
98
|
|
|
|
|
|
|
} |
99
|
|
|
|
|
|
|
} |
100
|
|
|
|
|
|
|
} |
101
|
|
|
|
|
|
|
} |
102
|
|
|
|
|
|
|
|
103
|
50
|
|
|
|
|
204
|
my %genes = map { $_->id => 1 } map { $_->genes } map { $_->chromosomes } @children; |
|
5000
|
|
|
|
|
12295
|
|
|
5000
|
|
|
|
|
13130
|
|
|
2500
|
|
|
|
|
7111
|
|
104
|
50
|
|
|
|
|
1411
|
$log->debug("generation $gen has ".scalar(keys(%genes))." distinct genes"); |
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
# now the population consists of the children |
107
|
50
|
|
|
|
|
311
|
$self->individuals(@children); |
108
|
50
|
|
|
|
|
86
|
return @{ $fittest[0] }; |
|
50
|
|
|
|
|
24560
|
|
109
|
|
|
|
|
|
|
} |
110
|
|
|
|
|
|
|
|
111
|
|
|
|
|
|
|
=back |
112
|
|
|
|
|
|
|
|
113
|
|
|
|
|
|
|
=cut |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
1; |