| line | stmt | bran | cond | sub | pod | time | code | 
| 1 |  |  |  |  |  |  | package Algorithm::BitVector; | 
| 2 |  |  |  |  |  |  |  | 
| 3 |  |  |  |  |  |  | #!/usr/bin/perl -w | 
| 4 |  |  |  |  |  |  |  | 
| 5 |  |  |  |  |  |  | #------------------------------------------------------------------------------------ | 
| 6 |  |  |  |  |  |  | # Copyright (c) 2015 Avinash Kak. All rights reserved.  This program is free | 
| 7 |  |  |  |  |  |  | # software.  You may modify and/or distribute it under the same terms as Perl itself. | 
| 8 |  |  |  |  |  |  | # This copyright notice must remain attached to the file. | 
| 9 |  |  |  |  |  |  | # | 
| 10 |  |  |  |  |  |  | # Algorithm::BitVector is a Perl module for creating a memory efficient packed | 
| 11 |  |  |  |  |  |  | # representation of bit arrays and for logical and numerical operations on such | 
| 12 |  |  |  |  |  |  | # arrays. | 
| 13 |  |  |  |  |  |  | # ----------------------------------------------------------------------------------- | 
| 14 |  |  |  |  |  |  |  | 
| 15 |  |  |  |  |  |  | #use 5.10.0; | 
| 16 | 1 |  |  | 1 |  | 14782 | use strict; | 
|  | 1 |  |  |  |  | 4 |  | 
|  | 1 |  |  |  |  | 43 |  | 
| 17 | 1 |  |  | 1 |  | 7 | use warnings; | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 41 |  | 
| 18 | 1 |  |  | 1 |  | 6 | use Carp; | 
|  | 1 |  |  |  |  | 7 |  | 
|  | 1 |  |  |  |  | 104 |  | 
| 19 | 1 |  |  | 1 |  | 6 | use List::Util qw(pairmap max reduce any); | 
|  | 1 |  |  |  |  | 1 |  | 
|  | 1 |  |  |  |  | 141 |  | 
| 20 | 1 |  |  | 1 |  | 2949792 | use Math::BigInt; | 
|  | 1 |  |  |  |  | 18325 |  | 
|  | 1 |  |  |  |  | 3 |  | 
| 21 | 1 |  |  | 1 |  | 606888 | use Math::Random; | 
|  | 1 |  |  |  |  | 4961 |  | 
|  | 1 |  |  |  |  | 95 |  | 
| 22 | 1 |  |  | 1 |  | 5 | use Fcntl 'SEEK_CUR'; | 
|  | 1 |  |  |  |  | 2 |  | 
|  | 1 |  |  |  |  | 67 |  | 
| 23 |  |  |  |  |  |  |  | 
| 24 |  |  |  |  |  |  | our $VERSION = '1.23'; | 
| 25 |  |  |  |  |  |  |  | 
| 26 | 1 |  |  |  |  | 7 | use overload  '+'        =>    '_join', | 
| 27 |  |  |  |  |  |  | '""'       =>    '_str', | 
| 28 |  |  |  |  |  |  | '0+'       =>    '_int', | 
| 29 |  |  |  |  |  |  | '~'        =>    '_invert', | 
| 30 |  |  |  |  |  |  | '|'        =>    '_or', | 
| 31 |  |  |  |  |  |  | '&'        =>    '_and', | 
| 32 |  |  |  |  |  |  | '^'        =>    '_xor', | 
| 33 |  |  |  |  |  |  | '<=>'      =>    '_compare', | 
| 34 |  |  |  |  |  |  | '<<'       =>    '_lshift', | 
| 35 |  |  |  |  |  |  | '>>'       =>    '_rshift', | 
| 36 |  |  |  |  |  |  | '<>'       =>    '_iter', | 
| 37 | 1 |  |  | 1 |  | 4 | 'fallback' =>    1; | 
|  | 1 |  |  |  |  | 2 |  | 
| 38 |  |  |  |  |  |  |  | 
| 39 |  |  |  |  |  |  | sub _readblock { | 
| 40 | 0 |  |  | 0 |  | 0 | my $blocksize = shift; | 
| 41 | 0 |  |  |  |  | 0 | my $bitvector = shift; | 
| 42 | 0 |  |  |  |  | 0 | my $block; | 
| 43 |  |  |  |  |  |  | my $more_to_read; | 
| 44 | 0 |  |  |  |  | 0 | my $i = 0; | 
| 45 | 0 |  |  |  |  | 0 | my $byte_as_bits; | 
| 46 | 0 |  |  |  |  | 0 | my $bitstring = ''; | 
| 47 | 0 |  |  |  |  | 0 | while ( $i < $blocksize / 8 ) { | 
| 48 | 0 |  |  |  |  | 0 | $i++; | 
| 49 | 0 |  |  |  |  | 0 | my $num_bytes_read = sysread($bitvector->{FILEIN}, my $byte, 1); | 
| 50 | 0 | 0 |  |  |  | 0 | unless ($num_bytes_read) { | 
| 51 | 0 | 0 |  |  |  | 0 | if (length($bitstring) < $blocksize) { | 
| 52 | 0 |  |  |  |  | 0 | $bitvector->{more_to_read} = 0; | 
| 53 | 0 |  |  |  |  | 0 | $more_to_read = 0; | 
| 54 |  |  |  |  |  |  | } | 
| 55 | 0 |  |  |  |  | 0 | return $bitstring; | 
| 56 |  |  |  |  |  |  | } else { | 
| 57 | 0 |  |  |  |  | 0 | my $bits_as_string = sprintf "%vb", $byte; | 
| 58 | 0 |  |  |  |  | 0 | $bits_as_string = '0' x (8 - length($bits_as_string)) . $bits_as_string; | 
| 59 | 0 |  |  |  |  | 0 | $bitstring .= $bits_as_string; | 
| 60 |  |  |  |  |  |  | } | 
| 61 |  |  |  |  |  |  | } | 
| 62 | 0 |  |  |  |  | 0 | my $file_pos = tell $bitvector->{FILEIN}; | 
| 63 |  |  |  |  |  |  | # peek at the next byte; moves file position only if a | 
| 64 |  |  |  |  |  |  | # byte is read | 
| 65 | 0 |  |  |  |  | 0 | my $num_bytes_read = sysread($bitvector->{FILEIN}, my $next_byte, 1); | 
| 66 | 0 | 0 |  |  |  | 0 | if ($num_bytes_read) { | 
| 67 |  |  |  |  |  |  | # pretend we never read the byte | 
| 68 | 0 |  |  |  |  | 0 | sysseek $bitvector->{FILEIN}, $file_pos - 1, SEEK_CUR; | 
| 69 |  |  |  |  |  |  | } else { | 
| 70 | 0 |  |  |  |  | 0 | $bitvector->{more_to_read} = 0; | 
| 71 |  |  |  |  |  |  | } | 
| 72 | 0 |  |  |  |  | 0 | return $bitstring; | 
| 73 |  |  |  |  |  |  | } | 
| 74 |  |  |  |  |  |  |  | 
| 75 |  |  |  |  |  |  | # Constructor: | 
| 76 |  |  |  |  |  |  | sub new { | 
| 77 | 3 |  |  | 3 | 0 | 20 | my ($class, %args) = @_; | 
| 78 | 3 |  |  |  |  | 7 | my @params = keys %args; | 
| 79 | 3 | 50 |  |  |  | 8 | croak "\nYou have used a wrong name for a keyword argument " . | 
| 80 |  |  |  |  |  |  | "--- perhaps a misspelling\n" | 
| 81 |  |  |  |  |  |  | if _check_for_illegal_params(@params) == 0; | 
| 82 | 3 |  |  |  |  | 18 | my $self = { | 
| 83 |  |  |  |  |  |  | filename                          =>   $args{filename}, | 
| 84 |  |  |  |  |  |  | size                              =>   $args{size}, | 
| 85 |  |  |  |  |  |  | intVal                            =>   $args{intVal}, | 
| 86 |  |  |  |  |  |  | bitlist                           =>   $args{bitlist}, | 
| 87 |  |  |  |  |  |  | bitstring                         =>   $args{bitstring}, | 
| 88 |  |  |  |  |  |  | hexstring                         =>   $args{hexstring}, | 
| 89 |  |  |  |  |  |  | textstring                        =>   $args{textstring}, | 
| 90 |  |  |  |  |  |  | }; | 
| 91 | 3 |  |  |  |  | 6 | bless $self, $class; | 
| 92 | 3 | 50 |  |  |  | 69 | if ( $self->{filename} )  { | 
|  |  | 100 |  |  |  |  |  | 
|  |  | 100 |  |  |  |  |  | 
|  |  | 50 |  |  |  |  |  | 
|  |  | 50 |  |  |  |  |  | 
|  |  | 50 |  |  |  |  |  | 
|  |  | 0 |  |  |  |  |  | 
| 93 | 0 | 0 | 0 |  |  | 0 | die "When using the `filename' option in the constructor call, you cannot use any " . | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
| 94 |  |  |  |  |  |  | "other option at the same time: $!" | 
| 95 |  |  |  |  |  |  | if $self->{intVal} or $self->{size} or $self->{bitlist} | 
| 96 |  |  |  |  |  |  | or $self->{bitstring} or $self->{hexstring} or $self->{textstring}; | 
| 97 | 0 | 0 |  |  |  | 0 | open $self->{FILEIN}, "< $self->{filename}" | 
| 98 |  |  |  |  |  |  | or die "unable to open file $self->{filename}: $!"; | 
| 99 | 0 |  |  |  |  | 0 | $self->{more_to_read} = 1; | 
| 100 | 0 |  |  |  |  | 0 | return $self; | 
| 101 |  |  |  |  |  |  | } elsif ( defined $self->{intVal} )  { | 
| 102 | 1 | 50 | 33 |  |  | 16 | die "When using the `intVal' option in the constructor call, you CANNOT use `filename', " . | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
| 103 |  |  |  |  |  |  | "`bitlist', 'bitstring', `hexstring', or `textstring' options: $!" | 
| 104 |  |  |  |  |  |  | if $self->{filename}  or $self->{bitlist} or $self->{bitstring} | 
| 105 |  |  |  |  |  |  | or $self->{hexstring} or $self->{textstring}; | 
| 106 | 1 | 50 | 33 |  |  | 4 | if ($self->{intVal} == 0 && ! defined $self->{size}) { | 
| 107 | 0 |  |  |  |  | 0 | $self->{bitlist} = [0]; | 
| 108 | 0 |  |  |  |  | 0 | $self->{size} = 1; | 
| 109 |  |  |  |  |  |  | } else { | 
| 110 | 1 |  |  |  |  | 2 | my @bitarray; | 
| 111 | 1 | 50 |  |  |  | 3 | if (ref($self->{intVal}) eq 'Math::BigInt') { | 
| 112 | 0 |  |  |  |  | 0 | my $bitlist_str = $self->{intVal}->as_bin(); | 
| 113 | 0 |  |  |  |  | 0 | @bitarray = split //, $bitlist_str; | 
| 114 |  |  |  |  |  |  | # Now get rid of the `0b' prefix on the string returned by as_bin(): | 
| 115 | 0 |  |  |  |  | 0 | shift @bitarray; | 
| 116 | 0 |  |  |  |  | 0 | shift @bitarray; | 
| 117 |  |  |  |  |  |  | } else { | 
| 118 | 1 |  |  |  |  | 7 | my $bitlist_str = sprintf "%b", $self->{intVal}; | 
| 119 | 1 | 50 |  |  |  | 3 | if (defined $self->{size}) { | 
| 120 | 0 | 0 |  |  |  | 0 | die "The value specified for size must be at least as large as for the " . | 
| 121 |  |  |  |  |  |  | "smallest bitvector possible for the intVal integer: $!" | 
| 122 |  |  |  |  |  |  | if $self->{size} < length $bitlist_str; | 
| 123 | 0 |  |  |  |  | 0 | my $n = $self->{size} - length $bitlist_str; | 
| 124 | 0 |  |  |  |  | 0 | my $extended_bitlist_str = '0' x $n . $bitlist_str; | 
| 125 | 0 |  |  |  |  | 0 | @bitarray = split //, $extended_bitlist_str; | 
| 126 |  |  |  |  |  |  | } else { | 
| 127 | 1 |  |  |  |  | 5 | @bitarray = split //, $bitlist_str; | 
| 128 |  |  |  |  |  |  | } | 
| 129 |  |  |  |  |  |  | } | 
| 130 | 1 |  |  |  |  | 3 | $self->{bitlist} = \@bitarray; | 
| 131 | 1 |  |  |  |  | 1 | $self->{size} = scalar @{$self->{bitlist}}; | 
|  | 1 |  |  |  |  | 20 |  | 
| 132 |  |  |  |  |  |  | } | 
| 133 |  |  |  |  |  |  | } elsif (defined $self->{size}) { | 
| 134 | 1 | 50 | 33 |  |  | 25 | die "When using the `size' option in the constructor call, you CANNOT use `filename', " . | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
| 135 |  |  |  |  |  |  | "`bitlist', 'bitstring', `hexstring', or `textstring' options: $!" | 
| 136 |  |  |  |  |  |  | if $self->{filename} or $self->{intVal} or $self->{bitlist} | 
| 137 |  |  |  |  |  |  | or $self->{bitstring} or $self->{hexstring} or $self->{textstring}; | 
| 138 | 1 |  |  |  |  | 4 | my $bitstring = "0" x $self->{size}; | 
| 139 | 1 |  |  |  |  | 8 | my @bitlist_from_bitstring  = split '', $bitstring; | 
| 140 | 1 |  |  |  |  | 3 | $self->{bitlist} = \@bitlist_from_bitstring; | 
| 141 |  |  |  |  |  |  | } elsif ($self->{bitlist}) { | 
| 142 | 0 | 0 | 0 |  |  | 0 | die "When using the `bitlist' option in the constructor call, you cannot use any " . | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
| 143 |  |  |  |  |  |  | "other option at the same time: $!" | 
| 144 |  |  |  |  |  |  | if $self->{filename} or $self->{intVal} or $self->{size} | 
| 145 |  |  |  |  |  |  | or $self->{bitstring} or $self->{hexstring} or $self->{textstring}; | 
| 146 | 0 |  |  |  |  | 0 | $self->{size} = scalar @{$self->{bitlist}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 147 |  |  |  |  |  |  | } elsif (defined $self->{bitstring}) { | 
| 148 | 0 | 0 | 0 |  |  | 0 | die "When using the `bitstring' option in the constructor call, you cannot use any " . | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
| 149 |  |  |  |  |  |  | "other option at the same time: $!" | 
| 150 |  |  |  |  |  |  | if $self->{filename} or $self->{intVal} or $self->{size} | 
| 151 |  |  |  |  |  |  | or $self->{bitlist} or $self->{hexstring} or $self->{textstring}; | 
| 152 | 0 |  |  |  |  | 0 | my @bitlist_from_bitstring = split //, $self->{bitstring}; | 
| 153 | 0 |  |  |  |  | 0 | $self->{bitlist} = \@bitlist_from_bitstring; | 
| 154 | 0 |  |  |  |  | 0 | $self->{size} = scalar @{$self->{bitlist}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 155 |  |  |  |  |  |  | } elsif (defined $self->{textstring}) { | 
| 156 | 1 | 50 | 33 |  |  | 19 | die "When using the `textstring' option in the constructor call, you cannot use any " . | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
|  |  |  | 33 |  |  |  |  | 
| 157 |  |  |  |  |  |  | "other option at the same time: $!" | 
| 158 |  |  |  |  |  |  | if $self->{filename} or $self->{intVal} or $self->{size} | 
| 159 |  |  |  |  |  |  | or $self->{bitlist} or $self->{hexstring} or $self->{bitstring}; | 
| 160 | 5 | 50 |  |  |  | 12 | my $bitstring_from_text = join '', map {length($_) == 8 ? $_ | 
|  | 5 |  |  |  |  | 17 |  | 
| 161 | 1 |  |  |  |  | 6 | : ('0' x (8 - length($_))) . $_} map {sprintf "%b", $_} | 
| 162 |  |  |  |  |  |  | map ord, split //, $self->{textstring}; | 
| 163 | 1 |  |  |  |  | 10 | my @bitlist_from_text = split //, $bitstring_from_text; | 
| 164 | 1 |  |  |  |  | 3 | $self->{bitlist} = \@bitlist_from_text; | 
| 165 | 1 |  |  |  |  | 1 | $self->{size} = scalar @{$self->{bitlist}}; | 
|  | 1 |  |  |  |  | 3 |  | 
| 166 |  |  |  |  |  |  | } elsif (defined $self->{hexstring}) { | 
| 167 | 0 | 0 | 0 |  |  | 0 | die "When using the `hexstring' option in the constructor call, you cannot use any " . | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
|  |  |  | 0 |  |  |  |  | 
| 168 |  |  |  |  |  |  | "other option at the same time: $!" | 
| 169 |  |  |  |  |  |  | if $self->{filename} or $self->{intVal} or $self->{size} | 
| 170 |  |  |  |  |  |  | or $self->{bitlist} or $self->{textstring} or $self->{bitstring}; | 
| 171 | 0 | 0 |  |  |  | 0 | my $bitstring_from_hex = join '', map {length($_) == 4 ? $_ | 
|  | 0 |  |  |  |  | 0 |  | 
| 172 | 0 |  |  |  |  | 0 | : ('0' x (4 - length($_))) . $_} map {sprintf "%b", $_} | 
| 173 | 0 |  |  |  |  | 0 | map {hex $_} split //, $self->{hexstring}; | 
| 174 | 0 |  |  |  |  | 0 | my @bitlist_from_hex = split //, $bitstring_from_hex; | 
| 175 | 0 |  |  |  |  | 0 | $self->{bitlist} = \@bitlist_from_hex; | 
| 176 | 0 |  |  |  |  | 0 | $self->{size} = scalar @{$self->{bitlist}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 177 |  |  |  |  |  |  | } | 
| 178 | 3 |  |  |  |  | 3 | my $shorts_needed = int( (@{$self->{bitlist}} + 15) / 16 ); | 
|  | 3 |  |  |  |  | 11 |  | 
| 179 | 3 |  |  |  |  | 9 | @{$self->{_vector}} = map {unpack "n", pack("n", 0)} 0 .. $shorts_needed-1; | 
|  | 3 |  |  |  |  | 9 |  | 
|  | 5 |  |  |  |  | 12 |  | 
| 180 | 3 |  |  |  |  | 23 | my @interleaved = (0..$self->{size}-1, @{$self->{bitlist}}) | 
|  | 60 |  |  |  |  | 73 |  | 
| 181 | 3 |  |  |  |  | 8 | [map {$_,$_+$self->{size}} (0 .. $self->{size}-1)]; | 
| 182 | 3 |  |  | 60 |  | 35 | pairmap {$self->set_bit($a,$b)} @interleaved; | 
|  | 60 |  |  |  |  | 74 |  | 
| 183 | 3 |  |  |  |  | 11 | $self->{bitlist} = undef; | 
| 184 | 3 |  |  |  |  | 16 | return $self; | 
| 185 |  |  |  |  |  |  | } | 
| 186 |  |  |  |  |  |  |  | 
| 187 |  |  |  |  |  |  | ## Set the bit at the designated position to the value shown | 
| 188 |  |  |  |  |  |  | sub set_bit { | 
| 189 | 60 |  |  | 60 | 1 | 52 | my $self = shift; | 
| 190 | 60 |  |  |  |  | 39 | my $posn = shift; | 
| 191 | 60 |  |  |  |  | 47 | my $val = shift; | 
| 192 | 60 | 50 | 66 |  |  | 200 | die "incorrect value for a bit" unless $val == 0 or $val == 1; | 
| 193 | 60 | 50 | 33 |  |  | 363 | die "index range error" if  ($posn >= $self->{size}) or ($posn < - $self->{size}); | 
| 194 | 60 | 50 |  |  |  | 75 | $posn = $self->{size} + $posn  if $posn < 0; | 
| 195 | 60 |  |  |  |  | 75 | my $block_index = int($posn / 16); | 
| 196 | 60 |  |  |  |  | 44 | my $shift = $posn & 0xF; | 
| 197 | 60 |  |  |  |  | 45 | my $cv = $self->{_vector}->[$block_index]; | 
| 198 | 60 | 100 |  |  |  | 122 | if ( ( ( $cv >> $shift ) & 1 ) != $val) { | 
| 199 | 25 |  |  |  |  | 57 | $self->{_vector}->[$block_index] = $cv ^ (1 << $shift); | 
| 200 |  |  |  |  |  |  | } | 
| 201 |  |  |  |  |  |  | } | 
| 202 |  |  |  |  |  |  |  | 
| 203 |  |  |  |  |  |  | ## Get the bit from the designated position. This method can also return a slice of a | 
| 204 |  |  |  |  |  |  | ## bitvector.  However, note that the slice is returned as a list of the bits in the | 
| 205 |  |  |  |  |  |  | ## index range you specified. You can easily convert the list of bits returned into a | 
| 206 |  |  |  |  |  |  | ## bitvector in your own code. | 
| 207 |  |  |  |  |  |  | sub get_bit { | 
| 208 | 65 |  |  | 65 | 1 | 47 | my $self = shift; | 
| 209 | 65 |  |  |  |  | 49 | my $pos = shift; | 
| 210 | 65 | 100 |  |  |  | 91 | unless (ref($pos) eq "ARRAY") { | 
| 211 | 60 | 50 | 33 |  |  | 182 | die "index range error" if  ($pos >= $self->{size}) or ($pos < - $self->{size}); | 
| 212 | 60 | 50 |  |  |  | 77 | $pos = $self->{size} + $pos if $pos < 0; | 
| 213 | 60 |  |  |  |  | 131 | return ( $self->{_vector}->[int($pos/16)] >> ($pos&15) ) & 1; | 
| 214 |  |  |  |  |  |  | } | 
| 215 | 5 |  |  |  |  | 15 | my @slice = map $self->get_bit($_), (@$pos)[0..@$pos-1]; | 
| 216 | 5 |  |  |  |  | 28 | return \@slice; | 
| 217 |  |  |  |  |  |  | } | 
| 218 |  |  |  |  |  |  |  | 
| 219 |  |  |  |  |  |  | ##  Overloading of the string conversion operator.  Return the string representation | 
| 220 |  |  |  |  |  |  | ##  of a bitvector. | 
| 221 |  |  |  |  |  |  | sub _str { | 
| 222 | 1 |  |  | 1 |  | 10 | my $self = shift; | 
| 223 | 1 |  |  |  |  | 4 | return join '', map $self->get_bit($_), 0 .. $self->{size}-1; | 
| 224 |  |  |  |  |  |  | } | 
| 225 |  |  |  |  |  |  |  | 
| 226 |  |  |  |  |  |  | ##  Overloading of the `+' operator. Concatenate the argument bitvectors. Return the | 
| 227 |  |  |  |  |  |  | ##  concatenated bitvector as a new BitVector instance. | 
| 228 |  |  |  |  |  |  | sub _join { | 
| 229 | 0 |  |  | 0 |  | 0 | my ($bv1, $bv2) = @_; | 
| 230 | 0 | 0 | 0 |  |  | 0 | die "Abort: The concatenation operator invoked with either undefined " . | 
| 231 |  |  |  |  |  |  | "or wrong types of operands: $!" | 
| 232 |  |  |  |  |  |  | unless UNIVERSAL::isa( $bv1, 'Algorithm::BitVector') and | 
| 233 |  |  |  |  |  |  | UNIVERSAL::isa( $bv2, 'Algorithm::BitVector'); | 
| 234 | 0 |  |  |  |  | 0 | my $allbits = $bv1->_str() . $bv2->_str(); | 
| 235 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitstring => $allbits ); | 
| 236 |  |  |  |  |  |  | } | 
| 237 |  |  |  |  |  |  |  | 
| 238 |  |  |  |  |  |  | sub _compare { | 
| 239 | 0 |  |  | 0 |  | 0 | my ($bv1, $bv2) = @_; | 
| 240 | 0 | 0 | 0 |  |  | 0 | die "Abort: The comparison operator invoked with either undefined " . | 
| 241 |  |  |  |  |  |  | "or wrong types of operands: $!" | 
| 242 |  |  |  |  |  |  | unless UNIVERSAL::isa( $bv1, 'Algorithm::BitVector') and | 
| 243 |  |  |  |  |  |  | UNIVERSAL::isa( $bv2, 'Algorithm::BitVector'); | 
| 244 | 0 |  |  |  |  | 0 | my $bigint1 = Math::BigInt->from_bin( "$bv1" ); | 
| 245 | 0 |  |  |  |  | 0 | my $bigint2 = Math::BigInt->from_bin( "$bv2" ); | 
| 246 | 0 |  |  |  |  | 0 | return $bigint1->bcmp($bigint2); | 
| 247 |  |  |  |  |  |  | } | 
| 248 |  |  |  |  |  |  |  | 
| 249 |  |  |  |  |  |  | sub deep_copy { | 
