line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
1
|
5
|
|
|
5
|
|
27
|
use strict; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
407
|
|
2
|
5
|
|
|
5
|
|
27
|
use vars qw ($VERSION); |
|
5
|
|
|
|
|
10
|
|
|
5
|
|
|
|
|
578
|
|
3
|
|
|
|
|
|
|
#use warnings; |
4
|
|
|
|
|
|
|
############################################################################### |
5
|
|
|
|
|
|
|
# NNFlex - Neural Network (flexible) - a heavily custom NN simulator |
6
|
|
|
|
|
|
|
# |
7
|
|
|
|
|
|
|
# Sept 2004 - CW Colbourn |
8
|
|
|
|
|
|
|
# |
9
|
|
|
|
|
|
|
# This was developed from the abortive nnseq package originally intended |
10
|
|
|
|
|
|
|
# for real time neural networks. |
11
|
|
|
|
|
|
|
# The basis of the approach for this version is a very flexible, modular |
12
|
|
|
|
|
|
|
# set of packages. This package constitutes the base, allowing the modeller |
13
|
|
|
|
|
|
|
# to create meshes, apply input, and read output ONLY! |
14
|
|
|
|
|
|
|
# |
15
|
|
|
|
|
|
|
# Separate modules are to be written to perform feedback adjustments, |
16
|
|
|
|
|
|
|
# various activation functions, text/gui front ends etc |
17
|
|
|
|
|
|
|
# |
18
|
|
|
|
|
|
|
############################################################################### |
19
|
|
|
|
|
|
|
# Version Control |
20
|
|
|
|
|
|
|
# =============== |
21
|
|
|
|
|
|
|
# |
22
|
|
|
|
|
|
|
# 0.1 20040905 CColbourn New module |
23
|
|
|
|
|
|
|
# added NNFlex::datasets |
24
|
|
|
|
|
|
|
# |
25
|
|
|
|
|
|
|
# 0.11 20050113 CColbourn Added NNFlex::lesion |
26
|
|
|
|
|
|
|
# Improved Draw |
27
|
|
|
|
|
|
|
# added NNFlex::datasets |
28
|
|
|
|
|
|
|
# |
29
|
|
|
|
|
|
|
# 0.12 20050116 CColbourn Fixed reinforce.pm bug |
30
|
|
|
|
|
|
|
# Added call into datasets |
31
|
|
|
|
|
|
|
# in ::run to offer alternative |
32
|
|
|
|
|
|
|
# syntax |
33
|
|
|
|
|
|
|
# |
34
|
|
|
|
|
|
|
# 0.13 20050121 CColbourn Created momentum learning module |
35
|
|
|
|
|
|
|
# |
36
|
|
|
|
|
|
|
# 0.14 20050201 CColbourn Abstracted derivatiive of activation |
37
|
|
|
|
|
|
|
# function into a separate function call |
38
|
|
|
|
|
|
|
# instead of hardcoded 1-y*y in backprop |
39
|
|
|
|
|
|
|
# tanh, linear & momentum |
40
|
|
|
|
|
|
|
# |
41
|
|
|
|
|
|
|
# 0.15 20050206 CColbourn Fixed a bug in feedforward.pm. Stopped |
42
|
|
|
|
|
|
|
# calling dbug unless scalar debug > 0 |
43
|
|
|
|
|
|
|
# in a lot of calls |
44
|
|
|
|
|
|
|
# |
45
|
|
|
|
|
|
|
# 0.16 20050218 CColbourn Changed from a hash of weights to an |
46
|
|
|
|
|
|
|
# array of weights, to make it easier |
47
|
|
|
|
|
|
|
# to adapt the code to PDL |
48
|
|
|
|
|
