| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
1
|
|
|
1
|
|
808
|
use strict; #-*-cperl-*- |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
43
|
|
|
2
|
1
|
|
|
1
|
|
5
|
use warnings; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
39
|
|
|
3
|
|
|
|
|
|
|
|
|
4
|
1
|
|
|
1
|
|
6
|
use lib qw(../../.. ../.. ); #Emacs does not allow me to save!!! |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
9
|
|
|
5
|
|
|
|
|
|
|
|
|
6
|
|
|
|
|
|
|
=head1 NAME |
|
7
|
|
|
|
|
|
|
|
|
8
|
|
|
|
|
|
|
Algorithm::Evolutionary::Run - Class for setting up an experiment with algorithms and population |
|
9
|
|
|
|
|
|
|
|
|
10
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
11
|
|
|
|
|
|
|
|
|
12
|
|
|
|
|
|
|
use Algorithm::Evolutionary::Run; |
|
13
|
|
|
|
|
|
|
|
|
14
|
|
|
|
|
|
|
my $algorithm = new Algorithm::Evolutionary::Run 'conf.yaml'; |
|
15
|
|
|
|
|
|
|
#or |
|
16
|
|
|
|
|
|
|
my $conf = { |
|
17
|
|
|
|
|
|
|
'fitness' => { |
|
18
|
|
|
|
|
|
|
'class' => 'MMDP' |
|
19
|
|
|
|
|
|
|
}, |
|
20
|
|
|
|
|
|
|
'crossover' => { |
|
21
|
|
|
|
|
|
|
'priority' => '3', |
|
22
|
|
|
|
|
|
|
'points' => '2' |
|
23
|
|
|
|
|
|
|
}, |
|
24
|
|
|
|
|
|
|
'max_generations' => '1000', |
|
25
|
|
|
|
|
|
|
'mutation' => { |
|
26
|
|
|
|
|
|
|
'priority' => '2', |
|
27
|
|
|
|
|
|
|
'rate' => '0.1' |
|
28
|
|
|
|
|
|
|
}, |
|
29
|
|
|
|
|
|
|
'length' => '120', |
|
30
|
|
|
|
|
|
|
'max_fitness' => '20', |
|
31
|
|
|
|
|
|
|
'pop_size' => '1024', |
|
32
|
|
|
|
|
|
|
'selection_rate' => '0.1' |
|
33
|
|
|
|
|
|
|
}; |
|
34
|
|
|
|
|
|
|
|
|
35
|
|
|
|
|
|
|
my $algorithm = new Algorithm::Evolutionary::Run $conf; |
|
36
|
|
|
|
|
|
|
|
|
37
|
|
|
|
|
|
|
#Run it to the end |
|
38
|
|
|
|
|
|
|
$algorithm->run(); |
|
39
|
|
|
|
|
|
|
|
|
40
|
|
|
|
|
|
|
#Print results |
|
41
|
|
|
|
|
|
|
$algorithm->results(); |
|
42
|
|
|
|
|
|
|
|
|
43
|
|
|
|
|
|
|
#A single step |
|
44
|
|
|
|
|
|
|
$algorithm->step(); |
|
45
|
|
|
|
|
|
|
|
|
46
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
47
|
|
|
|
|
|
|
|
|
48
|
|
|
|
|
|
|
This is a no-fuss class to have everything needed to run an algorithm |
|
49
|
|
|
|
|
|
|
in a single place, although for the time being it's reduced to |
|
50
|
|
|
|
|
|
|
fitness functions in the A::E::F namespace, and binary |
|
51
|
|
|
|
|
|
|
strings. Mostly for demo purposes, but can be an example of class |
|
52
|
|
|
|
|
|
|
for other stuff. |
|
53
|
|
|
|
|
|
|
|
|
54
|
|
|
|
|
|
|
=cut |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
=head1 METHODS |
|
57
|
|
|
|
|
|
|
|
|
58
|
|
|
|
|
|
|
=cut |
|
59
|
|
|
|
|
|
|
|
|
60
|
|
|
|
|
|
|
package Algorithm::Evolutionary::Run; |
|
61
|
|
|
|
|
|
|
|
|
62
|
1
|
|
|
|
|
6
|
use Algorithm::Evolutionary qw(Individual::BitString Op::Easy Op::CanonicalGA |
|
63
|
|
|
|
|
|
|
Op::Bitflip Op::Crossover |
|
64
|
1
|
|
|
1
|
|
762
|
Op::Gene_Boundary_Crossover); |
|
|
1
|
|
|
|
|
4
|
|
|
65
|
|
|
|
|
|
|
|
|
66
|
|
|
|
|
|
|