| 250 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 251 | 0 |  |  |  |  | 0 | my $result_bv = Algorithm::BitVector->new( size => $self->{size} ); | 
| 252 | 0 |  |  |  |  | 0 | foreach my $i (0..@{$result_bv->{_vector}}-1) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 253 | 0 |  |  |  |  | 0 | $result_bv->{_vector}->[$i] = $self->{_vector}->[$i]; | 
| 254 |  |  |  |  |  |  | } | 
| 255 | 0 |  |  |  |  | 0 | return $result_bv; | 
| 256 |  |  |  |  |  |  | } | 
| 257 |  |  |  |  |  |  |  | 
| 258 |  |  |  |  |  |  | ## Invert the bits in the bitvector on which the method is invoked | 
| 259 |  |  |  |  |  |  | ## and return the result as a new bitvector. | 
| 260 |  |  |  |  |  |  | sub _invert { | 
| 261 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 262 | 0 | 0 |  |  |  | 0 | die "Abort: The operator '~' for bit inversion invoked on an object that is " . | 
| 263 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 264 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 265 | 0 |  |  |  |  | 0 | my $result_bv = $self->deep_copy(); | 
| 266 | 0 |  |  |  |  | 0 | foreach my $i (0..@{$result_bv->{_vector}}-1) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 267 |  |  |  |  |  |  | # The unary `~' operator may assume a 32-bit wide field: | 
| 268 | 0 |  |  |  |  | 0 | $result_bv->{_vector}->[$i] = ~ $result_bv->{_vector}->[$i] & 0x0000FFFF; | 
| 269 |  |  |  |  |  |  | } | 
| 270 | 0 |  |  |  |  | 0 | return $result_bv; | 
| 271 |  |  |  |  |  |  | } | 
| 272 |  |  |  |  |  |  |  | 
| 273 |  |  |  |  |  |  | ## Take a bitwise 'OR' of two bitvectors. Return the result as a new bitvector.  If | 
| 274 |  |  |  |  |  |  | ## the two bitvectors are not of the same size, pad the shorter one with zeros from | 
| 275 |  |  |  |  |  |  | ## the left. | 
| 276 |  |  |  |  |  |  | sub _or { | 
| 277 | 0 |  |  | 0 |  | 0 | my ($bv1, $bv2) = @_; | 
| 278 | 0 | 0 | 0 |  |  | 0 | die "Abort: The `|' operator invoked with either undefined " . | 
| 279 |  |  |  |  |  |  | "or wrong types of operands: $!" | 
| 280 |  |  |  |  |  |  | unless UNIVERSAL::isa( $bv1, 'Algorithm::BitVector') and | 
| 281 |  |  |  |  |  |  | UNIVERSAL::isa( $bv2, 'Algorithm::BitVector'); | 
| 282 | 0 |  |  |  |  | 0 | my ($bv3, $bv4); | 
| 283 | 0 | 0 |  |  |  | 0 | if ( $bv1->{size} < $bv2->{size} ) { | 
|  |  | 0 |  |  |  |  |  | 
| 284 | 0 |  |  |  |  | 0 | $bv3 = $bv1->_resize_pad_from_left($bv2->{size} - $bv1->{size}); | 
| 285 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 286 |  |  |  |  |  |  | } elsif ( $bv1->{size} > $bv2->{size} ) { | 
| 287 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 288 | 0 |  |  |  |  | 0 | $bv4 = $bv2->_resize_pad_from_left($bv1->{size} - $bv2->{size}); | 
| 289 |  |  |  |  |  |  | } else { | 
| 290 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 291 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 292 |  |  |  |  |  |  | } | 
| 293 | 0 |  |  |  |  | 0 | my $result_bv = Algorithm::BitVector->new( size => $bv3->{size} ); | 
| 294 | 0 |  |  |  |  | 0 | foreach my $i (0..@{$result_bv->{_vector}}-1) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 295 |  |  |  |  |  |  | # The binary `|' operator may assume 32-bit wide fields: | 
| 296 | 0 |  |  |  |  | 0 | $result_bv->{_vector}->[$i] = ($bv3->{_vector}->[$i] | $bv4->{_vector}->[$i] ) & 0x0000FFFF; | 
| 297 |  |  |  |  |  |  | } | 
| 298 | 0 |  |  |  |  | 0 | return $result_bv; | 
| 299 |  |  |  |  |  |  | } | 
| 300 |  |  |  |  |  |  |  | 
| 301 |  |  |  |  |  |  | ##  Resize a bitvector by padding with n 0's from the left. Return the result as a | 
| 302 |  |  |  |  |  |  | ##  new bitvector. | 
| 303 |  |  |  |  |  |  | sub _resize_pad_from_left { | 
| 304 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 305 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 306 | 0 |  |  |  |  | 0 | my $new_str = '0' x $n . "$self"; | 
| 307 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitstring => $new_str ); | 
| 308 |  |  |  |  |  |  | } | 
| 309 |  |  |  |  |  |  |  | 
| 310 |  |  |  |  |  |  | ##  Take a bitwise 'AND' of the bitvector on which the method is invoked with | 
| 311 |  |  |  |  |  |  | ##  the argument bitvector.  Return the result as a new bitvector.  If the two | 
| 312 |  |  |  |  |  |  | ##  bitvectors are not of the same size, pad the shorter one with zeros from the | 
| 313 |  |  |  |  |  |  | ##  left. | 
| 314 |  |  |  |  |  |  | sub _and { | 
| 315 | 0 |  |  | 0 |  | 0 | my ($bv1, $bv2) = @_; | 
| 316 | 0 | 0 | 0 |  |  | 0 | die "Abort: The concatenation operator invoked with either undefined " . | 
| 317 |  |  |  |  |  |  | "or wrong types of operands: $!" | 
| 318 |  |  |  |  |  |  | unless UNIVERSAL::isa( $bv1, 'Algorithm::BitVector') and | 
| 319 |  |  |  |  |  |  | UNIVERSAL::isa( $bv2, 'Algorithm::BitVector'); | 
| 320 | 0 |  |  |  |  | 0 | my ($bv3, $bv4); | 
| 321 | 0 | 0 |  |  |  | 0 | if ( $bv1->{size} < $bv2->{size} ) { | 
|  |  | 0 |  |  |  |  |  | 
| 322 | 0 |  |  |  |  | 0 | $bv3 = $bv1->_resize_pad_from_left($bv2->{size} - $bv1->{size}); | 
| 323 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 324 |  |  |  |  |  |  | } elsif ( $bv1->{size} > $bv2->{size} ) { | 
| 325 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 326 | 0 |  |  |  |  | 0 | $bv4 = $bv2->_resize_pad_from_left($bv1->{size} - $bv2->{size}); | 
| 327 |  |  |  |  |  |  | } else { | 
| 328 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 329 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 330 |  |  |  |  |  |  | } | 
| 331 | 0 |  |  |  |  | 0 | my $result_bv = Algorithm::BitVector->new( size => $bv3->{size} ); | 
| 332 | 0 |  |  |  |  | 0 | foreach my $i (0..@{$result_bv->{_vector}}-1) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 333 |  |  |  |  |  |  | # The binary bitwise `&' operator may assume 32-bit wide fields: | 
| 334 | 0 |  |  |  |  | 0 | $result_bv->{_vector}->[$i] = ($bv3->{_vector}->[$i] & $bv4->{_vector}->[$i] ) & 0x0000FFFF; | 
| 335 |  |  |  |  |  |  | } | 
| 336 | 0 |  |  |  |  | 0 | return $result_bv; | 
| 337 |  |  |  |  |  |  | } | 
| 338 |  |  |  |  |  |  |  | 
| 339 |  |  |  |  |  |  | ##  Take a bitwise 'XOR' of the bitvector on which the method is invoked with | 
| 340 |  |  |  |  |  |  | ##  the argument bitvector.  Return the result as a new bitvector.  If the two | 
| 341 |  |  |  |  |  |  | ##  bitvectors are not of the same size, pad the shorter one with zeros from the | 
| 342 |  |  |  |  |  |  | ##  left. | 
| 343 |  |  |  |  |  |  | sub _xor { | 
| 344 | 0 |  |  | 0 |  | 0 | my ($bv1, $bv2) = @_; | 
| 345 | 0 | 0 | 0 |  |  | 0 | die "Abort: The xor operator invoked with either undefined " . | 
| 346 |  |  |  |  |  |  | "or wrong types of operands: $!" | 
| 347 |  |  |  |  |  |  | unless UNIVERSAL::isa( $bv1, 'Algorithm::BitVector') and | 
| 348 |  |  |  |  |  |  | UNIVERSAL::isa( $bv2, 'Algorithm::BitVector'); | 
| 349 | 0 |  |  |  |  | 0 | my ($bv3, $bv4); | 
| 350 | 0 | 0 |  |  |  | 0 | if ( $bv1->{size} < $bv2->{size} ) { | 
|  |  | 0 |  |  |  |  |  | 
| 351 | 0 |  |  |  |  | 0 | $bv3 = $bv1->_resize_pad_from_left($bv2->{size} - $bv1->{size}); | 
| 352 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 353 |  |  |  |  |  |  | } elsif ( $bv1->{size} > $bv2->{size} ) { | 
| 354 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 355 | 0 |  |  |  |  | 0 | $bv4 = $bv2->_resize_pad_from_left($bv1->{size} - $bv2->{size}); | 
| 356 |  |  |  |  |  |  | } else { | 
| 357 | 0 |  |  |  |  | 0 | $bv3 = $bv1; | 
| 358 | 0 |  |  |  |  | 0 | $bv4 = $bv2; | 
| 359 |  |  |  |  |  |  | } | 
| 360 | 0 |  |  |  |  | 0 | my $result_bv = Algorithm::BitVector->new( size => $bv3->{size} ); | 
| 361 | 0 |  |  |  |  | 0 | foreach my $i (0..@{$result_bv->{_vector}}-1) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 362 |  |  |  |  |  |  | # The binary bitwise `^' operator may assume 32-bit wide fields: | 
| 363 | 0 |  |  |  |  | 0 | $result_bv->{_vector}->[$i] = ($bv3->{_vector}->[$i] ^ $bv4->{_vector}->[$i] ) & 0x0000FFFF; | 
| 364 |  |  |  |  |  |  | } | 
| 365 | 0 |  |  |  |  | 0 | return $result_bv; | 
| 366 |  |  |  |  |  |  | } | 
| 367 |  |  |  |  |  |  |  | 
| 368 |  |  |  |  |  |  | # For the overloading of the iterator '<>' operator: | 
| 369 |  |  |  |  |  |  | sub _iter { | 
| 370 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 371 | 0 |  |  |  |  | 0 | my $pos = 0; | 
| 372 | 0 | 0 |  |  |  | 0 | $self->{_iterator} = BitVecIterator->new($self, $pos) unless $self->{_iter_called}; | 
| 373 | 0 |  |  |  |  | 0 | &{$self->{_iterator}->next()}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 374 |  |  |  |  |  |  | } | 
| 375 |  |  |  |  |  |  |  | 
| 376 |  |  |  |  |  |  | { | 
| 377 |  |  |  |  |  |  | # This inner class needed for implementing iterator overloading: | 
| 378 |  |  |  |  |  |  | package BitVecIterator; | 
| 379 |  |  |  |  |  |  | sub new { | 
| 380 | 0 |  |  | 0 |  | 0 | my $self = [ $_[1], $_[2] ]; | 
| 381 | 0 |  |  |  |  | 0 | bless $self, $_[0]; | 
| 382 | 0 |  |  |  |  | 0 | $_[1]->{_iter_called} = 1; | 
| 383 | 0 |  |  |  |  | 0 | return $self; | 
| 384 |  |  |  |  |  |  | } | 
| 385 |  |  |  |  |  |  | sub next { | 
| 386 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 387 | 0 |  |  |  |  | 0 | my $bitvec = $self->[0]; | 
| 388 |  |  |  |  |  |  | # The anonymous subroutine that follows is a closure over the variables | 
| 389 |  |  |  |  |  |  | # incorporated in it: | 
| 390 |  |  |  |  |  |  | return sub { | 
| 391 | 0 | 0 |  | 0 |  | 0 | if ($self->[1] >= $bitvec->{size}) { | 
| 392 | 0 |  |  |  |  | 0 | delete $bitvec->{_iter_called}; | 
| 393 | 0 |  |  |  |  | 0 | return; | 
| 394 |  |  |  |  |  |  | } | 
| 395 | 0 |  |  |  |  | 0 | my $bit = $bitvec->get_bit($self->[1]); | 
| 396 | 0 |  |  |  |  | 0 | $self->[1] =  $self->[1] + 1; | 
| 397 | 0 |  |  |  |  | 0 | return $bit; | 
| 398 |  |  |  |  |  |  | } | 
| 399 | 0 |  |  |  |  | 0 | } | 
| 400 |  |  |  |  |  |  | } | 
| 401 |  |  |  |  |  |  |  | 
| 402 |  |  |  |  |  |  | # for the overloading of the numification operator: | 
| 403 |  |  |  |  |  |  | sub _int { | 
| 404 | 1 |  |  | 1 |  | 6 | my $self = shift; | 
| 405 | 1 |  |  |  |  | 4 | return $self->int_value(); | 
| 406 |  |  |  |  |  |  | } | 
| 407 |  |  |  |  |  |  |  | 
| 408 |  |  |  |  |  |  | ##  Divides an even-sized bitvector into two and returns the two halves as a | 
| 409 |  |  |  |  |  |  | ##  list of two bitvectors. | 
| 410 |  |  |  |  |  |  | sub divide_into_two { | 
| 411 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 412 | 0 | 0 |  |  |  | 0 | die "Abort: The divide_into_two() method invoked on an object that is " . | 
| 413 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 414 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 415 | 0 | 0 |  |  |  | 0 | die "The bitvector to be divided must have even number of bits: $!" | 
| 416 |  |  |  |  |  |  | if $self->{size} % 2; | 
| 417 | 0 |  |  |  |  | 0 | my @outlist1 = (); | 
| 418 | 0 |  |  |  |  | 0 | foreach my $i (0..$self->{size} / 2 - 1) { | 
| 419 | 0 |  |  |  |  | 0 | push @outlist1, $self->get_bit($i); | 
| 420 |  |  |  |  |  |  | } | 
| 421 | 0 |  |  |  |  | 0 | my @outlist2 = (); | 
| 422 | 0 |  |  |  |  | 0 | foreach my $i ( ($self->{size} / 2) .. ($self->{size} - 1) ) { | 
| 423 | 0 |  |  |  |  | 0 | push @outlist2, $self->get_bit($i); | 
| 424 |  |  |  |  |  |  | } | 
| 425 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitlist => \@outlist1 ), | 
| 426 |  |  |  |  |  |  | Algorithm::BitVector->new( bitlist => \@outlist2 ); | 
| 427 |  |  |  |  |  |  | } | 
| 428 |  |  |  |  |  |  |  | 
| 429 |  |  |  |  |  |  | ##  Permute a bitvector according to the indices shown in the second argument list. | 
| 430 |  |  |  |  |  |  | ##  Return the permuted bitvector as a new bitvector. | 
| 431 |  |  |  |  |  |  | sub permute { | 
| 432 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 433 | 0 | 0 |  |  |  | 0 | die "Abort: The permute() method invoked on an object that is " . | 
| 434 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 435 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 436 | 0 |  |  |  |  | 0 | my $permute_list = shift; | 
| 437 | 0 | 0 |  |  |  | 0 | die "Bad permutation index in your permutation list" | 
| 438 |  |  |  |  |  |  | if max(@$permute_list) > $self->{size} - 1; | 
| 439 | 0 |  |  |  |  | 0 | my @outlist = (); | 
| 440 | 0 |  |  |  |  | 0 | foreach my $index (@$permute_list) { | 
| 441 | 0 |  |  |  |  | 0 | push @outlist, $self->get_bit($index); | 
| 442 |  |  |  |  |  |  | } | 
| 443 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitlist => \@outlist ); | 
| 444 |  |  |  |  |  |  | } | 
| 445 |  |  |  |  |  |  |  | 
| 446 |  |  |  |  |  |  | ##  Unpermute the bitvector according to the permutation list supplied as the | 
| 447 |  |  |  |  |  |  | ##  second argument.  If you first permute a bitvector by using permute() and | 
| 448 |  |  |  |  |  |  | ##  then unpermute() it using the same permutation list, you will get back the | 
| 449 |  |  |  |  |  |  | ##  original bitvector. | 
| 450 |  |  |  |  |  |  | sub unpermute { | 
| 451 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 452 | 0 | 0 |  |  |  | 0 | die "Abort: The unpermute() method invoked on an object that is " . | 
| 453 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 454 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 455 | 0 |  |  |  |  | 0 | my $permute_list = shift; | 
| 456 | 0 | 0 |  |  |  | 0 | die "Bad permutation index in your permutation list: $!" | 
| 457 |  |  |  |  |  |  | if max(@$permute_list) > $self->{size} - 1; | 
| 458 | 0 | 0 |  |  |  | 0 | die "Size of the permute list for unpermuting not consistent with the size of the bet vector:$!" | 
| 459 |  |  |  |  |  |  | unless $self->{size} == @$permute_list; | 
| 460 | 0 |  |  |  |  | 0 | my $out_bv = Algorithm::BitVector->new( size => $self->{size} ); | 
| 461 | 0 |  |  |  |  | 0 | foreach my $i (0..@$permute_list-1) { | 
| 462 | 0 |  |  |  |  | 0 | $out_bv->set_bit( $permute_list->[$i], $self->get_bit($i) ); | 
| 463 |  |  |  |  |  |  | } | 
| 464 | 0 |  |  |  |  | 0 | return $out_bv; | 
| 465 |  |  |  |  |  |  | } | 
| 466 |  |  |  |  |  |  |  | 
| 467 |  |  |  |  |  |  | ##  Write the bitvector to the file object file_out.  (A file object is returned | 
| 468 |  |  |  |  |  |  | ##  by a call to open()). Since all file I/O is byte oriented, the bitvector must | 
| 469 |  |  |  |  |  |  | ##  be multiple of 8 bits. Each byte treated as MSB first (0th index). | 
| 470 |  |  |  |  |  |  | sub  write_to_file { | 
| 471 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 472 | 0 | 0 |  |  |  | 0 | die "Abort: The write_to_file() method invoked on an object that is " . | 
| 473 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 474 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 475 | 0 |  |  |  |  | 0 | my $file_out = shift; | 
| 476 | 0 |  |  |  |  | 0 | my $err_str = "Only a bitvector whose length is a multiple of 8 can " . | 
| 477 |  |  |  |  |  |  | "be written to a file.  Use the padding functions to satisfy " . | 
| 478 |  |  |  |  |  |  | "this constraint."; | 
| 479 | 0 | 0 |  |  |  | 0 | $self->{FILEOUT} = $file_out unless $self->{FILEOUT}; | 
| 480 | 0 | 0 |  |  |  | 0 | die $err_str if $self->{size} % 8; | 
| 481 | 0 |  |  |  |  | 0 | for my $byte (0..$self->{size}/8 - 1){ | 
| 482 | 0 |  |  |  |  | 0 | my $value = 0; | 
| 483 | 0 |  |  |  |  | 0 | foreach my $bit (0..7) { | 
| 484 | 0 |  |  |  |  | 0 | $value += $self->get_bit( $byte*8+(7 - $bit) ) << $bit; | 
| 485 |  |  |  |  |  |  | } | 
| 486 | 0 |  |  |  |  | 0 | syswrite $file_out, chr($value), 1; | 
| 487 |  |  |  |  |  |  | } | 
| 488 |  |  |  |  |  |  | } | 
| 489 |  |  |  |  |  |  |  | 
| 490 |  |  |  |  |  |  | ##  For closing a file object that was used for reading the bits into one or more | 
| 491 |  |  |  |  |  |  | ##  BitVector objects. | 
| 492 |  |  |  |  |  |  | sub close_file_handle { | 
| 493 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 494 | 0 | 0 |  |  |  | 0 | die "Abort: The close_file_handle() method invoked on an object that is " . | 
| 495 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 496 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 497 | 0 | 0 |  |  |  | 0 | die "No open file currently associated with the file handle: $!" | 
| 498 |  |  |  |  |  |  | unless $self->{FILEIN}; | 
| 499 | 0 |  |  |  |  | 0 | close $self->{FILEIN}; | 
| 500 |  |  |  |  |  |  | } | 
| 501 |  |  |  |  |  |  |  | 
| 502 |  |  |  |  |  |  | ## Return the integer value of a bitvector.  If the original integer from which the | 
| 503 |  |  |  |  |  |  | ## bitvector was constructed is a Math::BigInt object, then return the string | 
| 504 |  |  |  |  |  |  | ## representation of the integer value. | 
| 505 |  |  |  |  |  |  | sub int_value { | 
| 506 | 1 |  |  | 1 | 1 | 1 | my $self = shift; | 
| 507 | 1 | 50 |  |  |  | 6 | die "Abort: The int() method invoked on an object that is " . | 
| 508 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 509 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 510 | 1 |  |  |  |  | 2 | my $int_value; | 
| 511 | 1 | 50 | 33 |  |  | 7 | if (defined($self->{intVal}) && (ref($self->{intVal}) eq 'Math::BigInt')) { | 
| 512 | 0 |  |  |  |  | 0 | $int_value = $self->{intVal}->bstr(); | 
| 513 |  |  |  |  |  |  | } else { | 
| 514 | 1 |  |  |  |  | 1 | $int_value = 0; | 
| 515 | 1 |  |  |  |  | 4 | foreach my $i (0..$self->{size}-1) { | 
| 516 | 4 |  |  |  |  | 7 | $int_value += $self->get_bit($i) * ( 2 ** ( $self->{size} - $i - 1 ) ); | 
| 517 |  |  |  |  |  |  | } | 
| 518 |  |  |  |  |  |  | } | 
| 519 | 1 |  |  |  |  | 7 | return $int_value; | 
| 520 |  |  |  |  |  |  | } | 
| 521 |  |  |  |  |  |  |  | 
| 522 |  |  |  |  |  |  | ##  Return the text string formed by dividing the bitvector into bytes from the | 
| 523 |  |  |  |  |  |  | ##  left and replacing each byte by its ASCII character (this is a useful thing | 
| 524 |  |  |  |  |  |  | ##  to do only if the length of the vector is an integral multiple of 8 and every | 
| 525 |  |  |  |  |  |  | ##  byte in your bitvector has a print representation) | 