|
|
# |
49
|
|
|
|
|
|
|
# 0.17 20050302 CColbourn Changed input params to ::output to |
50
|
|
|
|
|
|
|
# be param=>parameter not anon hash |
51
|
|
|
|
|
|
|
# Included round parameter in output |
52
|
|
|
|
|
|
|
# |
53
|
|
|
|
|
|
|
# 0.20 20050307 CColbourn Modified for inheritance to simplify |
54
|
|
|
|
|
|
|
# future network types |
55
|
|
|
|
|
|
|
# |
56
|
|
|
|
|
|
|
# 0.21 20050316 CColbourn Rewrote perldocs, implemented fahlman |
57
|
|
|
|
|
|
|
# constant, chopped out old legacy stuff |
58
|
|
|
|
|
|
|
# put math functions in mathlib, etc etc |
59
|
|
|
|
|
|
|
# |
60
|
|
|
|
|
|
|
# 0.22 20050317 CColbourn Implemented ::connect method |
61
|
|
|
|
|
|
|
# |
62
|
|
|
|
|
|
|
# 0.23 20050424 CColbourn Included Hopfield module in dist. |
63
|
|
|
|
|
|
|
# |
64
|
|
|
|
|
|
|
# 0.24 20050620 CColbourn Corrected a bug in the bias weight |
65
|
|
|
|
|
|
|
# calculation |
66
|
|
|
|
|
|
|
# |
67
|
|
|
|
|
|
|
# |
68
|
|
|
|
|
|
|
############################################################################### |
69
|
|
|
|
|
|
|
# ToDo |
70
|
|
|
|
|
|
|
# ==== |
71
|
|
|
|
|
|
|
# |
72
|
|
|
|
|
|
|
# Modify init to allow recurrent layer/node connections |
73
|
|
|
|
|
|
|
# write cmd & gui frontends |
74
|
|
|
|
|
|
|
# Speed the bugger up! |
75
|
|
|
|
|
|
|
# |
76
|
|
|
|
|
|
|
# Odd thought - careful coding of a network would allow grafting of |
77
|
|
|
|
|
|
|
# two different network types or learning algorithms, like an effectve |
78
|
|
|
|
|
|
|
# single network with 2 layers unsupervised and 2 layers supervised |
79
|
|
|
|
|
|
|
# |
80
|
|
|
|
|
|
|
# Clean up the perldocs |
81
|
|
|
|
|
|
|
# |
82
|
|
|
|
|
|
|
############################################################################### |
83
|
|
|
|
|
|
|
$VERSION = "0.24"; |
84
|
|
|
|
|
|
|
|
85
|
|
|
|
|
|
|
|
86
|
|
|
|
|
|
|
############################################################################### |
87
|
|
|
|
|
|
|
my @DEBUG; # a single, solitary, shameful global variable. Couldn't |
88
|
|
|
|
|
|
|
#avoid it really. It allows correct control of debug |
89
|
|
|
|
|
|
|
#information before the $network object is created |
90
|
|
|
|
|
|
|
# (in ::layer->new & ::node->new for example). |
91
|
|
|
|
|
|
|
|
92
|
|
|
|
|
|
|
|
93
|
|
|
|
|
|
|
############################################################################### |
94
|
|
|
|
|
|
|
############################################################################### |
95
|
|
|
|
|
|
|
# package NNFlex |
96
|
|
|
|
|
|
|
############################################################################### |
97
|
|
|
|
|
|
|