use Algorithm::Evolutionary::Utils qw(hamming); |
|
67
|
|
|
|
|
|
|
|
|
68
|
|
|
|
|
|
|
our ($VERSION) = ( '$Revision: 3.2 $ ' =~ /(\d+\.\d+)/ ) ; |
|
69
|
|
|
|
|
|
|
|
|
70
|
|
|
|
|
|
|
use Carp; |
|
71
|
|
|
|
|
|
|
use YAML qw(LoadFile); |
|
72
|
|
|
|
|
|
|
use Time::HiRes qw( gettimeofday tv_interval); |
|
73
|
|
|
|
|
|
|
|
|
74
|
|
|
|
|
|
|
=head2 new( $algorithm_description ) |
|
75
|
|
|
|
|
|
|
|
|
76
|
|
|
|
|
|
|
Creates the whole stuff needed to run an algorithm. Can be called from a hash with t |
|
77
|
|
|
|
|
|
|
options, as per the example. All of them are compulsory. See also the C subdir for examples of the YAML conf file. |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
=cut |
|
80
|
|
|
|
|
|
|
|
|
81
|
|
|
|
|
|
|
sub new { |
|
82
|
|
|
|
|
|
|
my $class = shift; |
|
83
|
|
|
|
|
|
|
|
|
84
|
|
|
|
|
|
|
my $param = shift; |
|
85
|
|
|
|
|
|
|
my $fitness_object = shift; # Can be undef |
|
86
|
|
|
|
|
|
|
my $self; |
|
87
|
|
|
|
|
|
|
if ( ! ref $param ) { #scalar => read yaml file |
|
88
|
|
|
|
|
|
|
$self = LoadFile( $param ) || carp "Can't load $param: is it a file?\n"; |
|
89
|
|
|
|
|
|
|
} else { #It's a hashref |
|
90
|
|
|
|
|
|
|
$self = $param; |
|
91
|
|
|
|
|
|
|
} |
|
92
|
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
#----------------------------------------------------------# |
|
94
|
|
|
|
|
|
|
# Variation operators |
|
95
|
|
|
|
|
|
|
my $m = new Algorithm::Evolutionary::Op::Bitflip( 1, $self->{'mutation'}->{'priority'} ); |
|
96
|
|
|
|
|
|
|
my $c; |
|
97
|
|
|
|
|
|
|
#Big hack here |
|
98
|
|
|
|
|
|
|
if ( $self->{'crossover'} ) { |
|
99
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::Crossover($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} ); |
|
100
|
|
|
|
|
|
|
} elsif ($self->{'gene_boundary_crossover'}) { |
|
101
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::Gene_Boundary_Crossover($self->{'gene_boundary_crossover'}->{'points'}, |
|
102
|
|
|
|
|
|
|
$self->{'gene_boundary_crossover'}->{'gene_size'} , |
|
103
|
|
|
|
|
|
|
$self->{'gene_boundary_crossover'}->{'priority'} ); |
|
104
|
|
|
|
|
|
|
} elsif ($self->{'quad_xover'} ) { |
|
105
|
|
|
|
|
|
|
$c = new Algorithm::Evolutionary::Op::QuadXOver($self->{'crossover'}->{'points'}, $self->{'crossover'}->{'priority'} ); |
|
106
|
|
|
|
|
|
|
} |
|
107
|
|
|
|
|
|
|
|
|
108
|
|
|
|
|
|
|
# Fitness function |
|
109
|
|
|
|
|
|
|
if ( !$fitness_object ) { |
|
110
|
|
|
|
|
|
|
my $fitness_class = "Algorithm::Evolutionary::Fitness::".$self->{'fitness'}->{'class'}; |
|
111
|
|
|
|
|
|
|
eval "require $fitness_class" || die "Can't load $fitness_class: $@\n"; |
|
112
|
|
|
|
|
|
|
my @params = $self->{'fitness'}->{'params'}? @{$self->{'fitness'}->{'params'}} : (); |
|
113
|
|
|
|
|
|
|
$fitness_object = eval $fitness_class."->new( \@params )" || die "Can't instantiate $fitness_class: $@\n"; |
|
114
|
|
|
|
|
|
|
} |
|
115
|
|
|
|
|
|
|
$self->{'_fitness'} = $fitness_object; |
|
116
|
|
|
|
|
|
|
|
|
117