| 526 |  |  |  |  |  |  | sub get_text_from_bitvector { | 
| 527 | 1 |  |  | 1 | 0 | 7 | my $self = shift; | 
| 528 | 1 | 50 |  |  |  | 6 | die "Abort: The get_text_from_bitvector() method invoked on an object that is " . | 
| 529 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 530 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 531 | 1 | 50 |  |  |  | 10 | die "\nThe bitvector for get_text_from_bitvector() must be an integral multiple of 8 bits: $!" | 
| 532 |  |  |  |  |  |  | if $self->{size} % 8; | 
| 533 | 1 |  |  |  |  | 2 | my $ascii = ''; | 
| 534 | 1 |  |  |  |  | 5 | for (my $i=0; $i < $self->{size}; $i += 8) { | 
| 535 | 5 |  |  |  |  | 4 | $ascii .= chr oct "0b". join '', @{$self->get_bit([$i..$i+7])}; | 
|  | 5 |  |  |  |  | 15 |  | 
| 536 |  |  |  |  |  |  | } | 
| 537 | 1 |  |  |  |  | 3 | return $ascii; | 
| 538 |  |  |  |  |  |  | } | 
| 539 |  |  |  |  |  |  |  | 
| 540 |  |  |  |  |  |  | ##  Return a string of hex digits by scanning the bits from the left and | 
| 541 |  |  |  |  |  |  | ##  replacing each sequence of 4 bits by its corresponding hex digit (this is a | 
| 542 |  |  |  |  |  |  | ##  useful thing to do only if the length of the vector is an integral multiple | 
| 543 |  |  |  |  |  |  | ##  of 4) | 
| 544 |  |  |  |  |  |  | sub get_hex_string_from_bitvector { | 
| 545 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 546 | 0 | 0 |  |  |  | 0 | die "Abort: The get_hex_from_bitvector() method invoked on an object that is " . | 
| 547 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 548 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 549 | 0 | 0 |  |  |  | 0 | die "\nThe bitvector for get_hex_from_bitvector() must be a multiple of 4 bits: $!" | 
| 550 |  |  |  |  |  |  | if $self->{size} % 4; | 
| 551 | 0 |  |  |  |  | 0 | my $hex = ''; | 
| 552 | 0 |  |  |  |  | 0 | for (my $i=0; $i < $self->{size}; $i += 4) { | 
| 553 | 0 |  |  |  |  | 0 | $hex .= sprintf "%x", oct "0b". join '', @{$self->get_bit([$i..$i+3])}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 554 |  |  |  |  |  |  | } | 
| 555 | 0 |  |  |  |  | 0 | return $hex; | 
| 556 |  |  |  |  |  |  | } | 
| 557 |  |  |  |  |  |  |  | 
| 558 |  |  |  |  |  |  | ##  Read blocksize bits from a disk file and return a BitVector object containing | 
| 559 |  |  |  |  |  |  | ##  the bits.  If the file contains fewer bits than blocksize, construct the | 
| 560 |  |  |  |  |  |  | ##  BitVector object from however many bits there are in the file.  If the file | 
| 561 |  |  |  |  |  |  | ## contains zero bits, return a BitVector object of size attribute set to 0. | 
| 562 |  |  |  |  |  |  | sub read_bits_from_file { | 
| 563 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 564 | 0 | 0 |  |  |  | 0 | die "Abort: The read_bits_from_file() method invoked on an object that is " . | 
| 565 |  |  |  |  |  |  | "not of type Algorithm::BitVector" | 
| 566 |  |  |  |  |  |  | unless UNIVERSAL::isa( $self, 'Algorithm::BitVector'); | 
| 567 | 0 |  |  |  |  | 0 | my $blocksize = shift; | 
| 568 | 0 |  |  |  |  | 0 | my $error_str = "You need to first construct a BitVector object with a filename as  argument"; | 
| 569 | 0 | 0 |  |  |  | 0 | die "$error_str" unless $self->{filename}; | 
| 570 | 0 | 0 |  |  |  | 0 | die "block size must be a multiple of 8" if $blocksize % 8; | 
| 571 | 0 |  |  |  |  | 0 | my $bitstr = _readblock( $blocksize, $self ); | 
| 572 | 0 | 0 |  |  |  | 0 | if (length $bitstr == 0) { | 
| 573 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( size => 0 ); | 
| 574 | 0 |  |  |  |  | 0 | print "file has no bits\n"; | 
| 575 |  |  |  |  |  |  | } else { | 
| 576 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitstring => $bitstr ); | 
| 577 |  |  |  |  |  |  | } | 
| 578 |  |  |  |  |  |  | } | 
| 579 |  |  |  |  |  |  |  | 
| 580 |  |  |  |  |  |  | ##  For an in-place left circular shift by n bit positions | 
| 581 |  |  |  |  |  |  | sub _lshift { | 
| 582 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 583 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 584 | 0 | 0 |  |  |  | 0 | die "Circular shift of an empty vector makes no sense" unless $self->{size}; | 
| 585 | 0 | 0 |  |  |  | 0 | return $self >> abs($n) if $n < 0; | 
| 586 | 0 |  |  |  |  | 0 | foreach my $i (0..$n-1) { | 
| 587 | 0 |  |  |  |  | 0 | $self->_circular_rotate_left_by_one(); | 
| 588 |  |  |  |  |  |  | } | 
| 589 | 0 |  |  |  |  | 0 | return $self; | 
| 590 |  |  |  |  |  |  | } | 
| 591 |  |  |  |  |  |  |  | 
| 592 |  |  |  |  |  |  | ##  For an in-place right circular shift by n bit positions | 
| 593 |  |  |  |  |  |  | sub _rshift { | 
| 594 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 595 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 596 | 0 | 0 |  |  |  | 0 | die "Circular shift of an empty vector makes no sense" unless $self->{size}; | 
| 597 | 0 | 0 |  |  |  | 0 | return $self << abs($n) if $n < 0; | 
| 598 | 0 |  |  |  |  | 0 | foreach my $i (0..$n-1) { | 
| 599 | 0 |  |  |  |  | 0 | $self->_circular_rotate_right_by_one(); | 
| 600 |  |  |  |  |  |  | } | 
| 601 | 0 |  |  |  |  | 0 | return $self; | 
| 602 |  |  |  |  |  |  | } | 
| 603 |  |  |  |  |  |  |  | 
| 604 |  |  |  |  |  |  | ##  For a one-bit in-place left circular shift | 
| 605 |  |  |  |  |  |  | sub _circular_rotate_left_by_one { | 
| 606 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 607 | 0 |  |  |  |  | 0 | my $max_index = int( ($self->{size} - 1)  / 16 ); | 
| 608 | 0 |  |  |  |  | 0 | my $left_most_bit = $self->{_vector}->[0] & 1; | 
| 609 | 0 |  |  |  |  | 0 | $self->{_vector}->[0] = $self->{_vector}->[0] >> 1; | 
| 610 | 0 |  |  |  |  | 0 | foreach my $i (1 .. $max_index) { | 
| 611 | 0 |  |  |  |  | 0 | my $left_bit = $self->{_vector}->[$i] & 1; | 
| 612 | 0 |  |  |  |  | 0 | $self->{_vector}->[$i] = $self->{_vector}->[$i] >> 1; | 
| 613 | 0 |  |  |  |  | 0 | $self->{_vector}->[$i-1] |= $left_bit << 15; | 
| 614 |  |  |  |  |  |  | } | 
| 615 | 0 |  |  |  |  | 0 | $self->set_bit($self->{size} - 1, $left_most_bit); | 
| 616 |  |  |  |  |  |  | } | 
| 617 |  |  |  |  |  |  |  | 
| 618 |  |  |  |  |  |  | ##  For a one-bit in-place right circular shift | 
| 619 |  |  |  |  |  |  | sub _circular_rotate_right_by_one { | 
| 620 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 621 | 0 |  |  |  |  | 0 | my $max_index = int( ($self->{size} - 1)  / 16 ); | 
| 622 | 0 |  |  |  |  | 0 | my $right_most_bit = $self->get_bit( $self->{size} - 1); | 
| 623 | 0 |  |  |  |  | 0 | $self->{_vector}->[$max_index] &= ~0x8000; | 
| 624 | 0 |  |  |  |  | 0 | $self->{_vector}->[$max_index] = $self->{_vector}->[$max_index] << 1; | 
| 625 | 0 |  |  |  |  | 0 | for (my $i=$max_index-1; $i > -1; $i -= 1) { | 
| 626 | 0 |  |  |  |  | 0 | my $right_bit = $self->{_vector}->[$i] & 0x8000; | 
| 627 | 0 |  |  |  |  | 0 | $self->{_vector}->[$i] &= ~0x8000; | 
| 628 | 0 |  |  |  |  | 0 | $self->{_vector}->[$i] = $self->{_vector}->[$i] << 1; | 
| 629 | 0 |  |  |  |  | 0 | $self->{_vector}->[$i+1] |= $right_bit >> 15; | 
| 630 |  |  |  |  |  |  | } | 
| 631 | 0 |  |  |  |  | 0 | $self->set_bit(0, $right_most_bit); | 
| 632 |  |  |  |  |  |  | } | 
| 633 |  |  |  |  |  |  |  | 
| 634 |  |  |  |  |  |  | ## Pad a bitvector with n zeros from the left | 
| 635 |  |  |  |  |  |  | sub pad_from_left { | 
| 636 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 637 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 638 | 0 |  |  |  |  | 0 | my $new_str = ('0' x $n) . "$self"; | 
| 639 | 0 |  |  |  |  | 0 | my $new_bitvec = Algorithm::BitVector->new( bitstring => $new_str ); | 
| 640 | 0 |  |  |  |  | 0 | $self->{size} = length $new_str; | 
| 641 | 0 |  |  |  |  | 0 | $self->{_vector} = $new_bitvec->{_vector}; | 
| 642 | 0 |  |  |  |  | 0 | return $self; | 
| 643 |  |  |  |  |  |  | } | 
| 644 |  |  |  |  |  |  |  | 
| 645 |  |  |  |  |  |  | ## Pad a bitvector with n zeros from the right | 
| 646 |  |  |  |  |  |  | sub pad_from_right { | 
| 647 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 648 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 649 | 0 |  |  |  |  | 0 | my $new_str = "$self" . ('0' x $n); | 
| 650 | 0 |  |  |  |  | 0 | my $new_bitvec = Algorithm::BitVector->new( bitstring => $new_str ); | 
| 651 | 0 |  |  |  |  | 0 | $self->{size} = length $new_str; | 
| 652 | 0 |  |  |  |  | 0 | $self->{_vector} = $new_bitvec->{_vector}; | 
| 653 | 0 |  |  |  |  | 0 | return $self; | 
| 654 |  |  |  |  |  |  | } | 
| 655 |  |  |  |  |  |  |  | 
| 656 |  |  |  |  |  |  | ##  Resets a previously created BitVector to either all zeros or all ones | 
| 657 |  |  |  |  |  |  | ##  depending on the argument val. | 
| 658 |  |  |  |  |  |  | sub reset { | 
| 659 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 660 | 0 |  |  |  |  | 0 | my $val = shift; | 
| 661 | 0 | 0 | 0 |  |  | 0 | die "Incorrect argument to reset(): $!" unless ($val == 0) or ($val == 1); | 
| 662 | 0 |  |  |  |  | 0 | my $reset_bv = Algorithm::BitVector->new( bitstring => ("$val" x $self->{size}) ); | 
| 663 | 0 |  |  |  |  | 0 | $self->{_vector} = $reset_bv->{_vector}; | 
| 664 |  |  |  |  |  |  | } | 
| 665 |  |  |  |  |  |  |  | 
| 666 |  |  |  |  |  |  | ## Return the number of bits set in a BitVector instance. | 
| 667 |  |  |  |  |  |  | sub count_bits { | 
| 668 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 669 | 0 |  |  | 0 |  | 0 | return reduce {$a + $b} split //, "$self"; | 
|  | 0 |  |  |  |  | 0 |  | 
| 670 |  |  |  |  |  |  | } | 
| 671 |  |  |  |  |  |  |  | 
| 672 |  |  |  |  |  |  | ##  Changes the bit pattern associated with a previously constructed BitVector | 
| 673 |  |  |  |  |  |  | ##  instance.  The allowable modes for changing the internally stored bit pattern | 
| 674 |  |  |  |  |  |  | ##  are the same as for the constructor. | 
| 675 |  |  |  |  |  |  | sub set_value { | 
| 676 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 677 | 0 |  |  |  |  | 0 | my $reset_bv = Algorithm::BitVector->new( @_ ); | 
| 678 | 0 |  |  |  |  | 0 | $self->{_vector} = $reset_bv->{_vector}; | 
| 679 | 0 |  |  |  |  | 0 | $self->{size} = $reset_bv->{size}; | 
| 680 |  |  |  |  |  |  | } | 
| 681 |  |  |  |  |  |  |  | 
| 682 |  |  |  |  |  |  |  | 
| 683 |  |  |  |  |  |  | ##  This method for counting the set bits is much faster for sparse bitvectors. | 
| 684 |  |  |  |  |  |  | ##  Note, however, that count_bits() may work much faster for dense-packed | 
| 685 |  |  |  |  |  |  | ##  bitvectors. | 
| 686 |  |  |  |  |  |  | sub count_bits_sparse { | 
| 687 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 688 | 0 |  |  |  |  | 0 | my $num = 0; | 
| 689 | 0 |  |  |  |  | 0 | foreach my $intval (@{$self->{_vector}}) { | 
|  | 0 |  |  |  |  | 0 |  | 
| 690 | 0 | 0 |  |  |  | 0 | next if $intval == 0; | 
| 691 | 0 |  |  |  |  | 0 | my ($c, $iv) = (0, $intval); | 
| 692 | 0 |  |  |  |  | 0 | while ($iv > 0) { | 
| 693 | 0 |  |  |  |  | 0 | $iv = $iv & ($iv - 1); | 
| 694 | 0 |  |  |  |  | 0 | $c++; | 
| 695 |  |  |  |  |  |  | } | 
| 696 | 0 |  |  |  |  | 0 | $num += $c; | 
| 697 |  |  |  |  |  |  | } | 
| 698 | 0 |  |  |  |  | 0 | return $num; | 
| 699 |  |  |  |  |  |  | } | 
| 700 |  |  |  |  |  |  |  | 
| 701 |  |  |  |  |  |  | ##  Computes the Jaccard similarity coefficient between two bitvectors | 
| 702 |  |  |  |  |  |  | sub jaccard_similarity { | 
| 703 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 704 | 0 |  |  |  |  | 0 | my $other = shift; | 
| 705 | 0 | 0 | 0 |  |  | 0 | die "Jaccard called on two zero vectors --- NOT ALLOWED: $!" | 
| 706 |  |  |  |  |  |  | if (int($self) == 0) && (int($other) == 0); | 
| 707 | 0 | 0 |  |  |  | 0 | die "Jaccard called on vectors of unequal size --- NOT ALLOWED: $!" | 
| 708 |  |  |  |  |  |  | if $self->{size} != $other->{size}; | 
| 709 | 0 |  |  |  |  | 0 | my $intersection = $self & $other; | 
| 710 | 0 |  |  |  |  | 0 | my $union = $self | $other; | 
| 711 | 0 |  |  |  |  | 0 | return $intersection->count_bits_sparse() / $union->count_bits_sparse(); | 
| 712 |  |  |  |  |  |  | } | 
| 713 |  |  |  |  |  |  |  | 
| 714 |  |  |  |  |  |  | ##  Computes the Jaccard distance between two bitvectors | 
| 715 |  |  |  |  |  |  | sub jaccard_distance { | 
| 716 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 717 | 0 |  |  |  |  | 0 | my $other = shift; | 
| 718 | 0 | 0 |  |  |  | 0 | die "Jaccard called on vectors of unequal size --- NOT ALLOWED: $!" | 
| 719 |  |  |  |  |  |  | if $self->{size} != $other->{size}; | 
| 720 | 0 |  |  |  |  | 0 | return 1 - $self->jaccard_similarity( $other ); | 
| 721 |  |  |  |  |  |  | } | 
| 722 |  |  |  |  |  |  |  | 
| 723 |  |  |  |  |  |  | ##  Computes the Hamming distance between two bitvectors | 
| 724 |  |  |  |  |  |  | sub hamming_distance { | 
| 725 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 726 | 0 |  |  |  |  | 0 | my $other = shift; | 
| 727 | 0 | 0 |  |  |  | 0 | die "hamming_distance() called on vectors of unequal size --- NOT ALLOWED: $!" | 
| 728 |  |  |  |  |  |  | if $self->{size} != $other->{size}; | 
| 729 | 0 |  |  |  |  | 0 | my $diff = $self ^ $other; | 
| 730 | 0 |  |  |  |  | 0 | return $diff->count_bits_sparse(); | 
| 731 |  |  |  |  |  |  | } | 
| 732 |  |  |  |  |  |  |  | 
| 733 |  |  |  |  |  |  | ##  This method calculates the position of the next set bit at or after the current | 
| 734 |  |  |  |  |  |  | ##  position index. It returns -1 if there is no next set bit.  Logic based on the | 
| 735 |  |  |  |  |  |  | ##  contributions by Jason Allum and John Gleeson to the Python version of this | 
| 736 |  |  |  |  |  |  | ##  module. | 
| 737 |  |  |  |  |  |  | sub next_set_bit { | 
| 738 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 739 | 0 |  | 0 |  |  | 0 | my $from_index = shift || 0; | 
| 740 | 0 | 0 |  |  |  | 0 | die "The from_index must be nonnegative: $!" unless $from_index >= 0; | 
| 741 | 0 |  |  |  |  | 0 | my $i = $from_index; | 
| 742 | 0 |  |  |  |  | 0 | my $v = $self->{_vector}; | 
| 743 | 0 |  |  |  |  | 0 | my $l = scalar @$v; | 
| 744 | 0 |  |  |  |  | 0 | my $o = $i >> 4; | 
| 745 | 0 |  |  |  |  | 0 | my $s = $i & 0x0F; | 
| 746 | 0 |  |  |  |  | 0 | $i = $o << 4; | 
| 747 | 0 |  |  |  |  | 0 | while ($o < $l) { | 
| 748 | 0 |  |  |  |  | 0 | my $h = $v->[$o]; | 
| 749 | 0 | 0 |  |  |  | 0 | if ($h) { | 
| 750 | 0 |  |  |  |  | 0 | $i += $s; | 
| 751 | 0 |  |  |  |  | 0 | my $m = 1 << $s; | 
| 752 | 0 |  |  |  |  | 0 | while ($m != (1 << 0x10)) { | 
| 753 | 0 | 0 |  |  |  | 0 | return $i if $h & $m; | 
| 754 | 0 |  |  |  |  | 0 | $m <<= 1; | 
| 755 | 0 |  |  |  |  | 0 | $i += 1; | 
| 756 |  |  |  |  |  |  | } | 
| 757 |  |  |  |  |  |  | } else { | 
| 758 | 0 |  |  |  |  | 0 | $i += 0x10; | 
| 759 |  |  |  |  |  |  | } | 
| 760 | 0 |  |  |  |  | 0 | $s = 0; | 
| 761 | 0 |  |  |  |  | 0 | $o += 1; | 
| 762 |  |  |  |  |  |  | } | 
| 763 | 0 |  |  |  |  | 0 | return -1; | 
| 764 |  |  |  |  |  |  | } | 
| 765 |  |  |  |  |  |  |  | 
| 766 |  |  |  |  |  |  | ##  For a bit that is set at the argument 'position', this method returns how many | 
| 767 |  |  |  |  |  |  | ##  bits are set to the left of that bit.  For example, in the bit pattern | 
| 768 |  |  |  |  |  |  | ##  000101100100, a call to this method with position set to 9 will return 4. | 
| 769 |  |  |  |  |  |  | sub rank_of_bit_set_at_index { | 
| 770 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 771 | 0 |  |  |  |  | 0 | my $position = shift; | 
| 772 | 0 | 0 |  |  |  | 0 | die "The bitvector has no bits set at the position in the call to rank_of_bit_set_at_index(): $!" | 
| 773 |  |  |  |  |  |  | unless $self->get_bit($position); | 
| 774 | 0 |  |  |  |  | 0 | my $bv_slice = Algorithm::BitVector->new( bitlist => $self->get_bit([0..$position]) ); | 
| 775 | 0 |  |  |  |  | 0 | return $bv_slice->count_bits(); | 
| 776 |  |  |  |  |  |  | } | 
| 777 |  |  |  |  |  |  |  | 
| 778 |  |  |  |  |  |  | ##  Determines whether the integer value of a bitvector is a power of 2. | 
| 779 |  |  |  |  |  |  | sub is_power_of_2 { | 
| 780 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 781 | 0 | 0 |  |  |  | 0 | return 0 if int($self) == 0; | 
| 782 | 0 |  |  |  |  | 0 | my $bv = $self & Algorithm::BitVector->new( intVal => int($self) - 1); | 
| 783 | 0 | 0 |  |  |  | 0 | return 1 if int($bv) == 0; | 
| 784 | 0 |  |  |  |  | 0 | return 0; | 
| 785 |  |  |  |  |  |  | } | 
| 786 |  |  |  |  |  |  |  | 
| 787 |  |  |  |  |  |  | ##  Faster version of is_power_of2() for sparse bitvectors | 
| 788 |  |  |  |  |  |  | sub is_power_of_2_sparse { | 
| 789 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 790 | 0 | 0 |  |  |  | 0 | return 1 if $self->count_bits_sparse() == 1; | 
| 791 | 0 |  |  |  |  | 0 | return 0; | 
| 792 |  |  |  |  |  |  | } | 
| 793 |  |  |  |  |  |  |  | 
| 794 |  |  |  |  |  |  | ##  Returns a new bitvector by reversing the bits in the bitvector on which the | 
| 795 |  |  |  |  |  |  | ##  method is invoked. | 
| 796 |  |  |  |  |  |  | sub reverse { | 
| 797 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 798 | 0 |  |  |  |  | 0 | my @reverseList = (); | 
| 799 | 0 |  |  |  |  | 0 | for (my $i=1; $i < $self->{size} + 1; $i++) { | 
| 800 | 0 |  |  |  |  | 0 | push @reverseList, $self->get_bit( -$i ); | 
| 801 |  |  |  |  |  |  | } | 
| 802 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( bitlist => \@reverseList ); | 
| 803 |  |  |  |  |  |  | } | 
| 804 |  |  |  |  |  |  |  | 
| 805 |  |  |  |  |  |  | ##  Using Euclid's Algorithm, returns the greatest common divisor of the integer | 
| 806 |  |  |  |  |  |  | ##  value of the bitvector on which the method is invoked and the integer value | 
| 807 |  |  |  |  |  |  | ##  of the argument bitvector. | 
| 808 |  |  |  |  |  |  | sub  gcd { | 
| 809 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 810 | 0 |  |  |  |  | 0 | my $other = shift; | 
| 811 | 0 |  |  |  |  | 0 | my ($a,$b) = (int($self), int($other)); | 
| 812 | 0 | 0 |  |  |  | 0 | ($a,$b) = ($b,$a) if $a < $b; | 
| 813 | 0 |  |  |  |  | 0 | while ($b != 0) { | 
| 814 | 0 |  |  |  |  | 0 | ($a, $b) = ($b, $a % $b); | 
| 815 |  |  |  |  |  |  | } | 
| 816 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( intVal => $a ); | 