############################################################################### |
98
|
|
|
|
|
|
|
package AI::NNFlex; |
99
|
5
|
|
|
5
|
|
3167
|
use AI::NNFlex::Mathlib; |
|
5
|
|
|
|
|
11
|
|
|
5
|
|
|
|
|
162
|
|
100
|
5
|
|
|
5
|
|
31
|
use base qw(AI::NNFlex::Mathlib); |
|
5
|
|
|
|
|
8
|
|
|
5
|
|
|
|
|
33064
|
|
101
|
|
|
|
|
|
|
|
102
|
|
|
|
|
|
|
|
103
|
|
|
|
|
|
|
|
104
|
|
|
|
|
|
|
|
105
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
############################################################################### |
107
|
|
|
|
|
|
|
# AI::NNFlex::new |
108
|
|
|
|
|
|
|
############################################################################### |
109
|
|
|
|
|
|
|
sub new |
110
|
|
|
|
|
|
|
{ |
111
|
5
|
|
|
5
|
1
|
183
|
my $class = shift; |
112
|
5
|
|
|
|
|
13
|
my $network={}; |
113
|
5
|
|
|
|
|
17
|
bless $network,$class; |
114
|
|
|
|
|
|
|
|
115
|
|
|
|
|
|
|
# intercept the new style 'empty network' constructor call |
116
|
|
|
|
|
|
|
# Maybe I should deprecate the old one, but its convenient, provided you |
117
|
|
|
|
|
|
|
# can follow the mess of hashes |
118
|
|
|
|
|
|
|
|
119
|
5
|
50
|
|
|
|
101
|
if (!grep /HASH/,@_) |
120
|
|
|
|
|
|
|
{ |
121
|
5
|
|
|
|
|
38
|
my %config = @_; |
122
|
5
|
|
|
|
|
25
|
foreach (keys %config) |
123
|
|
|
|
|
|
|
{ |
124
|
23
|
|
|
|
|
88
|
$network->{$_} = $config{$_}; |
125
|
|
|
|
|
|
|
} |
126
|
|
|
|
|
|
|
|
127
|
5
|
|
|
|
|
37
|
return $network; |
128
|
|
|
|
|
|
|
} |
129
|
|
|
|
|
|
|
|
130
|
|
|
|
|
|
|
# Otherwise, continue assuming that the whole network is defined in |
131
|
|
|
|
|
|
|
# a pair of anonymous hashes |
132
|
|
|
|
|
|
|
|
133
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
|
135
|
0
|
|
|
|
|
0
|
my $params = shift; |
136
|
0
|
|
|
|
|
0
|
my $netParams = shift; |
137
|
0
|
|
|
|
|
0
|
my @layers; |
138
|
0
|
|
|
|
|
0
|
dbug ($netParams,"Entered AI::NNFlex::new with params $params $netParams",2); |
139
|
|
|
|
|
|
|
|
140
|
|
|
|
|
|
|
|
141
|
|
|
|
|
|
|
# clean up case & spaces in layer defs from pre 0.14 constructor calls: |
142
|
0
|
|
|
|
|
0
|
my $cleanParams; |
143
|
0
|
|
|
|
|
0
|
foreach my $layer(@{$params}) |
|
0
|
|
|
|
|
0
|
|
144
|
|
|
|
|
|
|
{ |
145
|
0
|
|
|
|
|
0
|
my %cleanLayer; |
146
|
0
|
|
|
|
|
0
|
foreach (keys %$layer) |
147
|
|
|
|
|
|
|
{ |
148
|
0
|
|
|
|
|
0
|
my $key = lc($_); |
149
|
0
|
|
|
|
|
0
|
$key =~ s/\s//g; |
150
|
0
|
|
|
|
|
0
|
$cleanLayer{$key} = $$layer{$_}; |
151
|
|
|
|
|
|
|
} |
152
|
0
|
|
|
|
|
0
|
push @$cleanParams,\%cleanLayer; |
153
|
|
|
|
|
|
|
} |
154
|
|
|
|
|
|
|
|
155
|
|
|
|
|
|
|
|
156
|
|
|
|
|
|
|
|
157
|
|
|