|
|
|
|
|
|
|
#----------------------------------------------------------# |
|
118
|
|
|
|
|
|
|
#Usamos estos operadores para definir una generación del algoritmo. Lo cual |
|
119
|
|
|
|
|
|
|
# no es realmente necesario ya que este algoritmo define ambos operadores por |
|
120
|
|
|
|
|
|
|
# defecto. Los parámetros son la función de fitness, la tasa de selección y los |
|
121
|
|
|
|
|
|
|
# operadores de variación. |
|
122
|
|
|
|
|
|
|
my $algorithm_class = "Algorithm::Evolutionary::Op::".($self->{'algorithm'}?$self->{'algorithm'}:'Easy'); |
|
123
|
|
|
|
|
|
|
my $generation = eval $algorithm_class."->new( \$fitness_object , \$self->{'selection_rate'} , [\$m, \$c] )" |
|
124
|
|
|
|
|
|
|
|| die "Can't instantiate $algorithm_class: $@\n";; |
|
125
|
|
|
|
|
|
|
|
|
126
|
|
|
|
|
|
|
#Time |
|
127
|
|
|
|
|
|
|
my $inicioTiempo = [gettimeofday()]; |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
#----------------------------------------------------------# |
|
130
|
|
|
|
|
|
|
bless $self, $class; |
|
131
|
|
|
|
|
|
|
$self->reset_population; |
|
132
|
|
|
|
|
|
|
for ( @{$self->{'_population'}} ) { |
|
133
|
|
|
|
|
|
|
if ( !defined $_->Fitness() ) { |
|
134
|
|
|
|
|
|
|
$_->evaluate( $fitness_object ); |
|
135
|
|
|
|
|
|
|
} |
|
136
|
|
|
|
|
|
|
} |
|
137
|
|
|
|
|
|
|
|
|
138
|
|
|
|
|
|
|
$self->{'_generation'} = $generation; |
|
139
|
|
|
|
|
|
|
$self->{'_start_time'} = $inicioTiempo; |
|
140
|
|
|
|
|
|
|
return $self; |
|
141
|
|
|
|
|
|
|
} |
|
142
|
|
|
|
|
|
|
|
|
143
|
|
|
|
|
|
|
=head2 population_size( $new_size ) |
|
144
|
|
|
|
|
|
|
|
|
145
|
|
|
|
|
|
|
Resets the population size to the C<$new_size>. It does not do |
|
146
|
|
|
|
|
|
|
anything to the actual population, just resests the number. You should |
|
147
|
|
|
|
|
|
|
do a C afterwards. |
|
148
|
|
|
|
|
|
|
|
|
149
|
|
|
|
|
|
|
=cut |
|
150
|
|
|
|
|
|
|
|
|
151
|
|
|
|
|
|
|
sub population_size { |
|
152
|
|
|
|
|
|
|
my $self = shift; |
|
153
|
|
|
|
|
|
|
my $new_size = shift || croak "Too small!"; |
|
154
|
|
|
|
|
|
|
$self->{'pop_size'} = $new_size; |
|
155
|
|
|
|
|
|
|
} |
|
156
|
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
|
|
158
|
|
|
|
|
|
|
=head2 reset_population() |
|
159
|
|
|
|
|
|
|
|
|
160
|
|
|
|
|
|
|
Resets population, creating a new one; resets fitness counter to 0 |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
=cut |
|
163
|
|
|
|
|
|
|
|
|
164
|
|
|
|
|
|
|
sub reset_population { |
|
165
|
|
|
|
|
|
|
my $self = shift; |
|
166
|
|
|
|
|
|
|
#Initial population |
|
167
|
|
|
|
|
|
|
my @pop; |
|
168
|
|
|
|
|
|
|
|
|
169
|
|
|
|
|
|
|
#Creamos $popSize individuos |
|
170
|
|
|
|
|
|
|
my $bits = $self->{'length'}; |
|
171
|
|
|
|
|
|
|
for ( 1..$self->{'pop_size'} ) { |
|
172
|
|
|
|
|
|
|
my $indi = Algorithm::Evolutionary::Individual::BitString->new( $bits ); |
|
173
|
|
|
|
|
|
|
$indi->evaluate( $self->{'_fitness'} ); |
|
174
|
|
|
|
|
|
|
push( @pop, $indi ); |
|
175
|
|
|
|
|
|
|
} |