| 817 |  |  |  |  |  |  | } | 
| 818 |  |  |  |  |  |  |  | 
| 819 |  |  |  |  |  |  | ##  Calculates the multiplicative inverse of the bitvector on which the method is | 
| 820 |  |  |  |  |  |  | ##  invoked modulo the bitvector that is supplied as the argument. Code based on | 
| 821 |  |  |  |  |  |  | ##  Extended Euclid's Algorithm. | 
| 822 |  |  |  |  |  |  | sub multiplicative_inverse { | 
| 823 | 0 |  |  | 0 | 1 | 0 | my $self = int( shift ); | 
| 824 | 0 |  |  |  |  | 0 | my $modulus = int( shift ); | 
| 825 | 0 |  |  |  |  | 0 | my ($mod, $num) = ($modulus, $self); | 
| 826 | 0 |  |  |  |  | 0 | my ($x, $x_old) = (0, 1); | 
| 827 | 0 |  |  |  |  | 0 | my ($y, $y_old) = (1, 0); | 
| 828 | 0 |  |  |  |  | 0 | while ($mod) { | 
| 829 | 0 |  |  |  |  | 0 | my $quotient = int($num / $mod); | 
| 830 | 0 |  |  |  |  | 0 | ($num, $mod) = ($mod, $num % $mod); | 
| 831 | 0 |  |  |  |  | 0 | ($x, $x_old) = ($x_old - $x * $quotient, $x); | 
| 832 | 0 |  |  |  |  | 0 | ($y, $y_old) = ($y_old - $y * $quotient, $y); | 
| 833 |  |  |  |  |  |  | } | 
| 834 | 0 | 0 |  |  |  | 0 | if ($num != 1) { | 
| 835 | 0 |  |  |  |  | 0 | return 0; | 
| 836 |  |  |  |  |  |  | } else { | 
| 837 | 0 |  |  |  |  | 0 | my $MI = ($x_old + $modulus) % $modulus; | 
| 838 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( intVal => $MI ); | 
| 839 |  |  |  |  |  |  | } | 
| 840 |  |  |  |  |  |  | } | 
| 841 |  |  |  |  |  |  |  | 
| 842 |  |  |  |  |  |  | ##  For a one-bit in-place left non-circular shift.  Note that the bitvector size | 
| 843 |  |  |  |  |  |  | ##  does not change.  The leftmost bit that moves past the first element of the | 
| 844 |  |  |  |  |  |  | ##  bitvector is discarded and rightmost bit of the returned vector is set to zero. | 
| 845 |  |  |  |  |  |  | sub _shift_left_by_one { | 
| 846 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 847 | 0 |  |  |  |  | 0 | my $size = @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 848 | 0 |  |  |  |  | 0 | my @left_most_bits = map {$_ & 1} @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 849 | 0 |  |  |  |  | 0 | push @left_most_bits, $left_most_bits[0]; | 
| 850 | 0 |  |  |  |  | 0 | shift @left_most_bits; | 
| 851 | 0 |  |  |  |  | 0 | @{$self->{_vector}} = map {$_ >> 1} @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 852 | 0 |  |  |  |  | 0 | my @a = @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 853 | 0 |  |  |  |  | 0 | my @b = map {$_ << 15} @left_most_bits; | 
|  | 0 |  |  |  |  | 0 |  | 
| 854 | 0 |  |  |  |  | 0 | my @interleaved =  ( @a, @b )[ map { $_, $_ + @a } ( 0 .. $#a ) ]; | 
|  | 0 |  |  |  |  | 0 |  | 
| 855 | 0 |  |  | 0 |  | 0 | @{$self->{_vector}} = pairmap {$a | $b} @interleaved; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 856 | 0 |  |  |  |  | 0 | $self->set_bit(-1,0); | 
| 857 |  |  |  |  |  |  | } | 
| 858 |  |  |  |  |  |  |  | 
| 859 |  |  |  |  |  |  | ##  For an in-place left non-circular shift by n bit positions.  The bits shifted | 
| 860 |  |  |  |  |  |  | ##  out at the left are discarded. The new bit positions on the right are filled with | 
| 861 |  |  |  |  |  |  | ##  zeros | 
| 862 |  |  |  |  |  |  | sub shift_left { | 
| 863 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 864 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 865 | 0 |  |  |  |  | 0 | foreach my $i (0..$n-1) { | 
| 866 | 0 |  |  |  |  | 0 | $self->_shift_left_by_one(); | 
| 867 |  |  |  |  |  |  | } | 
| 868 | 0 |  |  |  |  | 0 | return $self; | 
| 869 |  |  |  |  |  |  | } | 
| 870 |  |  |  |  |  |  |  | 
| 871 |  |  |  |  |  |  | ##  For a one-bit in-place right non-circular shift.  Note that bitvector size does | 
| 872 |  |  |  |  |  |  | ##  not change.  The rightmost bit that moves past the last element of the bitvector | 
| 873 |  |  |  |  |  |  | ##  on the right is discarded and the leftmost bit of the returned vector is set to | 
| 874 |  |  |  |  |  |  | ##  zero. | 
| 875 |  |  |  |  |  |  | sub _shift_right_by_one { | 
| 876 | 0 |  |  | 0 |  | 0 | my $self = shift; | 
| 877 | 0 |  |  |  |  | 0 | my $size = @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 878 | 0 |  |  |  |  | 0 | my @right_most_bits = map {$_ & 0x8000} @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 879 | 0 |  |  |  |  | 0 | @{$self->{_vector}} = map { $_ & ~0x8000 } @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 880 | 0 |  |  |  |  | 0 | unshift @right_most_bits, 0; | 
| 881 | 0 |  |  |  |  | 0 | pop @right_most_bits; | 
| 882 | 0 |  |  |  |  | 0 | @{$self->{_vector}} = map {$_ << 1} @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 883 | 0 |  |  |  |  | 0 | my @a = @{$self->{_vector}}; | 
|  | 0 |  |  |  |  | 0 |  | 
| 884 | 0 |  |  |  |  | 0 | my @b = map {$_ >> 15} @right_most_bits; | 
|  | 0 |  |  |  |  | 0 |  | 
| 885 | 0 |  |  |  |  | 0 | my @interleaved =  ( @a, @b )[ map { $_, $_ + @a } ( 0 .. $#a ) ]; | 
|  | 0 |  |  |  |  | 0 |  | 
| 886 | 0 |  |  | 0 |  | 0 | @{$self->{_vector}} = pairmap {$a | $b} @interleaved; | 
|  | 0 |  |  |  |  | 0 |  | 
|  | 0 |  |  |  |  | 0 |  | 
| 887 | 0 |  |  |  |  | 0 | $self->set_bit(0,0); | 
| 888 |  |  |  |  |  |  | } | 
| 889 |  |  |  |  |  |  |  | 
| 890 |  |  |  |  |  |  | ##  For an in-place right non-circular shift by n bit positions.  The n bits that | 
| 891 |  |  |  |  |  |  | ##  move past the last element of the bitvector on the right are discarded and | 
| 892 |  |  |  |  |  |  | ##  leftmost new n bit positions filled with zeros. | 
| 893 |  |  |  |  |  |  | sub shift_right { | 
| 894 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 895 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 896 | 0 |  |  |  |  | 0 | foreach my $i (0..$n-1) { | 
| 897 | 0 |  |  |  |  | 0 | $self->_shift_right_by_one(); | 
| 898 |  |  |  |  |  |  | } | 
| 899 | 0 |  |  |  |  | 0 | return $self; | 
| 900 |  |  |  |  |  |  | } | 
| 901 |  |  |  |  |  |  |  | 
| 902 |  |  |  |  |  |  | ##  In the set of polynomials defined over GF(2), multiplies the bitvector on which | 
| 903 |  |  |  |  |  |  | ##  the method is invoked with the argument bitvector.  Returns the product | 
| 904 |  |  |  |  |  |  | ##  bitvector.  Note that this method carries out straight polynomial multiplication | 
| 905 |  |  |  |  |  |  | ##  as opposed to modulo polynomial multiplication. As a result, the highest power of | 
| 906 |  |  |  |  |  |  | ##  the result polynomial will ALWAYS be greater than the highest powers of the | 
| 907 |  |  |  |  |  |  | ##  argument polynomials for non-trivial multiplications. | 
| 908 |  |  |  |  |  |  | sub gf_multiply { | 
| 909 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 910 | 0 |  |  |  |  | 0 | my $b = shift; | 
| 911 | 0 |  |  |  |  | 0 | my $a = $self->deep_copy(); | 
| 912 | 0 |  |  |  |  | 0 | my $b_copy = $b->deep_copy(); | 
| 913 | 0 |  |  |  |  | 0 | my $a_highest_power = $a->{size} - $a->next_set_bit(0) - 1; | 
| 914 | 0 |  |  |  |  | 0 | my $b_highest_power = $b->{size} - $b_copy->next_set_bit(0) - 1; | 
| 915 | 0 |  |  |  |  | 0 | my $result = Algorithm::BitVector->new( size => $a->{size} + $b_copy->{size} ); | 
| 916 | 0 |  |  |  |  | 0 | $a->pad_from_left( $result->{size} - $a->{size} ); | 
| 917 | 0 |  |  |  |  | 0 | $b_copy->pad_from_left( $result->{size} - $b_copy->{size} ); | 
| 918 | 0 |  |  |  |  | 0 | my @b_list = split //, "$b_copy"; | 
| 919 | 0 |  |  |  |  | 0 | my @enum = (0..@b_list-1, @b_list) [map {$_, $_+ @b_list} (0 .. @b_list - 1)]; | 
|  | 0 |  |  |  |  | 0 |  | 
| 920 | 0 |  |  |  |  | 0 | for (my $i=0; $i < @enum-1; $i = $i + 2) { | 
| 921 | 0 | 0 |  |  |  | 0 | if ($enum[$i+1]) { | 
| 922 | 0 |  |  |  |  | 0 | my $power = $b_copy->{size} - $enum[$i] - 1; | 
| 923 | 0 |  |  |  |  | 0 | my $a_copy = $a->deep_copy(); | 
| 924 | 0 |  |  |  |  | 0 | $a_copy->shift_left( $power ); | 
| 925 | 0 |  |  |  |  | 0 | $result ^=  $a_copy; | 
| 926 |  |  |  |  |  |  | } | 
| 927 |  |  |  |  |  |  | } | 
| 928 | 0 |  |  |  |  | 0 | return $result; | 
| 929 |  |  |  |  |  |  | } | 
| 930 |  |  |  |  |  |  |  | 
| 931 |  |  |  |  |  |  | ##  Carries out modular division of a bitvector by the modulus bitvector mod in | 
| 932 |  |  |  |  |  |  | ##  GF(2^n) finite field.  Returns both the quotient and the remainder. | 
| 933 |  |  |  |  |  |  | sub gf_divide_by_modulus { | 
| 934 | 0 |  |  | 0 | 1 | 0 | my $num = shift; | 
| 935 | 0 |  |  |  |  | 0 | my $mod = shift; | 
| 936 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 937 | 0 | 0 |  |  |  | 0 | die "Modulus bit pattern too long" if $mod->{size} > $n + 1; | 
| 938 | 0 |  |  |  |  | 0 | my $quotient = Algorithm::BitVector->new( intVal => 0, size => $num->{size} ); | 
| 939 | 0 |  |  |  |  | 0 | my $remainder = $num->deep_copy(); | 
| 940 | 0 |  |  |  |  | 0 | for (my $i=0; $i < $num->{size}; $i++) { | 
| 941 | 0 |  |  |  |  | 0 | my $mod_highest_power = $mod->{size} - $mod->next_set_bit(0) - 1; | 
| 942 | 0 |  |  |  |  | 0 | my $remainder_highest_power; | 
| 943 | 0 | 0 |  |  |  | 0 | if ($remainder->next_set_bit(0) == -1) { | 
| 944 | 0 |  |  |  |  | 0 | $remainder_highest_power = 0; | 
| 945 |  |  |  |  |  |  | } else { | 
| 946 | 0 |  |  |  |  | 0 | $remainder_highest_power = $remainder->{size} - $remainder->next_set_bit(0) - 1; | 
| 947 |  |  |  |  |  |  | } | 
| 948 | 0 | 0 | 0 |  |  | 0 | if (($remainder_highest_power < $mod_highest_power) or (int($remainder) == 0)) { | 
| 949 | 0 |  |  |  |  | 0 | last; | 
| 950 |  |  |  |  |  |  | } else { | 
| 951 | 0 |  |  |  |  | 0 | my $exponent_shift = $remainder_highest_power - $mod_highest_power; | 
| 952 | 0 |  |  |  |  | 0 | $quotient->set_bit($quotient->{size} - $exponent_shift - 1, 1); | 
| 953 | 0 |  |  |  |  | 0 | my $quotient_mod_product = $mod->deep_copy(); | 
| 954 | 0 |  |  |  |  | 0 | $quotient_mod_product->pad_from_left($remainder->{size} - $mod->{size}); | 
| 955 | 0 |  |  |  |  | 0 | $quotient_mod_product->shift_left($exponent_shift); | 
| 956 | 0 |  |  |  |  | 0 | $remainder ^= $quotient_mod_product; | 
| 957 |  |  |  |  |  |  | } | 
| 958 |  |  |  |  |  |  | } | 
| 959 | 0 | 0 |  |  |  | 0 | if ($remainder->{size} > $n) { | 
| 960 | 0 |  |  |  |  | 0 | $remainder = Algorithm::BitVector->new( | 
| 961 |  |  |  |  |  |  | bitlist => $remainder->get_bit([$remainder->{size}-$n .. $remainder->{size}-1])); | 
| 962 |  |  |  |  |  |  | } | 
| 963 | 0 |  |  |  |  | 0 | return ($quotient, $remainder); | 
| 964 |  |  |  |  |  |  | } | 
| 965 |  |  |  |  |  |  |  | 
| 966 |  |  |  |  |  |  | ##  Multiplies a bitvector with the bitvector b in GF(2^n) finite field with the | 
| 967 |  |  |  |  |  |  | ##  modulus bit pattern set to mod | 
| 968 |  |  |  |  |  |  | sub gf_multiply_modular { | 
| 969 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 970 | 0 |  |  |  |  | 0 | my $b = shift; | 
| 971 | 0 |  |  |  |  | 0 | my $mod = shift; | 
| 972 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 973 | 0 |  |  |  |  | 0 | my $a_copy = $self->deep_copy(); | 
| 974 | 0 |  |  |  |  | 0 | my $b_copy = $b->deep_copy(); | 
| 975 | 0 |  |  |  |  | 0 | my $product = $a_copy->gf_multiply($b_copy); | 
| 976 | 0 |  |  |  |  | 0 | my ($quotient, $remainder) = $product->gf_divide_by_modulus($mod, $n); | 
| 977 | 0 |  |  |  |  | 0 | return $remainder | 
| 978 |  |  |  |  |  |  | } | 
| 979 |  |  |  |  |  |  |  | 
| 980 |  |  |  |  |  |  | ##  Returns the multiplicative inverse of a vector in the GF(2^n) finite field | 
| 981 |  |  |  |  |  |  | ##  with the modulus polynomial set to mod | 
| 982 |  |  |  |  |  |  | sub  gf_MI { | 
| 983 | 0 |  |  | 0 | 1 | 0 | my $num = shift; | 
| 984 | 0 |  |  |  |  | 0 | my $mod = shift; | 
| 985 | 0 |  |  |  |  | 0 | my $n = shift; | 
| 986 | 0 |  |  |  |  | 0 | my ($NUM, $MOD) = ($num->deep_copy(), $mod->deep_copy()); | 
| 987 | 0 |  |  |  |  | 0 | my $x = Algorithm::BitVector->new( size => $mod->{size} ); | 
| 988 | 0 |  |  |  |  | 0 | my $x_old = Algorithm::BitVector->new( intVal => 1, size => $mod->{size} ); | 
| 989 | 0 |  |  |  |  | 0 | my $y = Algorithm::BitVector->new( intVal => 1, size => $mod->{size} ); | 
| 990 | 0 |  |  |  |  | 0 | my $y_old = Algorithm::BitVector->new( size => $mod->{size} ); | 
| 991 | 0 |  |  |  |  | 0 | my ($quotient, $remainder); | 
| 992 | 0 |  |  |  |  | 0 | while (int($mod)) { | 
| 993 | 0 |  |  |  |  | 0 | ($quotient, $remainder) = $num->gf_divide_by_modulus($mod, $n); | 
| 994 | 0 |  |  |  |  | 0 | ($num, $mod) = ($mod, $remainder); | 
| 995 | 0 |  |  |  |  | 0 | ($x, $x_old) = ($x_old ^ $quotient->gf_multiply($x), $x); | 
| 996 | 0 |  |  |  |  | 0 | ($y, $y_old) = ($y_old ^ $quotient->gf_multiply($y), $y); | 
| 997 |  |  |  |  |  |  | } | 
| 998 | 0 | 0 |  |  |  | 0 | if (int($num) != 1) { | 
| 999 | 0 |  |  |  |  | 0 | return "NO MI. However, the GCD of $NUM and $MOD is $num\n"; | 
| 1000 |  |  |  |  |  |  | } else { | 
| 1001 | 0 |  |  |  |  | 0 | my $z = $x_old ^ $MOD; | 
| 1002 | 0 |  |  |  |  | 0 | ($quotient, $remainder) = $z->gf_divide_by_modulus($MOD, $n); | 
| 1003 | 0 |  |  |  |  | 0 | return $remainder; | 
| 1004 |  |  |  |  |  |  | } | 
| 1005 |  |  |  |  |  |  | } | 
| 1006 |  |  |  |  |  |  |  | 
| 1007 |  |  |  |  |  |  | ##  Returns a list of the consecutive runs of 1's and 0's in the bitvector. | 
| 1008 |  |  |  |  |  |  | ##  Each run is either a string of all 1's or a string of all 0's. | 
| 1009 |  |  |  |  |  |  | sub runs { | 
| 1010 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 1011 | 0 | 0 |  |  |  | 0 | die "An empty vector has no runs" if $self->{size} == 0; | 
| 1012 | 0 |  |  |  |  | 0 | my @allruns = (); | 
| 1013 | 0 |  |  |  |  | 0 | my $run = ''; | 
| 1014 | 0 |  |  |  |  | 0 | my $previous_bit = $self->get_bit(0); | 
| 1015 | 0 | 0 |  |  |  | 0 | if ($previous_bit == 0) { | 
| 1016 | 0 |  |  |  |  | 0 | $run = '0'; | 
| 1017 |  |  |  |  |  |  | } else { | 
| 1018 | 0 |  |  |  |  | 0 | $run = '1'; | 
| 1019 |  |  |  |  |  |  | } | 
| 1020 | 0 |  |  |  |  | 0 | my @bitlist = split //, "$self"; | 
| 1021 | 0 |  |  |  |  | 0 | shift @bitlist; | 
| 1022 | 0 |  |  |  |  | 0 | foreach my $bit (@bitlist) { | 
| 1023 | 0 | 0 | 0 |  |  | 0 | if (($bit == 0) && ($previous_bit == 0)) { | 
|  |  | 0 | 0 |  |  |  |  | 
|  |  | 0 | 0 |  |  |  |  | 
| 1024 | 0 |  |  |  |  | 0 | $run .= '0'; | 
| 1025 |  |  |  |  |  |  | } elsif (($bit == 1) && ($previous_bit == 0)) { | 
| 1026 | 0 |  |  |  |  | 0 | push @allruns, $run; | 
| 1027 | 0 |  |  |  |  | 0 | $run = '1'; | 
| 1028 |  |  |  |  |  |  | } elsif (($bit == 0) && ($previous_bit == 1)) { | 
| 1029 | 0 |  |  |  |  | 0 | push @allruns, $run; | 
| 1030 | 0 |  |  |  |  | 0 | $run = '0'; | 
| 1031 |  |  |  |  |  |  | } else { | 
| 1032 | 0 |  |  |  |  | 0 | $run .= '1'; | 
| 1033 |  |  |  |  |  |  | } | 
| 1034 | 0 |  |  |  |  | 0 | $previous_bit = $bit; | 
| 1035 |  |  |  |  |  |  | } | 
| 1036 | 0 |  |  |  |  | 0 | push @allruns, $run; | 
| 1037 |  |  |  |  |  |  | return @allruns | 
| 1038 | 0 |  |  |  |  | 0 | } | 
| 1039 |  |  |  |  |  |  |  | 
| 1040 |  |  |  |  |  |  | ##  Check if the integer value of the bitvector is a prime through the Miller-Rabin | 
| 1041 |  |  |  |  |  |  | ##  probabilistic test of primality.  If not found to be a composite, estimate the | 
| 1042 |  |  |  |  |  |  | ##  probability of the bitvector being a prime using this test. | 
| 1043 |  |  |  |  |  |  | sub test_for_primality { | 
| 1044 | 0 |  |  | 0 | 1 | 0 | my $p = int(shift); | 
| 1045 | 0 | 0 |  |  |  | 0 | die "\nThe primality test method test_for_primality() is intended for only " . | 
| 1046 |  |  |  |  |  |  | "small integers --- integers that are relatively small in relation to " . | 
| 1047 |  |  |  |  |  |  | "the largest integer that can fit Perl's 4-byte int representation:$!" | 
| 1048 |  |  |  |  |  |  | if $p > 0x7f_ff_ff_ff; | 
| 1049 | 0 | 0 |  |  |  | 0 | return "is NOT a prime" if $p == 1; | 
| 1050 | 0 |  |  |  |  | 0 | my @probes = (2,3,5,7,11,13,17); | 
| 1051 | 0 |  |  |  |  | 0 | foreach my $a (@probes) { | 
| 1052 | 0 | 0 |  |  |  | 0 | return "is a prime" if $a == $p; | 
| 1053 |  |  |  |  |  |  | } | 
| 1054 | 0 | 0 |  | 0 |  | 0 | return "is NOT a prime" if any {$p % $_ == 0} @probes; | 
|  | 0 |  |  |  |  | 0 |  | 
| 1055 | 0 |  |  |  |  | 0 | my ($k, $q) = (0, $p-1); | 
| 1056 | 0 |  |  |  |  | 0 | while (! ($q & 1)) { | 
| 1057 | 0 |  |  |  |  | 0 | $q >>= 1; | 
| 1058 | 0 |  |  |  |  | 0 | $k++; | 
| 1059 |  |  |  |  |  |  | } | 
| 1060 | 0 |  |  |  |  | 0 | foreach my $a (@probes) { | 
| 1061 | 0 |  |  |  |  | 0 | my $a_raised_to_q = _powmod_small_ints($a, int($q), $p); | 
| 1062 | 0 | 0 | 0 |  |  | 0 | next if $a_raised_to_q == 1 or $a_raised_to_q == $p - 1; | 
| 1063 | 0 |  |  |  |  | 0 | my $a_raised_to_jq = $a_raised_to_q; | 
| 1064 | 0 |  |  |  |  | 0 | my $primeflag = 0; | 
| 1065 | 0 |  |  |  |  | 0 | foreach my $j (0..$k-1) { | 
| 1066 | 0 |  |  |  |  | 0 | $a_raised_to_jq = _powmod_small_ints($a_raised_to_jq, 2, $p); | 
| 1067 | 0 | 0 |  |  |  | 0 | if ($a_raised_to_jq == $p-1) { | 
| 1068 | 0 |  |  |  |  | 0 | $primeflag = 1; | 
| 1069 | 0 |  |  |  |  | 0 | last; | 
| 1070 |  |  |  |  |  |  | } | 
| 1071 |  |  |  |  |  |  | } | 
| 1072 | 0 | 0 |  |  |  | 0 | return "is NOT a prime" unless $primeflag; | 
| 1073 |  |  |  |  |  |  | } | 
| 1074 | 0 |  |  |  |  | 0 | my $probability_of_prime = 1 - 1.0/(4 ** @probes); | 
| 1075 | 0 |  |  |  |  | 0 | return "is a prime with probability $probability_of_prime"; | 
| 1076 |  |  |  |  |  |  | } | 
| 1077 |  |  |  |  |  |  |  | 
| 1078 |  |  |  |  |  |  | ##  This routine is for modular exponentiation of small integers, meaning the | 
| 1079 |  |  |  |  |  |  | ##  integers that can be accommodated (before and after exponentiation) in the native | 
| 1080 |  |  |  |  |  |  | ##  4-byte int representation.  For larger integers, a call to this function should | 
| 1081 |  |  |  |  |  |  | ##  be replaced by a call to modular exponentiation of the Math::BigInt module. | 
| 1082 |  |  |  |  |  |  | sub _powmod_small_ints { | 
| 1083 | 0 |  |  | 0 |  | 0 | my $base = shift; | 
| 1084 | 0 |  |  |  |  | 0 | my $exponent = shift; | 
| 1085 | 0 |  |  |  |  | 0 | my $mod = int(shift); | 
| 1086 | 0 |  |  | 0 |  | 0 | warn "This is just a warning: The modular exponentiation method is not meant for very large numbers (IMPORTANT: This is just a very rough check on the size of the numbers involved)" | 
| 1087 | 0 | 0 |  |  |  | 0 | if any {$_ > 0x0f_ff_ff_ff} (int($base), int($exponent), int($mod)); | 
| 1088 | 0 |  |  |  |  | 0 | my $result = 1; | 
| 1089 | 0 |  |  |  |  | 0 | my $a = int($base); | 
| 1090 | 0 |  |  |  |  | 0 | my $b = $exponent; | 
| 1091 | 0 |  |  |  |  | 0 | while (int($b) > 0) { | 
| 1092 | 0 | 0 |  |  |  | 0 | $result = ($result * $a) % $mod if int($b) & 1; | 
| 1093 | 0 |  |  |  |  | 0 | $b = $b >> 1; | 
| 1094 | 0 |  |  |  |  | 0 | $a = ($a * $a) % $mod; | 
| 1095 |  |  |  |  |  |  | } | 
| 1096 | 0 |  |  |  |  | 0 | return $result; | 
| 1097 |  |  |  |  |  |  | } | 
| 1098 |  |  |  |  |  |  |  | 
| 1099 |  |  |  |  |  |  | ##  This method is for a generating a bit pattern of a given size with random bits. | 
| 1100 |  |  |  |  |  |  | sub gen_random_bits { | 
| 1101 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 1102 | 0 |  |  |  |  | 0 | my $width = shift; | 
| 1103 | 0 |  |  |  |  | 0 | my $candidate_bits = "0b" . join '', Math::Random::random_uniform_integer($width, 0, 1); | 
| 1104 | 0 |  |  |  |  | 0 | my $candidate = oct $candidate_bits; | 
| 1105 | 0 |  |  |  |  | 0 | $candidate |= 1; | 
| 1106 | 0 |  |  |  |  | 0 | $candidate |= (1 << $width-1); | 
| 1107 | 0 |  |  |  |  | 0 | $candidate |= (2 << $width-3); | 
| 1108 | 0 |  |  |  |  | 0 | return Algorithm::BitVector->new( intVal => $candidate ); | 
| 1109 |  |  |  |  |  |  | } | 
| 1110 |  |  |  |  |  |  |  | 
| 1111 |  |  |  |  |  |  | sub length { | 
| 1112 | 0 |  |  | 0 | 1 | 0 | my $self = shift; | 
| 1113 | 0 |  |  |  |  | 0 | return $self->{size}; | 
| 1114 |  |  |  |  |  |  | } | 
| 1115 |  |  |  |  |  |  |  | 
| 1116 |  |  |  |  |  |  | sub _check_for_illegal_params { | 
| 1117 | 3 |  |  | 3 |  | 4 | my @params = @_; | 
| 1118 | 3 |  |  |  |  | 6 | my @legal_params = qw / filename | 
| 1119 |  |  |  |  |  |  | size | 
| 1120 |  |  |  |  |  |  | intVal | 
| 1121 |  |  |  |  |  |  | bitlist | 
| 1122 |  |  |  |  |  |  | bitstring | 
| 1123 |  |  |  |  |  |  | hexstring | 
| 1124 |  |  |  |  |  |  | textstring | 
| 1125 |  |  |  |  |  |  | /; | 
| 1126 | 3 |  |  |  |  | 4 | my $found_match_flag; | 
| 1127 | 3 |  |  |  |  | 5 | foreach my $param (@params) { | 
| 1128 | 3 |  |  |  |  | 4 | foreach my $legal (@legal_params) { | 
| 1129 | 12 |  |  |  |  | 10 | $found_match_flag = 0; | 
| 1130 | 12 | 100 |  |  |  | 18 | if ($param eq $legal) { | 
| 1131 | 3 |  |  |  |  | 3 | $found_match_flag = 1; | 
| 1132 | 3 |  |  |  |  | 4 | last; | 
| 1133 |  |  |  |  |  |  | } | 
| 1134 |  |  |  |  |  |  | } | 
| 1135 | 3 | 50 |  |  |  | 9 | last if $found_match_flag == 0; | 
| 1136 |  |  |  |  |  |  | } | 
| 1137 | 3 |  |  |  |  | 10 | return $found_match_flag; | 
| 1138 |  |  |  |  |  |  | } | 
| 1139 |  |  |  |  |  |  |  | 
| 1140 |  |  |  |  |  |  | 1; | 
| 1141 |  |  |  |  |  |  |  | 
| 1142 |  |  |  |  |  |  |  | 
| 1143 |  |  |  |  |  |  | =pod | 
| 1144 |  |  |  |  |  |  |  | 
| 1145 |  |  |  |  |  |  | =head1 NAME | 
| 1146 |  |  |  |  |  |  |  | 
| 1147 |  |  |  |  |  |  | Algorithm::BitVector --- A memory efficient packed representation of arbitrary sized | 
| 1148 |  |  |  |  |  |  | bit arrays and for logical and arithmetic operations on such arrays. | 
| 1149 |  |  |  |  |  |  |  | 
| 1150 |  |  |  |  |  |  | =head1 SYNOPSIS | 
| 1151 |  |  |  |  |  |  |  | 
| 1152 |  |  |  |  |  |  | use Algorithm::BitVector; | 
| 1153 |  |  |  |  |  |  |  | 
| 1154 |  |  |  |  |  |  | # Constructing a given sized bitvector of all zeros: | 
| 1155 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( size => 7 ); | 
| 1156 |  |  |  |  |  |  | print "$bv\n";                                   # 0000000 | 
| 1157 |  |  |  |  |  |  |  | 
| 1158 |  |  |  |  |  |  | # Constructing a bitvector whose integer value is specified: | 
| 1159 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 123456 ); | 
| 1160 |  |  |  |  |  |  | print "$bv\n";                                    # 11110001001000000 | 
| 1161 |  |  |  |  |  |  | print int($bv);                                   # 123456 | 
| 1162 |  |  |  |  |  |  |  | 
| 1163 |  |  |  |  |  |  | # Constructing a bitvector from a very large integer: | 
| 1164 |  |  |  |  |  |  | use Math::BigInt; | 
| 1165 |  |  |  |  |  |  | $x = Math::BigInt->new('12345678901234567890123456789012345678901234567890'); | 
| 1166 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => $x ); | 
| 1167 |  |  |  |  |  |  |  | 
| 1168 |  |  |  |  |  |  | # Constructing a bitvector from a given bit string: | 
| 1169 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '00110011' ); | 
| 1170 |  |  |  |  |  |  |  | 
| 1171 |  |  |  |  |  |  | # Constructing a bitvector from an ASCII text string: | 
| 1172 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( textstring => "hello\njello" ); | 
| 1173 |  |  |  |  |  |  |  | 
| 1174 |  |  |  |  |  |  | # Constructing a bitvector from a hex string: | 
| 1175 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( hexstring => "68656c6c6f" ); | 
| 1176 |  |  |  |  |  |  |  | 
| 1177 |  |  |  |  |  |  | # Constructing a bitvector from a bit list passed as an anonymous array: | 
| 1178 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1, 1, 0, 1] ); | 
| 1179 |  |  |  |  |  |  |  | 
| 1180 |  |  |  |  |  |  | # Constructing a bitvector from the contents of a disk file: | 
| 1181 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( filename => 'testinput.txt' ); | 
| 1182 |  |  |  |  |  |  | $bv1 = $bv->read_bits_from_file(64);         # bitvector from the first 64 bits | 
| 1183 |  |  |  |  |  |  | # and so on | 
| 1184 |  |  |  |  |  |  |  | 
| 1185 |  |  |  |  |  |  |  | 
| 1186 |  |  |  |  |  |  | =head1 CHANGES | 
| 1187 |  |  |  |  |  |  |  | 
| 1188 |  |  |  |  |  |  | Version 1.23 mentions the required modules in the C file but with no | 
| 1189 |  |  |  |  |  |  | minimum version numbers.  Additionally, the documentation associated with the methods | 
| 1190 |  |  |  |  |  |  | was significantly upgraded in this version. | 
| 1191 |  |  |  |  |  |  |  | 
| 1192 |  |  |  |  |  |  | Version 1.22 removes the Perl version restriction from the module and the | 
| 1193 |  |  |  |  |  |  | C files and the C restrictions from the C file. | 
| 1194 |  |  |  |  |  |  |  | 
| 1195 |  |  |  |  |  |  | Version 1.21 fixes a bug in the code for the Miller-Rabin primality test function | 
| 1196 |  |  |  |  |  |  | C.  This version also places a hard limit on the size of the | 
| 1197 |  |  |  |  |  |  | integers that are allowed to be tested for primality. | 
| 1198 |  |  |  |  |  |  |  | 
| 1199 |  |  |  |  |  |  | Version 1.2 fixes an important bug in creating bitvectors from the contents of a disk | 
| 1200 |  |  |  |  |  |  | file.  This version also includes corrections for some of the documentation errors | 
| 1201 |  |  |  |  |  |  | discovered. | 
| 1202 |  |  |  |  |  |  |  | 
| 1203 |  |  |  |  |  |  | Version 1.1 incorporates additional type checking on the operands for the overloaded | 
| 1204 |  |  |  |  |  |  | operators.  Also fixed some minor documentation formatting issues. | 
| 1205 |  |  |  |  |  |  |  | 
| 1206 |  |  |  |  |  |  | =head1 DESCRIPTION | 
| 1207 |  |  |  |  |  |  |  | 
| 1208 |  |  |  |  |  |  | My main motivation for creating this module was to provide the students at Purdue and | 
| 1209 |  |  |  |  |  |  | elsewhere with a Perl class whose API is the same as that of my Python based | 
| 1210 |  |  |  |  |  |  | C module that appears to have become popular for prototyping algorithms | 
| 1211 |  |  |  |  |  |  | for cryptography and hash functions. | 
| 1212 |  |  |  |  |  |  |  | 
| 1213 |  |  |  |  |  |  | This module stores the bits of a bitvector in 16-bit unsigned shorts.  As you can see | 
| 1214 |  |  |  |  |  |  | in the constructor code for C, after resolving the arguments with which the | 
| 1215 |  |  |  |  |  |  | constructor is called, the very first thing the constructor does is to figure out how | 
| 1216 |  |  |  |  |  |  | many of those 2-byte shorts it needs for the bits. That does not imply that the size | 
| 1217 |  |  |  |  |  |  | of a bit array that is stored in a bitvector must be a multiple of 16.  B | 
| 1218 |  |  |  |  |  |  | can be of any size whatsoever.> The C class keeps track of the | 
| 1219 |  |  |  |  |  |  | number of bits through its C instance variable. | 
| 1220 |  |  |  |  |  |  |  | 
| 1221 |  |  |  |  |  |  | Note that, except for one case, the constructor must be called with a single keyword | 
| 1222 |  |  |  |  |  |  | argument, which determines how the bitvector will be constructed.  The single | 
| 1223 |  |  |  |  |  |  | exception to this rule is for the keyword argument C which you would normally | 
| 1224 |  |  |  |  |  |  | use for constructing a bitvector from an integer.  The additional option you can | 
| 1225 |  |  |  |  |  |  | supply with C is C.  When both C and C are specified in a | 
| 1226 |  |  |  |  |  |  | constructor call, you get a bitvector of the specified size provided the value | 
| 1227 |  |  |  |  |  |  | supplied for C is larger than what it takes to accommodate the bits for the | 
| 1228 |  |  |  |  |  |  | C integer. | 
| 1229 |  |  |  |  |  |  |  | 
| 1230 |  |  |  |  |  |  | In addition to constructing bitvectors from integers, this module can also construct | 
| 1231 |  |  |  |  |  |  | bitvectors from bit strings, from ASCII text strings, from hex strings, from a list | 
| 1232 |  |  |  |  |  |  | of bits, and from the contents of a file.  With regards to constructing bitvectors | 
| 1233 |  |  |  |  |  |  | from integers, the module can construct very large bitvectors from very large | 
| 1234 |  |  |  |  |  |  | integers stored as C objects. | 
| 1235 |  |  |  |  |  |  |  | 
| 1236 |  |  |  |  |  |  | =head1 OVERLOADED OPERATORS | 
| 1237 |  |  |  |  |  |  |  | 
| 1238 |  |  |  |  |  |  | The following C | 
| 1239 |  |  |  |  |  |  | overloaded operators. Since C is set to 1, several other operators become | 
| 1240 |  |  |  |  |  |  | overloaded by autogeneration from those shown below.  For example, overloading of the | 
| 1241 |  |  |  |  |  |  | 3-way numerical comparison operator C<< <=> >> automatically overloads the C<< < >>, | 
| 1242 |  |  |  |  |  |  | C<< <= >>, C<< > >>, C<< >= >>, C<< == >>, and C<< != >> operators. | 
| 1243 |  |  |  |  |  |  |  | 
| 1244 |  |  |  |  |  |  | use overload  '+'        =>    '_add', | 
| 1245 |  |  |  |  |  |  | '""'       =>    '_str', | 
| 1246 |  |  |  |  |  |  | '0+'       =>    '_int', | 
| 1247 |  |  |  |  |  |  | '~'        =>    '_invert', | 
| 1248 |  |  |  |  |  |  | '|'        =>    '_or', | 
| 1249 |  |  |  |  |  |  | '&'        =>    '_and', | 
| 1250 |  |  |  |  |  |  | '^'        =>    '_xor', | 
| 1251 |  |  |  |  |  |  | '<=>'      =>    '_compare', | 
| 1252 |  |  |  |  |  |  | '<<'       =>    '_lshift', | 
| 1253 |  |  |  |  |  |  | '>>'       =>    '_rshift', | 
| 1254 |  |  |  |  |  |  | '<>'       =>    '_iter', | 
| 1255 |  |  |  |  |  |  | 'fallback' =>    1; | 
| 1256 |  |  |  |  |  |  |  | 
| 1257 |  |  |  |  |  |  | It is B to remember that the overloadings for the C<<< << >>> and C<<< >> | 
| 1258 |  |  |  |  |  |  | >>> operators are for B left and right shifts (their usual meaning as | 
| 1259 |  |  |  |  |  |  | bitwise operators is for non-circular shifts).  This was done because the | 
| 1260 |  |  |  |  |  |  | applications for which this module is intended is more likely to use circular shifts | 
| 1261 |  |  |  |  |  |  | of bit fields than non-circular shifts.  You can still carry out non-circular shifts | 
| 1262 |  |  |  |  |  |  | by calling the methods C and C as illustrated elsewhere | 
| 1263 |  |  |  |  |  |  | in this documentation. | 
| 1264 |  |  |  |  |  |  |  | 
| 1265 |  |  |  |  |  |  | Another B thing to bear in mind is the overloading of the C<+> operator. | 
| 1266 |  |  |  |  |  |  | It is B addition.  On the other hand, it is a concatenation of the two operand | 
| 1267 |  |  |  |  |  |  | bitvectors.  This was done to keep the usage of this operator the same as in the | 
| 1268 |  |  |  |  |  |  | Python version of this module. | 
| 1269 |  |  |  |  |  |  |  | 
| 1270 |  |  |  |  |  |  | By virtue of how the operators are overloaded, you can make the calls listed in the | 
| 1271 |  |  |  |  |  |  | rest of this section.  To illustrate these calls, I will use the following two bit | 
| 1272 |  |  |  |  |  |  | vectors: | 
| 1273 |  |  |  |  |  |  |  | 
| 1274 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => "111000" ); | 
| 1275 |  |  |  |  |  |  | $bv2 = Algorithm::BitVector->new( bitstring => "000101000" ); | 
| 1276 |  |  |  |  |  |  |  | 
| 1277 |  |  |  |  |  |  | These two bitvectors are intentionally of different lengths to illustrate what role | 
| 1278 |  |  |  |  |  |  | the size differences play in how the various operators work. | 
| 1279 |  |  |  |  |  |  |  | 
| 1280 |  |  |  |  |  |  | =over 4 | 
| 1281 |  |  |  |  |  |  |  | 
| 1282 |  |  |  |  |  |  | =item B | 
| 1283 |  |  |  |  |  |  |  | 
| 1284 |  |  |  |  |  |  | $bv3 = $bv1 + $bv2;                          # 111000000101000 | 
| 1285 |  |  |  |  |  |  |  | 
| 1286 |  |  |  |  |  |  | The concatenation of two bitvectors is returned as a new bitvector. This is made | 
| 1287 |  |  |  |  |  |  | possible by the overload definition for the C<+> operator. | 
| 1288 |  |  |  |  |  |  |  | 
| 1289 |  |  |  |  |  |  | Note that the following also works: | 
| 1290 |  |  |  |  |  |  |  | 
| 1291 |  |  |  |  |  |  | print $bv1 . "hello";                        # 111000hello | 
| 1292 |  |  |  |  |  |  |  | 
| 1293 |  |  |  |  |  |  | In this case, Perl implicitly converts the left operand of the `.' operator into a | 
| 1294 |  |  |  |  |  |  | string (which is made possible by the overloading for the stringification operator in | 
| 1295 |  |  |  |  |  |  | this module) and then returns the result as a string. | 
| 1296 |  |  |  |  |  |  |  | 
| 1297 |  |  |  |  |  |  | =item B | 
| 1298 |  |  |  |  |  |  |  | 
| 1299 |  |  |  |  |  |  | print "$bv1";                                # 111000 | 
| 1300 |  |  |  |  |  |  |  | 
| 1301 |  |  |  |  |  |  | This is made possible for the overload definition for the C<""> operator. | 
| 1302 |  |  |  |  |  |  |  | 
| 1303 |  |  |  |  |  |  | =item B | 
| 1304 |  |  |  |  |  |  |  | 
| 1305 |  |  |  |  |  |  | print int($bv1);                             # 56 | 
| 1306 |  |  |  |  |  |  |  | 
| 1307 |  |  |  |  |  |  | This is made possible by the overload definition for the C<0+> operator. | 
| 1308 |  |  |  |  |  |  |  | 
| 1309 |  |  |  |  |  |  | =item B | 
| 1310 |  |  |  |  |  |  |  | 
| 1311 |  |  |  |  |  |  | $bv3 = ~ $bv1; | 
| 1312 |  |  |  |  |  |  | print $bv3;                                  # 000111 | 
| 1313 |  |  |  |  |  |  |  | 
| 1314 |  |  |  |  |  |  | This is made possible by the overload definition for the C<~> operator. | 
| 1315 |  |  |  |  |  |  |  | 
| 1316 |  |  |  |  |  |  | =item B | 
| 1317 |  |  |  |  |  |  |  | 
| 1318 |  |  |  |  |  |  | $bv3 = $bv1 | $bv2;                          # 000111000 | 
| 1319 |  |  |  |  |  |  |  | 
| 1320 |  |  |  |  |  |  | When two bitvectors are of unequal length (as is the case here), the shorter vector | 
| 1321 |  |  |  |  |  |  | is zero-padded on the left to equalize their lengths before the application of the | 
| 1322 |  |  |  |  |  |  | logical operation.  If this auto-padding property is not something you want, you | 
| 1323 |  |  |  |  |  |  | should check the lengths of the argument bitvectors in your own script before | 
| 1324 |  |  |  |  |  |  | invoking this operator. | 
| 1325 |  |  |  |  |  |  |  | 
| 1326 |  |  |  |  |  |  | =item B | 
| 1327 |  |  |  |  |  |  |  | 
| 1328 |  |  |  |  |  |  | $bv3 = $bv1 & $bv2;                          # 000101000 | 
| 1329 |  |  |  |  |  |  |  | 
| 1330 |  |  |  |  |  |  | When two bitvectors are of unequal length (as is the case here), the shorter vector | 
| 1331 |  |  |  |  |  |  | is zero-padded on the left to equalize their lengths before the application of the | 
| 1332 |  |  |  |  |  |  | logical operation. If this auto-padding property is not something you want, you | 
| 1333 |  |  |  |  |  |  | should check the lengths of the argument bitvectors in your own script before | 
| 1334 |  |  |  |  |  |  | invoking this operator. | 
| 1335 |  |  |  |  |  |  |  | 
| 1336 |  |  |  |  |  |  | =item B | 
| 1337 |  |  |  |  |  |  |  | 
| 1338 |  |  |  |  |  |  | $bv3 = $bv1 ^ $bv2;                          # 000010000 | 
| 1339 |  |  |  |  |  |  |  | 
| 1340 |  |  |  |  |  |  | When two bitvectors are of unequal length (as is the case here), the shorter vector | 
| 1341 |  |  |  |  |  |  | is zero-padded on the left to equalize their lengths before the application of the | 
| 1342 |  |  |  |  |  |  | logical operation. If this auto-padding property is not something you want, you | 
| 1343 |  |  |  |  |  |  | should check the lengths of the argument bitvectors in your own script before | 
| 1344 |  |  |  |  |  |  | invoking this operator. | 
| 1345 |  |  |  |  |  |  |  | 
| 1346 |  |  |  |  |  |  | =item B | 
| 1347 |  |  |  |  |  |  |  | 
| 1348 |  |  |  |  |  |  | $bv1 < $bv2 ?  print "yes\n"  :  print "no\n";        # no | 
| 1349 |  |  |  |  |  |  |  | 
| 1350 |  |  |  |  |  |  | $bv1 > $bv2 ?  print "yes\n"  :  print "no\n";        # yes | 
| 1351 |  |  |  |  |  |  |  | 
| 1352 |  |  |  |  |  |  | $bv1 <= $bv2 ?  print "yes\n"  :  print "no\n";       # no | 
| 1353 |  |  |  |  |  |  |  | 
| 1354 |  |  |  |  |  |  | $bv1 >= $bv2 ?  print "yes\n"  :  print "no\n";       # yes | 
| 1355 |  |  |  |  |  |  |  | 
| 1356 |  |  |  |  |  |  | $bv1 == $bv2 ?  print "yes\n"  :  print "no\n";       # no | 
| 1357 |  |  |  |  |  |  |  | 
| 1358 |  |  |  |  |  |  | $bv1 != $bv2 ?  print "yes\n"  :  print "no\n";       # yes | 
| 1359 |  |  |  |  |  |  |  | 
| 1360 |  |  |  |  |  |  | The overload definitions for all these operators are autogenerated from the overload | 