|
176
|
|
|
|
|
|
|
$self->{'_population'} = \@pop; |
|
177
|
|
|
|
|
|
|
$self->{'_fitness'}->reset_evaluations; |
|
178
|
|
|
|
|
|
|
} |
|
179
|
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
=head2 step() |
|
181
|
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
Runs a single step of the algorithm, that is, a single generation |
|
183
|
|
|
|
|
|
|
|
|
184
|
|
|
|
|
|
|
=cut |
|
185
|
|
|
|
|
|
|
|
|
186
|
|
|
|
|
|
|
sub step { |
|
187
|
|
|
|
|
|
|
my $self = shift; |
|
188
|
|
|
|
|
|
|
$self->{'_generation'}->apply( $self->{'_population'} ); |
|
189
|
|
|
|
|
|
|
$self->{'_counter'}++; |
|
190
|
|
|
|
|
|
|
} |
|
191
|
|
|
|
|
|
|
|
|
192
|
|
|
|
|
|
|
=head2 run() |
|
193
|
|
|
|
|
|
|
|
|
194
|
|
|
|
|
|
|
Applies the different operators in the order that they appear; returns the population |
|
195
|
|
|
|
|
|
|
as a ref-to-array. |
|
196
|
|
|
|
|
|
|
|
|
197
|
|
|
|
|
|
|
=cut |
|
198
|
|
|
|
|
|
|
|
|
199
|
|
|
|
|
|
|
sub run { |
|
200
|
|
|
|
|
|
|
my $self = shift; |
|
201
|
|
|
|
|
|
|
$self->{'_counter'} = 0; |
|
202
|
|
|
|
|
|
|
do { |
|
203
|
|
|
|
|
|
|
$self->step(); |
|
204
|
|
|
|
|
|
|
|
|
205
|
|
|
|
|
|
|
} while( ($self->{'_counter'} < $self->{'max_generations'}) |
|
206
|
|
|
|
|
|
|
&& ($self->{'_population'}->[0]->Fitness() < $self->{'max_fitness'})); |
|
207
|
|
|
|
|
|
|
|
|
208
|
|
|
|
|
|
|
} |
|
209
|
|
|
|
|
|
|
|
|
210
|
|
|
|
|
|
|
=head2 random_member() |
|
211
|
|
|
|
|
|
|
|
|
212
|
|
|
|
|
|
|
Returns a random guy from the population |
|
213
|
|
|
|
|
|
|
|
|
214
|
|
|
|
|
|
|
=cut |
|
215
|
|
|
|
|
|
|
|
|
216
|
|
|
|
|
|
|
sub random_member { |
|
217
|
|
|
|
|
|
|
my $self = shift; |
|
218
|
|
|
|
|
|
|
return $self->{'_population'}->[rand( @{$self->{'_population'}} )]; |
|
219
|
|
|
|
|
|
|
} |
|
220
|
|
|
|
|
|
|
|
|
221
|
|
|
|
|
|
|
=head2 results() |
|
222
|
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
Returns results in a hash that contains the best, total time so far |
|
224
|
|
|
|
|
|
|
and the number of evaluations. |
|
225
|
|
|
|
|
|
|
|
|
226
|
|
|
|
|
|
|
=cut |
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
sub results { |
|
229
|
|
|
|
|
|
|
my $self = shift; |
|
230
|
|
|
|
|
|
|
my $population_size = scalar @{$self->{'_population'}}; |
|
231
|
|
|
|
|
|
|
my $last_good_pos = $population_size*(1-$self->{'selection_rate'}); |
|
232
|
|
|
|
|
|
|
my $results = { best => $self->{'_population'}->[0], |
|
233
|
|
|
|
|
|
|
median => $self->{'_population'}->[ $population_size / 2], |
|
234
|
|
|
|
|
|
|
last_good => $self->{'_population'}->[ $last_good_pos ], |
|
235
|
|
|
|
|
|
|
time => tv_interval( $self->{'_start_time'} ), |
|
236
|
|
|
|
|
|
|
evaluations => $self->{'_fitness'}->evaluations() }; |
|
237
|
|
|
|
|
|
|
return $results; |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
} |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
=head2 evaluated_population() |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