| 1361 |  |  |  |  |  |  | definition for the 3-way numerical comparison operator C<< <=> >>.  B | 
| 1362 |  |  |  |  |  |  | compared on the basis of their integer values.> That is, C<$bv1> is less than C<$bv2> | 
| 1363 |  |  |  |  |  |  | is C is less than C. | 
| 1364 |  |  |  |  |  |  |  | 
| 1365 |  |  |  |  |  |  | =item B | 
| 1366 |  |  |  |  |  |  |  | 
| 1367 |  |  |  |  |  |  | $n = 3; | 
| 1368 |  |  |  |  |  |  |  | 
| 1369 |  |  |  |  |  |  | $bv1 << $n;                                           # $bv1 is now 000111 | 
| 1370 |  |  |  |  |  |  | $bv1 >> $n;                                           # $bv1 is now 111000 | 
| 1371 |  |  |  |  |  |  |  | 
| 1372 |  |  |  |  |  |  | Since Perl does not expect these two operators to be invoked in a void context, such | 
| 1373 |  |  |  |  |  |  | statements in your code will elicit a warning from Perl to that effect. If these | 
| 1374 |  |  |  |  |  |  | warnings annoy you, you can turn them off by surrounding such statements with C | 
| 1375 |  |  |  |  |  |  | warnings "void";> and C | 
| 1376 |  |  |  |  |  |  | such statements in the following manner: | 
| 1377 |  |  |  |  |  |  |  | 
| 1378 |  |  |  |  |  |  | $bv1 = $bv1 << $n; | 
| 1379 |  |  |  |  |  |  | $bv2 = $bv1 >> $n; | 
| 1380 |  |  |  |  |  |  |  | 
| 1381 |  |  |  |  |  |  | That works because the overload definitions for these bit shift operators return the | 
| 1382 |  |  |  |  |  |  | bitvector object on which they are invoked.  As it turns out, this also allows for | 
| 1383 |  |  |  |  |  |  | chained invocation of these operators, as in | 
| 1384 |  |  |  |  |  |  |  | 
| 1385 |  |  |  |  |  |  | $bv1 = $bv1 << 3 << 1 >> 2;                          # 100011 | 
| 1386 |  |  |  |  |  |  |  | 
| 1387 |  |  |  |  |  |  | $bv1 = $bv1 << 2 >> 1 >> 3;                          # 111000 | 
| 1388 |  |  |  |  |  |  |  | 
| 1389 |  |  |  |  |  |  | =item B | 
| 1390 |  |  |  |  |  |  |  | 
| 1391 |  |  |  |  |  |  | while (<$bv1>) { | 
| 1392 |  |  |  |  |  |  | print "$_  "; | 
| 1393 |  |  |  |  |  |  | }                                                    # 1  1  1  0  0  0 | 
| 1394 |  |  |  |  |  |  |  | 
| 1395 |  |  |  |  |  |  | This is made possible by the overload definition for the C<< <> >> operator. The | 
| 1396 |  |  |  |  |  |  | C class includes an inner class C for this | 
| 1397 |  |  |  |  |  |  | purpose. | 
| 1398 |  |  |  |  |  |  |  | 
| 1399 |  |  |  |  |  |  | =back | 
| 1400 |  |  |  |  |  |  |  | 
| 1401 |  |  |  |  |  |  |  | 
| 1402 |  |  |  |  |  |  | =head1 CONSTRUCTING BITVECTORS | 
| 1403 |  |  |  |  |  |  |  | 
| 1404 |  |  |  |  |  |  | =over 4 | 
| 1405 |  |  |  |  |  |  |  | 
| 1406 |  |  |  |  |  |  | =item B | 
| 1407 |  |  |  |  |  |  |  | 
| 1408 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( size => 0 ); | 
| 1409 |  |  |  |  |  |  |  | 
| 1410 |  |  |  |  |  |  | print "$bv\n";                                                   # no output | 
| 1411 |  |  |  |  |  |  |  | 
| 1412 |  |  |  |  |  |  | =item B | 
| 1413 |  |  |  |  |  |  |  | 
| 1414 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( size => 13 );                   # 0000000000000 | 
| 1415 |  |  |  |  |  |  |  | 
| 1416 |  |  |  |  |  |  | =item B | 
| 1417 |  |  |  |  |  |  |  | 
| 1418 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 5006 );               # 1001110001110 | 
| 1419 |  |  |  |  |  |  |  | 
| 1420 |  |  |  |  |  |  | The module returns the smallest possible bitvector that would accommodate the | 
| 1421 |  |  |  |  |  |  | integer value provided with the C option. | 
| 1422 |  |  |  |  |  |  |  | 
| 1423 |  |  |  |  |  |  | =item B | 
| 1424 |  |  |  |  |  |  |  | 
| 1425 |  |  |  |  |  |  | As mentioned, with the C option, you get the smallest possible bitvector | 
| 1426 |  |  |  |  |  |  | that can be generated from that integer.  If you want a I bitvector, you can | 
| 1427 |  |  |  |  |  |  | also supply the C option as shown below: | 
| 1428 |  |  |  |  |  |  |  | 
| 1429 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 5006, size => 16 );   # 0001001110001110 | 
| 1430 |  |  |  |  |  |  |  | 
| 1431 |  |  |  |  |  |  | If the value supplied for the C option in such a call is not larger than the | 
| 1432 |  |  |  |  |  |  | smallest bit array that represents the C value, the constructor will throw an | 
| 1433 |  |  |  |  |  |  | exception. | 
| 1434 |  |  |  |  |  |  |  | 
| 1435 |  |  |  |  |  |  | =item B | 
| 1436 |  |  |  |  |  |  |  | 
| 1437 |  |  |  |  |  |  | use Math::BigInt; | 
| 1438 |  |  |  |  |  |  | $x = Math::BigInt->new('12345678901234567890123456789012345678901234567890'); | 
| 1439 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => $x ); | 
| 1440 |  |  |  |  |  |  | #1000011100100111111101100011011010011010101011111000001111001010000\ | 
| 1441 |  |  |  |  |  |  | #10101000000100110011101000111101011111000110001111111000110010110110\ | 
| 1442 |  |  |  |  |  |  | #01110001111110000101011010010 | 
| 1443 |  |  |  |  |  |  |  | 
| 1444 |  |  |  |  |  |  | =item B | 
| 1445 |  |  |  |  |  |  |  | 
| 1446 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '00110011' );     # 00110011 | 
| 1447 |  |  |  |  |  |  |  | 
| 1448 |  |  |  |  |  |  | =item B | 
| 1449 |  |  |  |  |  |  |  | 
| 1450 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( textstring => "hello\n" ); | 
| 1451 |  |  |  |  |  |  | # 011010000110010101101100011011000110111100001010 | 
| 1452 |  |  |  |  |  |  |  | 
| 1453 |  |  |  |  |  |  | =item B | 
| 1454 |  |  |  |  |  |  |  | 
| 1455 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( hexstring => "68656c6c6f" ); | 
| 1456 |  |  |  |  |  |  | # 0110100001100101011011000110110001101111 | 
| 1457 |  |  |  |  |  |  |  | 
| 1458 |  |  |  |  |  |  | =item B | 
| 1459 |  |  |  |  |  |  |  | 
| 1460 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1, 1, 0, 1] );       # 1101 | 
| 1461 |  |  |  |  |  |  |  | 
| 1462 |  |  |  |  |  |  | =item B | 
| 1463 |  |  |  |  |  |  |  | 
| 1464 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( filename => 'testinput1.txt' ); | 
| 1465 |  |  |  |  |  |  |  | 
| 1466 |  |  |  |  |  |  | print "$bv\n";                               # Nothing to show yet | 
| 1467 |  |  |  |  |  |  |  | 
| 1468 |  |  |  |  |  |  | $bv1 = $bv->read_bits_from_file(64);         # Now you have a bitvector from the | 
| 1469 |  |  |  |  |  |  | #   first 64 bits | 
| 1470 |  |  |  |  |  |  |  | 
| 1471 |  |  |  |  |  |  | Note that it takes two calls to create bitvectors from the contents of a file.  The | 
| 1472 |  |  |  |  |  |  | first merely creates an empty bitvector just to set the necessary file handle for | 
| 1473 |  |  |  |  |  |  | reading the file.  It is the second call in which you invoke the method | 
| 1474 |  |  |  |  |  |  | C that actually returns a bitvector from the bits read from | 
| 1475 |  |  |  |  |  |  | the file.  Each call to C in this manner spits out a new bit | 
| 1476 |  |  |  |  |  |  | vector. | 
| 1477 |  |  |  |  |  |  |  | 
| 1478 |  |  |  |  |  |  | =back | 
| 1479 |  |  |  |  |  |  |  | 
| 1480 |  |  |  |  |  |  | =head1 METHODS | 
| 1481 |  |  |  |  |  |  |  | 
| 1482 |  |  |  |  |  |  | =head3 close_file_handle() | 
| 1483 |  |  |  |  |  |  |  | 
| 1484 |  |  |  |  |  |  | =over 4 | 
| 1485 |  |  |  |  |  |  |  | 
| 1486 |  |  |  |  |  |  | When you construct bitvectors by block scanning a disk file, after you are done, you | 
| 1487 |  |  |  |  |  |  | can call this method to close the file handle that was created to read the file: | 
| 1488 |  |  |  |  |  |  |  | 
| 1489 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( filename => 'testinput.txt' ); | 
| 1490 |  |  |  |  |  |  | ## your code to read bit blocks for constructing bitvectors goes here | 
| 1491 |  |  |  |  |  |  | $bv->close_file_handle(); | 
| 1492 |  |  |  |  |  |  |  | 
| 1493 |  |  |  |  |  |  | The constructor call in the first statement opens a file handle for reading the bits. | 
| 1494 |  |  |  |  |  |  | It is this file handle that is closed by calling C, | 
| 1495 |  |  |  |  |  |  |  | 
| 1496 |  |  |  |  |  |  | =back | 
| 1497 |  |  |  |  |  |  |  | 
| 1498 |  |  |  |  |  |  | =head3 count_bits() | 
| 1499 |  |  |  |  |  |  |  | 
| 1500 |  |  |  |  |  |  | =over 4 | 
| 1501 |  |  |  |  |  |  |  | 
| 1502 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 45, size => 16 ); | 
| 1503 |  |  |  |  |  |  | print $bv->count_bits();                       # 4 | 
| 1504 |  |  |  |  |  |  |  | 
| 1505 |  |  |  |  |  |  | This method returns an integer value which is the number of bits set to 1 in the | 
| 1506 |  |  |  |  |  |  | bitvector on which the method is invoked. | 
| 1507 |  |  |  |  |  |  |  | 
| 1508 |  |  |  |  |  |  | =back | 
| 1509 |  |  |  |  |  |  |  | 
| 1510 |  |  |  |  |  |  | =head3 count_bits_sparse() | 
| 1511 |  |  |  |  |  |  |  | 
| 1512 |  |  |  |  |  |  | =over 4 | 
| 1513 |  |  |  |  |  |  |  | 
| 1514 |  |  |  |  |  |  | Say you have a bitvector with two million bits: | 
| 1515 |  |  |  |  |  |  |  | 
| 1516 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( size => 2000000 ); | 
| 1517 |  |  |  |  |  |  |  | 
| 1518 |  |  |  |  |  |  | and you happen to set its individual bits by | 
| 1519 |  |  |  |  |  |  |  | 
| 1520 |  |  |  |  |  |  | $bv->set_bit(345234, 1); | 
| 1521 |  |  |  |  |  |  | $bv->set_bit(233, 1); | 
| 1522 |  |  |  |  |  |  | $bv->set_bit(243, 1); | 
| 1523 |  |  |  |  |  |  | $bv->set_bit(18, 1); | 
| 1524 |  |  |  |  |  |  | $bv->set_bit(785, 1); | 
| 1525 |  |  |  |  |  |  |  | 
| 1526 |  |  |  |  |  |  | The following call returns the number of bits set in the bitvector: | 
| 1527 |  |  |  |  |  |  |  | 
| 1528 |  |  |  |  |  |  | print $bv->count_bits_sparse();               # 5 | 
| 1529 |  |  |  |  |  |  |  | 
| 1530 |  |  |  |  |  |  | For very long bitvectors, as in the example here, this method will work much faster | 
| 1531 |  |  |  |  |  |  | than the C method.  However, for dense bitvectors, I expect | 
| 1532 |  |  |  |  |  |  | C to work faster. | 
| 1533 |  |  |  |  |  |  |  | 
| 1534 |  |  |  |  |  |  | =back | 
| 1535 |  |  |  |  |  |  |  | 
| 1536 |  |  |  |  |  |  | =head3 deep_copy() | 
| 1537 |  |  |  |  |  |  |  | 
| 1538 |  |  |  |  |  |  | =over 4 | 
| 1539 |  |  |  |  |  |  |  | 
| 1540 |  |  |  |  |  |  | $bv_copy = $bv->deep_copy(); | 
| 1541 |  |  |  |  |  |  |  | 
| 1542 |  |  |  |  |  |  | Subsequently, any alterations to the bitvectors pointed to by either C<$bv> or | 
| 1543 |  |  |  |  |  |  | C<$bv_copy> will not affect the other. | 
| 1544 |  |  |  |  |  |  |  | 
| 1545 |  |  |  |  |  |  | =back | 
| 1546 |  |  |  |  |  |  |  | 
| 1547 |  |  |  |  |  |  | =head3 divide_into_two() | 
| 1548 |  |  |  |  |  |  |  | 
| 1549 |  |  |  |  |  |  | =over 4 | 
| 1550 |  |  |  |  |  |  |  | 
| 1551 |  |  |  |  |  |  | ($bv1, $bv2) = $bv->divide_into_two();              # say $bv = 0000000000101101 | 
| 1552 |  |  |  |  |  |  | print "$bv1\n";                                     # 00000000 | 
| 1553 |  |  |  |  |  |  | print "$bv2\n";                                     # 00101101 | 
| 1554 |  |  |  |  |  |  |  | 
| 1555 |  |  |  |  |  |  | Divides an even sized bitvector into two bitvectors, each of size half of the | 
| 1556 |  |  |  |  |  |  | bitvector on which this method is invoked. Throws an exception when invoked on a | 
| 1557 |  |  |  |  |  |  | bitvector that is not even sized. | 
| 1558 |  |  |  |  |  |  |  | 
| 1559 |  |  |  |  |  |  | =back | 
| 1560 |  |  |  |  |  |  |  | 
| 1561 |  |  |  |  |  |  | =head3 gcd() | 
| 1562 |  |  |  |  |  |  |  | 
| 1563 |  |  |  |  |  |  | =over 4 | 
| 1564 |  |  |  |  |  |  |  | 
| 1565 |  |  |  |  |  |  | This method uses the Euclid's algorithm to return the Greatest Common Divisor of the | 
| 1566 |  |  |  |  |  |  | integer values represented by the two bitvectors.  The following example shows a call | 
| 1567 |  |  |  |  |  |  | to C returning the GCD of the integer values of the bitvectors C<$bv1> and | 
| 1568 |  |  |  |  |  |  | C<$bv2>. | 
| 1569 |  |  |  |  |  |  |  | 
| 1570 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => '01100110' );   # 102 | 
| 1571 |  |  |  |  |  |  | $bv2 = Algorithm::BitVector->new( bitstring => '011010' );     # 26 | 
| 1572 |  |  |  |  |  |  | $gcd = $bv1->gcd( $bv2 );                                      # 10 | 
| 1573 |  |  |  |  |  |  | print int($gcd);                                               # 2 | 
| 1574 |  |  |  |  |  |  |  | 
| 1575 |  |  |  |  |  |  | The result returned by C is a bitvector. | 
| 1576 |  |  |  |  |  |  |  | 
| 1577 |  |  |  |  |  |  | =back | 
| 1578 |  |  |  |  |  |  |  | 
| 1579 |  |  |  |  |  |  | =head3 gen_random_bits() | 
| 1580 |  |  |  |  |  |  |  | 
| 1581 |  |  |  |  |  |  | =over 4 | 
| 1582 |  |  |  |  |  |  |  | 
| 1583 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 0 ); | 
| 1584 |  |  |  |  |  |  | $bv = $bv->gen_random_bits(16);                        # 1100111001010101 | 
| 1585 |  |  |  |  |  |  |  | 
| 1586 |  |  |  |  |  |  | The call to C returns a bitvector whose bits are randomly | 
| 1587 |  |  |  |  |  |  | generated.  The number of bits in the returned bitvector equals the argument integer. | 
| 1588 |  |  |  |  |  |  |  | 
| 1589 |  |  |  |  |  |  | =back | 
| 1590 |  |  |  |  |  |  |  | 
| 1591 |  |  |  |  |  |  | =head3 get_bit() | 
| 1592 |  |  |  |  |  |  |  | 
| 1593 |  |  |  |  |  |  | =over 4 | 
| 1594 |  |  |  |  |  |  |  | 
| 1595 |  |  |  |  |  |  | This method gives you array-like access to the individual bits of a bitvector. | 
| 1596 |  |  |  |  |  |  |  | 
| 1597 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '10111' ); | 
| 1598 |  |  |  |  |  |  | print $bv->get_bit(0);                           # 1   (the first bit) | 
| 1599 |  |  |  |  |  |  | print $bv->get_bit(1);                           # 0 | 
| 1600 |  |  |  |  |  |  | print $bv->get_bit(4);                           # 1   (the last bit) | 
| 1601 |  |  |  |  |  |  |  | 
| 1602 |  |  |  |  |  |  | Negative values for the index scan a bitvector from right to left, with the C<-1> | 
| 1603 |  |  |  |  |  |  | index standing for the last (meaning the right-most) bit in the vector: | 
| 1604 |  |  |  |  |  |  |  | 
| 1605 |  |  |  |  |  |  | print $bv->get_bit(-1);                          # 1   (the last bit) | 
| 1606 |  |  |  |  |  |  | print $bv->get_bit(-2);                          # 1 | 
| 1607 |  |  |  |  |  |  | print $bv->get_bit(-5);                          # 1   (the first bit) | 
| 1608 |  |  |  |  |  |  |  | 
| 1609 |  |  |  |  |  |  | The C can also return a slice of a bitvector if the argument to the | 
| 1610 |  |  |  |  |  |  | method is an anonymous array of the index range you desire, as in the second | 
| 1611 |  |  |  |  |  |  | statement below: | 
| 1612 |  |  |  |  |  |  |  | 
| 1613 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => "10111011"); | 
| 1614 |  |  |  |  |  |  | my $arr = $bv->get_bit( [3..7] ); | 
| 1615 |  |  |  |  |  |  | print "@$arr\n";                                 # 1 1 0 1 1 | 
| 1616 |  |  |  |  |  |  |  | 
| 1617 |  |  |  |  |  |  | In this example, we want C to return all bits at positions indexed 3 | 
| 1618 |  |  |  |  |  |  | through 7, both ends inclusive.  Note that the slice is returned as an array of bits. | 
| 1619 |  |  |  |  |  |  |  | 
| 1620 |  |  |  |  |  |  |  | 
| 1621 |  |  |  |  |  |  | =back | 
| 1622 |  |  |  |  |  |  |  | 
| 1623 |  |  |  |  |  |  | =head3 get_hex_string_from_bitvector() | 
| 1624 |  |  |  |  |  |  |  | 
| 1625 |  |  |  |  |  |  | =over 4 | 
| 1626 |  |  |  |  |  |  |  | 
| 1627 |  |  |  |  |  |  | Assuming that length of your bitvector is a multiple of 4, this methods returns a | 
| 1628 |  |  |  |  |  |  | hex representation of the bit pattern: | 
| 1629 |  |  |  |  |  |  |  | 
| 1630 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new(bitstring => "0110100001100101011011000110110001101111"); | 
| 1631 |  |  |  |  |  |  | print $bv->get_hex_string_from_bitvector();             # 68656c6c6f | 
| 1632 |  |  |  |  |  |  |  | 
| 1633 |  |  |  |  |  |  | The hex representation is returned in the form if a string of hex characters.  This | 
| 1634 |  |  |  |  |  |  | method throws an exception if the size of the bitvector is not a multiple of 4. | 
| 1635 |  |  |  |  |  |  |  | 
| 1636 |  |  |  |  |  |  | =back | 
| 1637 |  |  |  |  |  |  |  | 
| 1638 |  |  |  |  |  |  | =head3 get_text_string_from_bitvector() | 
| 1639 |  |  |  |  |  |  |  | 
| 1640 |  |  |  |  |  |  | =over 4 | 
| 1641 |  |  |  |  |  |  |  | 
| 1642 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( textstring => "hello" ); | 
| 1643 |  |  |  |  |  |  | print "$bv\n";                              # 0110100001100101011011000110110001101111 | 
| 1644 |  |  |  |  |  |  | print $bv->get_text_from_bitvector();                           # hello | 
| 1645 |  |  |  |  |  |  |  | 
| 1646 |  |  |  |  |  |  | The method returns a string of ASCII characters by converting successive 8-bit slices | 
| 1647 |  |  |  |  |  |  | of the bitvector into an ASCII character. It throws an exception if the size of the | 
| 1648 |  |  |  |  |  |  | bit pattern is not a multiple of 8.  Calling this method to create a text-based print | 
| 1649 |  |  |  |  |  |  | representation of a bit vector makes sense only if you don't expect to see any | 
| 1650 |  |  |  |  |  |  | unprintable characters in the successive 8-bit slices of the bitvector.  Let's say | 
| 1651 |  |  |  |  |  |  | you have created a bitvector from a text string using the appropriate constructor | 
| 1652 |  |  |  |  |  |  | call.  Subsequently, you encrypted this text string.  Next, you or someone else | 
| 1653 |  |  |  |  |  |  | decrypts the encrypted bit stream.  Since what comes out at the decryption end must | 
| 1654 |  |  |  |  |  |  | be the original text string, it would make sense to invoke this method to recover the | 
| 1655 |  |  |  |  |  |  | original text. | 
| 1656 |  |  |  |  |  |  |  | 
| 1657 |  |  |  |  |  |  | =back | 
| 1658 |  |  |  |  |  |  |  | 
| 1659 |  |  |  |  |  |  | =head3 gf_divide_by_modulus() | 
| 1660 |  |  |  |  |  |  |  | 
| 1661 |  |  |  |  |  |  | =over 4 | 