Returns the portion of population that has been evaluated (all but the new ones) |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
=cut |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
sub evaluated_population { |
|
248
|
|
|
|
|
|
|
my $self = shift; |
|
249
|
|
|
|
|
|
|
my $population_size = scalar @{$self->{'_population'}}; |
|
250
|
|
|
|
|
|
|
my $last_good_pos = $population_size*(1-$self->{'selection_rate'}) - 1; |
|
251
|
|
|
|
|
|
|
return @{$self->{'_population'}}[0..$last_good_pos]; |
|
252
|
|
|
|
|
|
|
} |
|
253
|
|
|
|
|
|
|
|
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
=head2 compute_average_distance( $individual ) |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
Computes the average hamming distance to the population |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
=cut |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
sub compute_average_distance { |
|
262
|
|
|
|
|
|
|
my $self = shift; |
|
263
|
|
|
|
|
|
|
my $other = shift || croak "No other\n"; |
|
264
|
|
|
|
|
|
|
my $distance; |
|
265
|
|
|
|
|
|
|
for my $p ( @{$self->{'_population'}} ) { |
|
266
|
|
|
|
|
|
|
$distance += hamming( $p->{'_str'}, $other->{'_str'} ); |
|
267
|
|
|
|
|
|
|
} |
|
268
|
|
|
|
|
|
|
$distance /= @{$self->{'_population'}}; |
|
269
|
|
|
|
|
|
|
} |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
=head2 compute_min_distance( $individual ) |
|
272
|
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
Computes the average hamming distance to the population |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
=cut |
|
276
|
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
sub compute_min_distance { |
|
278
|
|
|
|
|
|
|
my $self = shift; |
|
279
|
|
|
|
|
|
|
my $other = shift || croak "No other\n"; |
|
280
|
|
|
|
|
|
|
my $min_distance = length( $self->{'_population'}->[0]->{'_str'} ); |
|
281
|
|
|
|
|
|
|
for my $p ( @{$self->{'_population'}} ) { |
|
282
|
|
|
|
|
|
|
my $this_distance = hamming( $p->{'_str'}, $other->{'_str'} ); |
|
283
|
|
|
|
|
|
|
$min_distance = ( $this_distance < $min_distance )?$this_distance:$min_distance; |
|
284
|
|
|
|
|
|
|
} |
|
285
|
|
|
|
|
|
|
return $min_distance; |
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
} |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
=head1 Copyright |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
This file is released under the GPL. See the LICENSE file included in this distribution, |
|
292
|
|
|
|
|
|
|
or go to http://www.fsf.org/licenses/gpl.txt |
|
293
|
|
|
|
|
|
|
|
|
294
|
|
|
|
|
|
|
CVS Info: $Date: 2010/03/16 18:39:40 $ |
|
295
|
|
|
|
|
|
|
$Header: /media/Backup/Repos/opeal/opeal/Algorithm-Evolutionary/lib/Algorithm/Evolutionary/Run.pm,v 3.2 2010/03/16 18:39:40 jmerelo Exp $ |
|
296
|
|
|
|
|
|
|
$Author: jmerelo $ |
|
297
|
|
|
|
|
|
|
$Revision: 3.2 $ |
|
298
|
|
|
|
|
|
|
$Name $ |
|
299
|
|
|
|
|
|
|
|
|
300
|
|
|
|
|
|
|
=cut |
|
301
|
|
|
|
|
|
|
|
|
302
|
|
|
|
|
|
|
"Still there?"; |