| 1662 |  |  |  |  |  |  |  | 
| 1663 |  |  |  |  |  |  | This method is for modular division in the Galois Field C.  You must specify | 
| 1664 |  |  |  |  |  |  | the modulus polynomial through a bit pattern and also the value of the integer C: | 
| 1665 |  |  |  |  |  |  |  | 
| 1666 |  |  |  |  |  |  | $mod = Algorithm::BitVector->new( bitstring => '100011011' );   # AES modulus | 
| 1667 |  |  |  |  |  |  | $n = 8; | 
| 1668 |  |  |  |  |  |  | $a = Algorithm::BitVector->new( bitstring => '11100010110001' ); | 
| 1669 |  |  |  |  |  |  | ($quotient, $remainder) = $a->gf_divide_by_modulus($mod, $n); | 
| 1670 |  |  |  |  |  |  | print "$quotient\n";                           # 00000000111010 | 
| 1671 |  |  |  |  |  |  | print "$remainder\n";                          # 10001111 | 
| 1672 |  |  |  |  |  |  |  | 
| 1673 |  |  |  |  |  |  | What this example illustrates is dividing the bitvector C<$a> by the modulus bit | 
| 1674 |  |  |  |  |  |  | vector C<$mod>.  For a more general division of one bitvector C<$a> by another bit | 
| 1675 |  |  |  |  |  |  | vector C<$b>, you would carry out a multiplication of C<$a> by the MI of C<$b>, where | 
| 1676 |  |  |  |  |  |  | MI stands for "multiplicative inverse" as returned by a call to the method | 
| 1677 |  |  |  |  |  |  | C.  A call to C returns two bitvectors, one for the | 
| 1678 |  |  |  |  |  |  | quotient and the other for the remainder. | 
| 1679 |  |  |  |  |  |  |  | 
| 1680 |  |  |  |  |  |  | =back | 
| 1681 |  |  |  |  |  |  |  | 
| 1682 |  |  |  |  |  |  | =head3 gf_MI() | 
| 1683 |  |  |  |  |  |  |  | 
| 1684 |  |  |  |  |  |  | =over 4 | 
| 1685 |  |  |  |  |  |  |  | 
| 1686 |  |  |  |  |  |  | This method returns the multiplicative inverse of a bit pattern in the Galois Field | 
| 1687 |  |  |  |  |  |  | C.  You must specify both the modulus polynomial through its bit pattern and | 
| 1688 |  |  |  |  |  |  | the value of C: | 
| 1689 |  |  |  |  |  |  |  | 
| 1690 |  |  |  |  |  |  | $modulus = Algorithm::BitVector->new( bitstring => '100011011' );     # AES modulus | 
| 1691 |  |  |  |  |  |  | $n = 8; | 
| 1692 |  |  |  |  |  |  | $a = Algorithm::BitVector->new( bitstring => '00110011' ); | 
| 1693 |  |  |  |  |  |  | print $a->gf_MI($modulus, $n);                     # 01101100 | 
| 1694 |  |  |  |  |  |  |  | 
| 1695 |  |  |  |  |  |  | Note that the multiplicative inverse is returned as a bitvector. | 
| 1696 |  |  |  |  |  |  |  | 
| 1697 |  |  |  |  |  |  | =back | 
| 1698 |  |  |  |  |  |  |  | 
| 1699 |  |  |  |  |  |  | =head3 gf_multiply() | 
| 1700 |  |  |  |  |  |  |  | 
| 1701 |  |  |  |  |  |  | =over 4 | 
| 1702 |  |  |  |  |  |  |  | 
| 1703 |  |  |  |  |  |  | This method returns a product of two bit patterns in the Galois Field C field. | 
| 1704 |  |  |  |  |  |  | That is, given any two polynomials with their coefficients drawn from the 0 and 1 | 
| 1705 |  |  |  |  |  |  | values in C, this method returns the product polynomial. | 
| 1706 |  |  |  |  |  |  |  | 
| 1707 |  |  |  |  |  |  | $a = Algorithm::BitVector->new( bitstring => '0110001' ); | 
| 1708 |  |  |  |  |  |  | $b = Algorithm::BitVector->new( bitstring => '0110' ); | 
| 1709 |  |  |  |  |  |  | print $a->gf_multiply($b);                                #00010100110 | 
| 1710 |  |  |  |  |  |  |  | 
| 1711 |  |  |  |  |  |  | As you would expect, in general, the bit pattern returned by this method will be | 
| 1712 |  |  |  |  |  |  | longer than the lengths of the two operand bitvectors.  The result returned by the | 
| 1713 |  |  |  |  |  |  | method is in the form of a bitvector. | 
| 1714 |  |  |  |  |  |  |  | 
| 1715 |  |  |  |  |  |  | =back | 
| 1716 |  |  |  |  |  |  |  | 
| 1717 |  |  |  |  |  |  | =head3 gf_multiply_modular() | 
| 1718 |  |  |  |  |  |  |  | 
| 1719 |  |  |  |  |  |  | =over 4 | 
| 1720 |  |  |  |  |  |  |  | 
| 1721 |  |  |  |  |  |  | This method carries out modular multiplication in the Galois Field C.  You | 
| 1722 |  |  |  |  |  |  | must supply it the bitvector for the modulus polynomial and the value of C. | 
| 1723 |  |  |  |  |  |  |  | 
| 1724 |  |  |  |  |  |  | $modulus = Algorithm::BitVector->new( bitstring => '100011011' );     # AES modulus | 
| 1725 |  |  |  |  |  |  | $n = 8; | 
| 1726 |  |  |  |  |  |  | $a = Algorithm::BitVector->new( bitstring => '0110001' ); | 
| 1727 |  |  |  |  |  |  | $b = Algorithm::BitVector->new( bitstring => '0110' ); | 
| 1728 |  |  |  |  |  |  | print $a->gf_multiply_modular($b, $modulus, $n);         # 10100110 | 
| 1729 |  |  |  |  |  |  |  | 
| 1730 |  |  |  |  |  |  | This example returns the product of the bit patterns C<$a> and C<$b> modulo the bit | 
| 1731 |  |  |  |  |  |  | pattern C<$modulus> in C.  The result returned by the method is in the form | 
| 1732 |  |  |  |  |  |  | of a bitvector. | 
| 1733 |  |  |  |  |  |  |  | 
| 1734 |  |  |  |  |  |  | =back | 
| 1735 |  |  |  |  |  |  |  | 
| 1736 |  |  |  |  |  |  | =head3 hamming_distance() | 
| 1737 |  |  |  |  |  |  |  | 
| 1738 |  |  |  |  |  |  | =over 4 | 
| 1739 |  |  |  |  |  |  |  | 
| 1740 |  |  |  |  |  |  | Hamming distance is commonly used to measure dissimilarity between two bitvectors of | 
| 1741 |  |  |  |  |  |  | the same size. | 
| 1742 |  |  |  |  |  |  |  | 
| 1743 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => '11111111' ); | 
| 1744 |  |  |  |  |  |  | $bv2 = Algorithm::BitVector->new( bitstring => '00101011' ); | 
| 1745 |  |  |  |  |  |  | print $bv1->hamming_distance( $bv2 );                            # 4 | 
| 1746 |  |  |  |  |  |  |  | 
| 1747 |  |  |  |  |  |  | This distance returns the number of bit positions in which two the bit patterns | 
| 1748 |  |  |  |  |  |  | differ.  The method throws an exception if the two bitvectors are not of the same | 
| 1749 |  |  |  |  |  |  | length.  The value returned is an integer. | 
| 1750 |  |  |  |  |  |  |  | 
| 1751 |  |  |  |  |  |  | =back | 
| 1752 |  |  |  |  |  |  |  | 
| 1753 |  |  |  |  |  |  | =head3 int_value() | 
| 1754 |  |  |  |  |  |  |  | 
| 1755 |  |  |  |  |  |  | =over 4 | 
| 1756 |  |  |  |  |  |  |  | 
| 1757 |  |  |  |  |  |  | You can find the integer value of a bitvector by | 
| 1758 |  |  |  |  |  |  |  | 
| 1759 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 5678 ); | 
| 1760 |  |  |  |  |  |  | print $bv3->int_value();                             # 5678 | 
| 1761 |  |  |  |  |  |  |  | 
| 1762 |  |  |  |  |  |  | or, even more simply by | 
| 1763 |  |  |  |  |  |  |  | 
| 1764 |  |  |  |  |  |  | print int($bv);                                      # 5678 | 
| 1765 |  |  |  |  |  |  |  | 
| 1766 |  |  |  |  |  |  | which works on account of the overloading of the C<0+> operator. | 
| 1767 |  |  |  |  |  |  |  | 
| 1768 |  |  |  |  |  |  | =back | 
| 1769 |  |  |  |  |  |  |  | 
| 1770 |  |  |  |  |  |  | =head3 is_power_of_2() | 
| 1771 |  |  |  |  |  |  |  | 
| 1772 |  |  |  |  |  |  | =over 4 | 
| 1773 |  |  |  |  |  |  |  | 
| 1774 |  |  |  |  |  |  | You can use this predicate to test if the integer value of a bitvector is a power of | 
| 1775 |  |  |  |  |  |  | 2: | 
| 1776 |  |  |  |  |  |  |  | 
| 1777 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '10000000001110' ); | 
| 1778 |  |  |  |  |  |  | print int($bv);                                        # 826 | 
| 1779 |  |  |  |  |  |  | print $bv->is_power_of_2();                            # 0 | 
| 1780 |  |  |  |  |  |  |  | 
| 1781 |  |  |  |  |  |  | The predicate returns 1 for true and 0 for false. | 
| 1782 |  |  |  |  |  |  |  | 
| 1783 |  |  |  |  |  |  | =back | 
| 1784 |  |  |  |  |  |  |  | 
| 1785 |  |  |  |  |  |  | =head3 is_power_of_2_sparse() | 
| 1786 |  |  |  |  |  |  |  | 
| 1787 |  |  |  |  |  |  | =over 4 | 
| 1788 |  |  |  |  |  |  |  | 
| 1789 |  |  |  |  |  |  | This does the same thing as the C method but in a way that makes it | 
| 1790 |  |  |  |  |  |  | faster for large bitvectors with very few bits set. | 
| 1791 |  |  |  |  |  |  |  | 
| 1792 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( size => 2000000 ); | 
| 1793 |  |  |  |  |  |  | $bv->set_bit(345234, 1); | 
| 1794 |  |  |  |  |  |  | print $bv->is_power_of_2_sparse();                    # 1 | 
| 1795 |  |  |  |  |  |  |  | 
| 1796 |  |  |  |  |  |  | =back | 
| 1797 |  |  |  |  |  |  |  | 
| 1798 |  |  |  |  |  |  | =head3 jaccard_distance() | 
| 1799 |  |  |  |  |  |  |  | 
| 1800 |  |  |  |  |  |  | =over 4 | 
| 1801 |  |  |  |  |  |  |  | 
| 1802 |  |  |  |  |  |  | The Jaccard distance between two bitvectors is 1 minus the Jaccard similarity | 
| 1803 |  |  |  |  |  |  | coefficient: | 
| 1804 |  |  |  |  |  |  |  | 
| 1805 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => '11111111' ); | 
| 1806 |  |  |  |  |  |  | $bv2 = Algorithm::BitVector->new( bitstring => '10101011' ); | 
| 1807 |  |  |  |  |  |  | print $bv1->jaccard_distance( $bv2 );                         # 0.375 | 
| 1808 |  |  |  |  |  |  |  | 
| 1809 |  |  |  |  |  |  | The value returned by the method is a floating point number between 0 and 1. | 
| 1810 |  |  |  |  |  |  |  | 
| 1811 |  |  |  |  |  |  | =back | 
| 1812 |  |  |  |  |  |  |  | 
| 1813 |  |  |  |  |  |  | =head3 jaccard_similarity() | 
| 1814 |  |  |  |  |  |  |  | 
| 1815 |  |  |  |  |  |  | =over 4 | 
| 1816 |  |  |  |  |  |  |  | 
| 1817 |  |  |  |  |  |  | This method returns the Jaccard similarity coefficient between the two bitvectors | 
| 1818 |  |  |  |  |  |  | pointed to by C<$bv1> and C<$bv2>: | 
| 1819 |  |  |  |  |  |  |  | 
| 1820 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => '11111111' ); | 
| 1821 |  |  |  |  |  |  | $bv2 = Algorithm::BitVector->new( bitstring => '10101011' ); | 
| 1822 |  |  |  |  |  |  | print $bv1->jaccard_similarity( $bv2 );                       # 0.675 | 
| 1823 |  |  |  |  |  |  |  | 
| 1824 |  |  |  |  |  |  | The value returned by the method is a floating point number between 0 and 1. | 
| 1825 |  |  |  |  |  |  |  | 
| 1826 |  |  |  |  |  |  | =back | 
| 1827 |  |  |  |  |  |  |  | 
| 1828 |  |  |  |  |  |  | =head3 length() | 
| 1829 |  |  |  |  |  |  |  | 
| 1830 |  |  |  |  |  |  | =over 4 | 
| 1831 |  |  |  |  |  |  |  | 
| 1832 |  |  |  |  |  |  | This method returns the total number of bits in a bitvector: | 
| 1833 |  |  |  |  |  |  |  | 
| 1834 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 5678 ); | 
| 1835 |  |  |  |  |  |  | print $bv;                                                    # 1011000101110 | 
| 1836 |  |  |  |  |  |  | print $bv->length();                                          # 13 | 
| 1837 |  |  |  |  |  |  |  | 
| 1838 |  |  |  |  |  |  | Note that what C returns is the total size of a bitvector, including any | 
| 1839 |  |  |  |  |  |  | leading zeros. | 
| 1840 |  |  |  |  |  |  |  | 
| 1841 |  |  |  |  |  |  | =back | 
| 1842 |  |  |  |  |  |  |  | 
| 1843 |  |  |  |  |  |  | =head3 multiplicative_inverse() | 
| 1844 |  |  |  |  |  |  |  | 
| 1845 |  |  |  |  |  |  | =over 4 | 
| 1846 |  |  |  |  |  |  |  | 
| 1847 |  |  |  |  |  |  | This method calculates the multiplicative inverse using normal integer arithmetic. | 
| 1848 |  |  |  |  |  |  | For multiplicative inverses in a Galois Field C, use the method C | 
| 1849 |  |  |  |  |  |  | described earlier in this API. | 
| 1850 |  |  |  |  |  |  |  | 
| 1851 |  |  |  |  |  |  | $modulus = Algorithm::BitVector->new( intVal => 32 ); | 
| 1852 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 17 ); | 
| 1853 |  |  |  |  |  |  | $result = $bv->multiplicative_inverse( $modulus ); | 
| 1854 |  |  |  |  |  |  | if ($result) { | 
| 1855 |  |  |  |  |  |  | print $result;                                                # 10001 | 
| 1856 |  |  |  |  |  |  | } else { | 
| 1857 |  |  |  |  |  |  | print "No multiplicative inverse in this case\n"; | 
| 1858 |  |  |  |  |  |  | } | 
| 1859 |  |  |  |  |  |  |  | 
| 1860 |  |  |  |  |  |  | What this example says is that the multiplicative inverse of 17 modulo 32 is 17. That | 
| 1861 |  |  |  |  |  |  | is because 17 times 17 in modulo 32 arithmetic equals 1.  When using this method, you | 
| 1862 |  |  |  |  |  |  | must test the value returned for 0.  If the returned value is 0, that means that the | 
| 1863 |  |  |  |  |  |  | number corresponding to the bitvector on which this method is invoked does not | 
| 1864 |  |  |  |  |  |  | possess a multiplicative inverse with respect to the modulus. | 
| 1865 |  |  |  |  |  |  |  | 
| 1866 |  |  |  |  |  |  | =back | 
| 1867 |  |  |  |  |  |  |  | 
| 1868 |  |  |  |  |  |  | =head3 next_set_bit() | 
| 1869 |  |  |  |  |  |  |  | 
| 1870 |  |  |  |  |  |  | =over 4 | 
| 1871 |  |  |  |  |  |  |  | 
| 1872 |  |  |  |  |  |  | Starting from a given bit position, this method returns the index of the next bit | 
| 1873 |  |  |  |  |  |  | that is set in a bitvector: | 
| 1874 |  |  |  |  |  |  |  | 
| 1875 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '00000000000001' ); | 
| 1876 |  |  |  |  |  |  | print $bv->next_set_bit(5);                                  # 13 | 
| 1877 |  |  |  |  |  |  |  | 
| 1878 |  |  |  |  |  |  | In this example, we are asking the method to return the index of the bit that is set | 
| 1879 |  |  |  |  |  |  | after the bit position indexed 5. | 
| 1880 |  |  |  |  |  |  |  | 
| 1881 |  |  |  |  |  |  | =back | 
| 1882 |  |  |  |  |  |  |  | 
| 1883 |  |  |  |  |  |  | =head3 pad_from_left() | 
| 1884 |  |  |  |  |  |  |  | 
| 1885 |  |  |  |  |  |  | =over 4 | 
| 1886 |  |  |  |  |  |  |  | 
| 1887 |  |  |  |  |  |  | You can pad a bitvector from the left with a designated number of zeros: | 
| 1888 |  |  |  |  |  |  |  | 
| 1889 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '101010' ); | 
| 1890 |  |  |  |  |  |  | print $bv->pad_from_left( 4 );                               # 0000101010 | 
| 1891 |  |  |  |  |  |  |  | 
| 1892 |  |  |  |  |  |  | The method returns the bitvector on which it is invoked.  So you can think of it as | 
| 1893 |  |  |  |  |  |  | an in-place extension of a bitvector (although, under the hood, the extension is | 
| 1894 |  |  |  |  |  |  | carried out by giving a new longer C<_vector> attribute to the bitvector object). | 
| 1895 |  |  |  |  |  |  |  | 
| 1896 |  |  |  |  |  |  | =back | 
| 1897 |  |  |  |  |  |  |  | 
| 1898 |  |  |  |  |  |  | =head3 pad_from_right() | 
| 1899 |  |  |  |  |  |  |  | 
| 1900 |  |  |  |  |  |  | =over 4 | 
| 1901 |  |  |  |  |  |  |  | 
| 1902 |  |  |  |  |  |  | You can pad a bitvector from the right with a designated number of zeros: | 
| 1903 |  |  |  |  |  |  |  | 
| 1904 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '101010' ); | 
| 1905 |  |  |  |  |  |  | print $bv->pad_from_right( 4 );                              # 1010100000 | 
| 1906 |  |  |  |  |  |  |  | 
| 1907 |  |  |  |  |  |  | The method returns the bitvector on which it is invoked.  So you can think of it as | 
| 1908 |  |  |  |  |  |  | an in-place extension of a bitvector (although, under the hood, the extension is | 
| 1909 |  |  |  |  |  |  | carried out by giving a new longer C<_vector> attribute to the bitvector object). | 
| 1910 |  |  |  |  |  |  |  | 
| 1911 |  |  |  |  |  |  |  | 
| 1912 |  |  |  |  |  |  | =back | 
| 1913 |  |  |  |  |  |  |  | 
| 1914 |  |  |  |  |  |  | =head3 permute() | 
| 1915 |  |  |  |  |  |  |  | 
| 1916 |  |  |  |  |  |  | =over 4 | 
| 1917 |  |  |  |  |  |  |  | 
| 1918 |  |  |  |  |  |  | You can permute the bits in a bitvector with a permutation list as shown below: | 
| 1919 |  |  |  |  |  |  |  | 
| 1920 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( intVal => 203, size => 8 ); | 
| 1921 |  |  |  |  |  |  | print $bv1;                                                   # 11001011 | 
| 1922 |  |  |  |  |  |  | $bv2 =  $bv1->permute( [3, 2, 1, 0, 7, 6, 5, 4] ); | 
| 1923 |  |  |  |  |  |  | print $bv2;                                                   # 00111101 | 
| 1924 |  |  |  |  |  |  |  | 
| 1925 |  |  |  |  |  |  | The method returns a new bitvector with permuted bits. | 
| 1926 |  |  |  |  |  |  |  | 
| 1927 |  |  |  |  |  |  | =back | 
| 1928 |  |  |  |  |  |  |  | 
| 1929 |  |  |  |  |  |  | =head3 rank_of_bit_set_at_index() | 
| 1930 |  |  |  |  |  |  |  | 
| 1931 |  |  |  |  |  |  | =over 4 | 
| 1932 |  |  |  |  |  |  |  | 
| 1933 |  |  |  |  |  |  | You can measure the "rank" of a bit that is set at a given index.  Rank is the number | 
| 1934 |  |  |  |  |  |  | of bits that are set up to the argument position, as in | 
| 1935 |  |  |  |  |  |  |  | 
| 1936 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '01010101011100' ); | 
| 1937 |  |  |  |  |  |  | print $bv->rank_of_bit_set_at_index( 10 );                    # 6 | 
| 1938 |  |  |  |  |  |  |  | 
| 1939 |  |  |  |  |  |  | The value 6 returned by this call to C is the number of | 
| 1940 |  |  |  |  |  |  | bits set up to the position indexed 10 (including that position).  The method throws | 
| 1941 |  |  |  |  |  |  | an exception if there is no bit set at the argument position. | 
| 1942 |  |  |  |  |  |  |  | 
| 1943 |  |  |  |  |  |  | =back | 
| 1944 |  |  |  |  |  |  |  | 
| 1945 |  |  |  |  |  |  | =head3 read_bits_from_file() | 
| 1946 |  |  |  |  |  |  |  | 
| 1947 |  |  |  |  |  |  | =over 4 | 
| 1948 |  |  |  |  |  |  |  | 
| 1949 |  |  |  |  |  |  | Constructing bitvectors from the contents of a disk file takes two steps: First you | 
| 1950 |  |  |  |  |  |  | must make the call shown in the first statement below. The purpose of this call is to | 
| 1951 |  |  |  |  |  |  | create a file handle that is associated with the variable C<$bv> in this case. | 
| 1952 |  |  |  |  |  |  | Subsequent invocations of C on this variable will read | 
| 1953 |  |  |  |  |  |  | blocks of C<$n> bits and return a bitvector for each block thus read.  The variable | 
| 1954 |  |  |  |  |  |  | C<$n> must be a multiple of 8 for this to work. | 
| 1955 |  |  |  |  |  |  |  | 
| 1956 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( filename => 'testinput.txt' ); | 
| 1957 |  |  |  |  |  |  | $bv1 = $bv->read_bits_from_file(64); | 
| 1958 |  |  |  |  |  |  | $bv2 = $bv->read_bits_from_file(64); | 
| 1959 |  |  |  |  |  |  | ... | 
| 1960 |  |  |  |  |  |  | ... | 
| 1961 |  |  |  |  |  |  | $bv->close_file_handle(); | 
| 1962 |  |  |  |  |  |  |  | 
| 1963 |  |  |  |  |  |  | When reading a file as shown above, you can test the attribute C of the | 
| 1964 |  |  |  |  |  |  | bitvector object in order to find out if there is more to be read in the file.  The | 
| 1965 |  |  |  |  |  |  | C loop shown below reads all of a file in 64-bit blocks. | 
| 1966 |  |  |  |  |  |  |  | 
| 1967 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( filename => 'testinput.txt' ); | 
| 1968 |  |  |  |  |  |  | while ($bv->{more_to_read}) { | 
| 1969 |  |  |  |  |  |  | my $bv_read = $bv->read_bits_from_file( 64 ); | 
| 1970 |  |  |  |  |  |  | print "$bv_read\n"; | 
| 1971 |  |  |  |  |  |  | } | 
| 1972 |  |  |  |  |  |  | $bv->close_file_handle(); | 
| 1973 |  |  |  |  |  |  |  | 
| 1974 |  |  |  |  |  |  | The size of the last bitvector constructed from a file corresponds to how many bytes | 
| 1975 |  |  |  |  |  |  | remain unread in the file at that point.  It is your responsibility to zero-pad the | 
| 1976 |  |  |  |  |  |  | last bitvector appropriately if, say, you are doing block encryption of the whole | 
| 1977 |  |  |  |  |  |  | file. | 
| 1978 |  |  |  |  |  |  |  | 
| 1979 |  |  |  |  |  |  | =back | 
| 1980 |  |  |  |  |  |  |  | 
| 1981 |  |  |  |  |  |  | =head3 reset() | 
| 1982 |  |  |  |  |  |  |  | 
| 1983 |  |  |  |  |  |  | =over 4 | 
| 1984 |  |  |  |  |  |  |  | 
| 1985 |  |  |  |  |  |  | You can reset a previously constructed bitvector all either all 1's or all 0's by | 
| 1986 |  |  |  |  |  |  | calling this method: | 
| 1987 |  |  |  |  |  |  |  | 
| 1988 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 203, size => 8 ); | 
| 1989 |  |  |  |  |  |  | print $bv;                                                  # 11001011 | 
| 1990 |  |  |  |  |  |  | $bv->reset(1); | 
| 1991 |  |  |  |  |  |  | print $bv;                                                  # 11111111 | 
| 1992 |  |  |  |  |  |  | $bv->reset(0); | 
| 1993 |  |  |  |  |  |  | print $bv;                                                  # 00000000 | 
| 1994 |  |  |  |  |  |  |  | 
| 1995 |  |  |  |  |  |  | What the method accomplishes can be thought of as in-place resetting of the bits. The | 
| 1996 |  |  |  |  |  |  | method does not return anything. | 
| 1997 |  |  |  |  |  |  |  | 
| 1998 |  |  |  |  |  |  | =back | 
| 1999 |  |  |  |  |  |  |  | 
| 2000 |  |  |  |  |  |  | =head3 reverse() | 
| 2001 |  |  |  |  |  |  |  | 
| 2002 |  |  |  |  |  |  | =over 4 | 
| 2003 |  |  |  |  |  |  |  | 
| 2004 |  |  |  |  |  |  | Given a bitvector, you can construct a bitvector with all the bits reversed, in the | 
| 2005 |  |  |  |  |  |  | sense that what was left-to-right earlier now becomes right-to-left, as in | 
| 2006 |  |  |  |  |  |  |  | 
| 2007 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '01100001' ); | 
| 2008 |  |  |  |  |  |  | print $bv->reverse();                                       # 10000110 | 
| 2009 |  |  |  |  |  |  |  | 
| 2010 |  |  |  |  |  |  | A call to this method returns a new bitvector whose bits are in reverse order in | 
| 2011 |  |  |  |  |  |  | relation to the bits in the bitvector on which the method is called. | 
| 2012 |  |  |  |  |  |  |  | 
| 2013 |  |  |  |  |  |  | =back | 
| 2014 |  |  |  |  |  |  |  | 
| 2015 |  |  |  |  |  |  | =head3 runs() | 
| 2016 |  |  |  |  |  |  |  | 
| 2017 |  |  |  |  |  |  | =over 4 | 
| 2018 |  |  |  |  |  |  |  | 
| 2019 |  |  |  |  |  |  | This method returns an array of runs of 1's and 0's in a bitvector: | 
| 2020 |  |  |  |  |  |  |  | 
| 2021 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1,1,1,0,0,1] ); | 
| 2022 |  |  |  |  |  |  | my @bvruns = $bv->runs(); | 
| 2023 |  |  |  |  |  |  | print "@bvruns\n";                                     # 111  00  1 | 
| 2024 |  |  |  |  |  |  |  | 
| 2025 |  |  |  |  |  |  | Each element of the array that is returned by C is a string of either 1's or | 
| 2026 |  |  |  |  |  |  | 0's. | 
| 2027 |  |  |  |  |  |  |  | 
| 2028 |  |  |  |  |  |  | =back | 
| 2029 |  |  |  |  |  |  |  | 
| 2030 |  |  |  |  |  |  | =head3 set_bit() | 
| 2031 |  |  |  |  |  |  |  | 
| 2032 |  |  |  |  |  |  | =over 4 | 
| 2033 |  |  |  |  |  |  |  | 
| 2034 |  |  |  |  |  |  | With array-like indexing, you can use this method to set the individual bits of a | 
| 2035 |  |  |  |  |  |  | previously constructed bitvector.  Both positive and negative values are allowed for | 
| 2036 |  |  |  |  |  |  | the bit position index.  The method takes two explicit arguments, the first for the | 
| 2037 |  |  |  |  |  |  | position of the bit you want to set and the second for the value of the bit. | 
| 2038 |  |  |  |  |  |  |  | 
| 2039 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitstring => '1111' ); | 
| 2040 |  |  |  |  |  |  | $bv->set_bit(0,0);                                # set the first bit to 0 | 
| 2041 |  |  |  |  |  |  | $bv->set_bit(1,0);                                # set the next bit to 0 | 
| 2042 |  |  |  |  |  |  | print $bv;                                        # 0011 | 
| 2043 |  |  |  |  |  |  | $bv->set_bit(-1,0);                               # set the last bit to 0 | 
| 2044 |  |  |  |  |  |  | $bv->set_bit(-2,0);                               # set the bit before the last bit to 0 | 
| 2045 |  |  |  |  |  |  | print $bv;                                        # 0000 | 
| 2046 |  |  |  |  |  |  |  | 
| 2047 |  |  |  |  |  |  | =back | 
| 2048 |  |  |  |  |  |  |  | 
| 2049 |  |  |  |  |  |  | =head3 set_value() | 
| 2050 |  |  |  |  |  |  |  | 
| 2051 |  |  |  |  |  |  | =over 4 | 
| 2052 |  |  |  |  |  |  |  | 
| 2053 |  |  |  |  |  |  | This method can be used to change the bit pattern associated with a previously | 
| 2054 |  |  |  |  |  |  | constructed bitvector: | 
| 2055 |  |  |  |  |  |  |  | 
| 2056 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => 7, size => 16 ); | 
| 2057 |  |  |  |  |  |  | print $bv;                                 # 0000000000000111 | 
| 2058 |  |  |  |  |  |  | $bv->set_value( intVal => 45 ); | 
| 2059 |  |  |  |  |  |  | print $bv;                                 # 101101 | 
| 2060 |  |  |  |  |  |  |  | 
| 2061 |  |  |  |  |  |  | You can think of this method as carrying out an in-place resetting of the bit array | 
| 2062 |  |  |  |  |  |  | in a bitvector.  The method does not return anything. | 
| 2063 |  |  |  |  |  |  |  | 
| 2064 |  |  |  |  |  |  | =back | 
| 2065 |  |  |  |  |  |  |  | 
| 2066 |  |  |  |  |  |  | =head3 shift_left() | 
| 2067 |  |  |  |  |  |  |  | 
| 2068 |  |  |  |  |  |  | =over 4 | 
| 2069 |  |  |  |  |  |  |  | 
| 2070 |  |  |  |  |  |  | If you want to shift a bitvector non-circularly to the left, this is the method to | 
| 2071 |  |  |  |  |  |  | call: | 
| 2072 |  |  |  |  |  |  |  | 
| 2073 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1,1, 1, 0, 0, 1] ); | 
| 2074 |  |  |  |  |  |  | $bv->shift_left(3); | 
| 2075 |  |  |  |  |  |  | print $bv;                                                  # 001000 | 
| 2076 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1,1, 1, 0, 0, 1] ); | 
| 2077 |  |  |  |  |  |  | $bv->shift_left(3)->shift_right(3); | 
| 2078 |  |  |  |  |  |  | print $bv;                                                  # 000001 | 
| 2079 |  |  |  |  |  |  |  | 
| 2080 |  |  |  |  |  |  | As the bitvector is shifted non-circularly to the left, the exposed bit positions on | 
| 2081 |  |  |  |  |  |  | the right are filled with zeros.  Note that the method returns the bitvector object | 
| 2082 |  |  |  |  |  |  | on which it is invoked.  That is the reason why the chained invocation of the method | 
| 2083 |  |  |  |  |  |  | in the fifth statement above works. | 
| 2084 |  |  |  |  |  |  |  | 
| 2085 |  |  |  |  |  |  | =back | 
| 2086 |  |  |  |  |  |  |  | 
| 2087 |  |  |  |  |  |  | =head3 shift_right() | 
| 2088 |  |  |  |  |  |  |  | 
| 2089 |  |  |  |  |  |  | =over 4 | 
| 2090 |  |  |  |  |  |  |  | 
| 2091 |  |  |  |  |  |  | If you want to shift a bitvector non-circularly to the right, this is the method to | 
| 2092 |  |  |  |  |  |  | call: | 
| 2093 |  |  |  |  |  |  |  | 
| 2094 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1,1, 1, 0, 0, 1] ); | 
| 2095 |  |  |  |  |  |  | $bv->shift_right(3); | 
| 2096 |  |  |  |  |  |  | print $bv;                                                  # 000111 | 
| 2097 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( bitlist => [1,1, 1, 0, 0, 1] ); | 
| 2098 |  |  |  |  |  |  | $bv->shift_right(3)->shift_right(2); | 
| 2099 |  |  |  |  |  |  | print $bv;                                                  # 000001 | 
| 2100 |  |  |  |  |  |  |  | 
| 2101 |  |  |  |  |  |  | As the bitvector is shifted non-circularly to the right, the exposed bit positions on | 
| 2102 |  |  |  |  |  |  | the left are filled with zeros.  Note that the method returns the bitvector object | 
| 2103 |  |  |  |  |  |  | on which it is invoked.  That is the reason why the chained invocation of the method | 
| 2104 |  |  |  |  |  |  | in the fifth statement above works. | 
| 2105 |  |  |  |  |  |  |  | 
| 2106 |  |  |  |  |  |  | =back | 
| 2107 |  |  |  |  |  |  |  | 
| 2108 |  |  |  |  |  |  | =head3 test_for_primality() | 
| 2109 |  |  |  |  |  |  |  | 
| 2110 |  |  |  |  |  |  | =over 4 | 
| 2111 |  |  |  |  |  |  |  | 
| 2112 |  |  |  |  |  |  | If the integer value of a bitvector is small (meaning smaller than C<< 0x7f_ff_ff_ff >>), | 
| 2113 |  |  |  |  |  |  | you can use this method to test it for its primality through the Miller-Rabin | 
| 2114 |  |  |  |  |  |  | probabilistic test: | 
| 2115 |  |  |  |  |  |  |  | 
| 2116 |  |  |  |  |  |  | $p = 7417; | 
| 2117 |  |  |  |  |  |  | $bv = Algorithm::BitVector->new( intVal => $p ); | 
| 2118 |  |  |  |  |  |  | $check = $bv->test_for_primality(); | 
| 2119 |  |  |  |  |  |  | print "The primality test for $p: $check\n"; | 
| 2120 |  |  |  |  |  |  | # The primality test for 7417: is a prime with probability 0.99993896484375 | 
| 2121 |  |  |  |  |  |  |  | 
| 2122 |  |  |  |  |  |  | The method returns one of two strings: If the primality test succeeds, the method | 
| 2123 |  |  |  |  |  |  | returns a string like "C".  And if the test fails, | 
| 2124 |  |  |  |  |  |  | the method returns the string "C". | 
| 2125 |  |  |  |  |  |  |  | 
| 2126 |  |  |  |  |  |  | =back | 
| 2127 |  |  |  |  |  |  |  | 
| 2128 |  |  |  |  |  |  | =head3 unpermute() | 
| 2129 |  |  |  |  |  |  |  | 
| 2130 |  |  |  |  |  |  | =over 4 | 
| 2131 |  |  |  |  |  |  |  | 
| 2132 |  |  |  |  |  |  | This method reverses the permutation carried out by a call to the C method | 
| 2133 |  |  |  |  |  |  | as shown below: | 
| 2134 |  |  |  |  |  |  |  | 
| 2135 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( intVal => 203, size => 8 ); | 
| 2136 |  |  |  |  |  |  | print $bv1;                                                   # 11001011 | 
| 2137 |  |  |  |  |  |  | $bv2 =  $bv1->permute( [3, 2, 1, 0, 7, 6, 5, 4] ); | 
| 2138 |  |  |  |  |  |  | print $bv2;                                                   # 00111101 | 
| 2139 |  |  |  |  |  |  | $bv3 = $bv2->unpermute( [3, 2, 1, 0, 7, 6, 5, 4] ); | 
| 2140 |  |  |  |  |  |  | print $bv3;                                                   # 11001011 | 
| 2141 |  |  |  |  |  |  |  | 
| 2142 |  |  |  |  |  |  | The method returns a new bitvector with unpermuted bits.  Also note that the method | 
| 2143 |  |  |  |  |  |  | throws an exception if the permutation list is not as long as the size of the | 
| 2144 |  |  |  |  |  |  | bitvector on which the method is invoked. | 
| 2145 |  |  |  |  |  |  |  | 
| 2146 |  |  |  |  |  |  | =back | 
| 2147 |  |  |  |  |  |  |  | 
| 2148 |  |  |  |  |  |  | =head3 write_to_file() | 
| 2149 |  |  |  |  |  |  |  | 
| 2150 |  |  |  |  |  |  | =over 4 | 
| 2151 |  |  |  |  |  |  |  | 
| 2152 |  |  |  |  |  |  | This method writes the bitvectors in your program to a disk file: | 
| 2153 |  |  |  |  |  |  |  | 
| 2154 |  |  |  |  |  |  | $bv1 = Algorithm::BitVector->new( bitstring => '00001010' ); | 
| 2155 |  |  |  |  |  |  | open my $FILEOUT, ">test.txt"; | 
| 2156 |  |  |  |  |  |  | $bv1->write_to_file( $FILEOUT ); | 
| 2157 |  |  |  |  |  |  | close $FILEOUT; | 
| 2158 |  |  |  |  |  |  |  | 
| 2159 |  |  |  |  |  |  | The size of a bitvector must be a multiple of 8 for this write method to work.  If | 
| 2160 |  |  |  |  |  |  | this condition is not met, the method will throw an exception. | 
| 2161 |  |  |  |  |  |  |  | 
| 2162 |  |  |  |  |  |  | B When writing an internally generated bitvector out | 
| 2163 |  |  |  |  |  |  | to a disk file, it may be important to open the file in the binary mode, since | 
| 2164 |  |  |  |  |  |  | otherwise the bit pattern `00001010' ('\n') in your bitstring will be written out as | 
| 2165 |  |  |  |  |  |  | 0000110100001010 ('\r\n') which is the line break on Windows machines. | 
| 2166 |  |  |  |  |  |  |  | 
| 2167 |  |  |  |  |  |  | =back | 
| 2168 |  |  |  |  |  |  |  | 
| 2169 |  |  |  |  |  |  | =head1 REQUIRED | 
| 2170 |  |  |  |  |  |  |  | 
| 2171 |  |  |  |  |  |  | This module imports the following modules: | 
| 2172 |  |  |  |  |  |  |  | 
| 2173 |  |  |  |  |  |  | Math::BigInt | 
| 2174 |  |  |  |  |  |  | List::Util | 
| 2175 |  |  |  |  |  |  | Math::Random | 
| 2176 |  |  |  |  |  |  | Fcntl | 
| 2177 |  |  |  |  |  |  |  | 
| 2178 |  |  |  |  |  |  |  | 
| 2179 |  |  |  |  |  |  | =head1 THE C DIRECTORY | 
| 2180 |  |  |  |  |  |  |  | 
| 2181 |  |  |  |  |  |  | The C directory contains the following script that invokes all of the | 
| 2182 |  |  |  |  |  |  | functionality of this module: | 
| 2183 |  |  |  |  |  |  |  | 
| 2184 |  |  |  |  |  |  | BitVectorDemo.pl | 
| 2185 |  |  |  |  |  |  |  | 
| 2186 |  |  |  |  |  |  | In case there is any doubt about how exactly to invoke a method or how to use an | 
| 2187 |  |  |  |  |  |  | operator, please look at the usage in this script. | 
| 2188 |  |  |  |  |  |  |  | 
| 2189 |  |  |  |  |  |  | =head1 EXPORT | 
| 2190 |  |  |  |  |  |  |  | 
| 2191 |  |  |  |  |  |  | None by design. | 
| 2192 |  |  |  |  |  |  |  | 
| 2193 |  |  |  |  |  |  | =head1 BUGS | 
| 2194 |  |  |  |  |  |  |  | 
| 2195 |  |  |  |  |  |  | Please notify the author if you encounter any bugs.  When sending email, please place | 
| 2196 |  |  |  |  |  |  | the string 'BitVector' in the subject line. | 
| 2197 |  |  |  |  |  |  |  | 
| 2198 |  |  |  |  |  |  | =head1 INSTALLATION | 
| 2199 |  |  |  |  |  |  |  | 
| 2200 |  |  |  |  |  |  | Download the archive from CPAN in any directory of your choice.  Unpack the archive | 
| 2201 |  |  |  |  |  |  | with a command that on a Linux machine would look like: | 
| 2202 |  |  |  |  |  |  |  | 
| 2203 |  |  |  |  |  |  | tar zxvf Algorithm-BitVector-1.23.tar.gz | 
| 2204 |  |  |  |  |  |  |  | 
| 2205 |  |  |  |  |  |  | This will create an installation directory for you whose name will be | 
| 2206 |  |  |  |  |  |  | C.  Enter this directory and execute the following commands | 
| 2207 |  |  |  |  |  |  | for a standard install of the module if you have root privileges: | 
| 2208 |  |  |  |  |  |  |  | 
| 2209 |  |  |  |  |  |  | perl Makefile.PL | 
| 2210 |  |  |  |  |  |  | make | 
| 2211 |  |  |  |  |  |  | make test | 
| 2212 |  |  |  |  |  |  | sudo make install | 
| 2213 |  |  |  |  |  |  |  | 
| 2214 |  |  |  |  |  |  | If you do not have root privileges, you can carry out a non-standard install the | 
| 2215 |  |  |  |  |  |  | module in any directory of your choice by: | 
| 2216 |  |  |  |  |  |  |  | 
| 2217 |  |  |  |  |  |  | perl Makefile.PL prefix=/some/other/directory/ | 
| 2218 |  |  |  |  |  |  | make | 
| 2219 |  |  |  |  |  |  | make test | 
| 2220 |  |  |  |  |  |  | make install | 
| 2221 |  |  |  |  |  |  |  | 
| 2222 |  |  |  |  |  |  | With a non-standard install, you may also have to set your PERL5LIB environment | 
| 2223 |  |  |  |  |  |  | variable so that this module can find the required other modules. How you do that | 
| 2224 |  |  |  |  |  |  | would depend on what platform you are working on.  In order to install this module in | 
| 2225 |  |  |  |  |  |  | a Linux machine on which I use tcsh for the shell, I set the PERL5LIB environment | 
| 2226 |  |  |  |  |  |  | variable by | 
| 2227 |  |  |  |  |  |  |  | 
| 2228 |  |  |  |  |  |  | setenv PERL5LIB /some/other/directory/lib64/perl5/:/some/other/directory/share/perl5/ | 
| 2229 |  |  |  |  |  |  |  | 
| 2230 |  |  |  |  |  |  | If I used bash, I'd need to declare: | 
| 2231 |  |  |  |  |  |  |  | 
| 2232 |  |  |  |  |  |  | export PERL5LIB=/some/other/directory/lib64/perl5/:/some/other/directory/share/perl5/ | 
| 2233 |  |  |  |  |  |  |  | 
| 2234 |  |  |  |  |  |  |  | 
| 2235 |  |  |  |  |  |  | =head1 THANKS | 
| 2236 |  |  |  |  |  |  |  | 
| 2237 |  |  |  |  |  |  | The bug in the primality test function, whose fix resulted in Version 1.21, was | 
| 2238 |  |  |  |  |  |  | reported by Dana Jacobsen in a bug report filed at C.  Thanks Dana! | 
| 2239 |  |  |  |  |  |  |  | 
| 2240 |  |  |  |  |  |  | The restriction on the Perl version was removed on Slaven Rezic's recommendation.  He | 
| 2241 |  |  |  |  |  |  | says the module runs fine with Perl 5.8.9.  Thanks Slaven! | 
| 2242 |  |  |  |  |  |  |  | 
| 2243 |  |  |  |  |  |  | =head1 AUTHOR | 
| 2244 |  |  |  |  |  |  |  | 
| 2245 |  |  |  |  |  |  | Avinash Kak, kak@purdue.edu | 
| 2246 |  |  |  |  |  |  |  | 
| 2247 |  |  |  |  |  |  | If you send email, please place the string "BitVector" in your subject line to get past | 
| 2248 |  |  |  |  |  |  | my spam filter. | 
| 2249 |  |  |  |  |  |  |  | 
| 2250 |  |  |  |  |  |  | =head1 COPYRIGHT | 
| 2251 |  |  |  |  |  |  |  | 
| 2252 |  |  |  |  |  |  | This library is free software; you can redistribute it and/or modify it under the | 
| 2253 |  |  |  |  |  |  | same terms as Perl itself. | 
| 2254 |  |  |  |  |  |  |  | 
| 2255 |  |  |  |  |  |  | Copyright 2015 Avinash Kak | 
| 2256 |  |  |  |  |  |  |  | 
| 2257 |  |  |  |  |  |  | =cut | 
| 2258 |  |  |  |  |  |  |  |