|
|
|
|
# Network wide parameters (e.g. random weights) |
158
|
0
|
|
|
|
|
0
|
foreach (keys %$netParams) |
159
|
|
|
|
|
|
|
{ |
160
|
0
|
|
|
|
|
0
|
my $key = lc($_); |
161
|
0
|
|
|
|
|
0
|
$key =~ s/\s//g; # up to 0.14 we had params with spaces in, now deprecated |
162
|
0
|
|
|
|
|
0
|
$network->{$key} = ${$netParams}{$_}; |
|
0
|
|
|
|
|
0
|
|
163
|
|
|
|
|
|
|
} |
164
|
|
|
|
|
|
|
|
165
|
0
|
0
|
|
|
|
0
|
if( $network->{'debug'}) |
166
|
|
|
|
|
|
|
{ |
167
|
0
|
|
|
|
|
0
|
@DEBUG = @{$network->{'debug'}}; |
|
0
|
|
|
|
|
0
|
|
168
|
|
|
|
|
|
|
} |
169
|
|
|
|
|
|
|
|
170
|
|
|
|
|
|
|
# build the network |
171
|
0
|
|
|
|
|
0
|
foreach (@$cleanParams) |
172
|
|
|
|
|
|
|
{ |
173
|
0
|
0
|
|
|
|
0
|
if (!($$_{'nodes'})){next} |
|
0
|
|
|
|
|
0
|
|
174
|
0
|
|
|
|
|
0
|
my %layer = %{$_}; |
|
0
|
|
|
|
|
0
|
|
175
|
0
|
|
|
|
|
0
|
push @layers,AI::NNFlex::layer->new(\%layer); |
176
|
|
|
|
|
|
|
} |
177
|
0
|
|
|
|
|
0
|
$$network{'layers'} = \@layers; |
178
|
|
|
|
|
|
|
|
179
|
|
|
|
|
|
|
|
180
|
|
|
|
|
|
|
|
181
|
|
|
|
|
|
|
|
182
|
|
|
|
|
|
|
|
183
|
0
|
|
|
|
|
0
|
$network->init; |
184
|
0
|
|
|
|
|
0
|
return $network; |
185
|
|
|
|
|
|
|
} |
186
|
|
|
|
|
|
|
|
187
|
|
|
|
|
|
|
|
188
|
|
|
|
|
|
|
|
189
|
|
|
|
|
|
|
|
190
|
|
|
|
|
|
|
############################################################################### |
191
|
|
|
|
|
|
|
# AI::NNFlex::add_layer |
192
|
|
|
|
|
|
|
############################################################################### |
193
|
|
|
|
|
|
|
# |
194
|
|
|
|
|
|
|
# Adds a layer of given node definitions to the $network object |
195
|
|
|
|
|
|
|
# |
196
|
|
|
|
|
|
|
# syntax |
197
|
|
|
|
|
|
|
# |
198
|
|
|
|
|
|
|
# $network->add_layer(nodes=>4,activationfunction=>tanh); |
199
|
|
|
|
|
|
|
# |
200
|
|
|
|
|
|
|
# returns bool success or failure |
201
|
|
|
|
|
|
|
# |
202
|
|
|
|
|
|
|
############################################################################### |
203
|
|
|
|
|
|
|
|
204
|
|
|
|
|
|
|
sub add_layer |
205
|
|
|
|
|
|
|
{ |
206
|
8
|
|
|
8
|
1
|
2419
|
my $network = shift; |
207
|
|
|
|
|
|
|
|
208
|
8
|
|
|
|
|
66
|
my %config = @_; |
209
|
|
|
|
|
|
|
|
210
|
8
|
|
|
|
|
65
|
my $layer = AI::NNFlex::layer->new(\%config); |
211
|
|
|
|
|
|
|
|
212
|
8
|
50
|
|
|
|
28
|
if ($layer) |
213
|
|
|
|
|
|
|
{ |
214
|
8
|
|
|
|
|
13
|
push @{$network->{'layers'}},$layer; |
|
8
|
|
|
|
|
36
|
|
215
|
8
|
|
|
|
|
36
|
return 1; |
216
|
|
|
|
|
|
|
} |
217
|
|
|
|
|
|
|
else |
218
|
|
|
|
|
|
|
{ |
219
|
0
|
|
|
|
|
0
|
return 0; |
220
|
|
|
|
|
|
|
} |
221
|
|
|
|
|
|
|
} |
222
|
|
|
|
|
|
|
|
223
|
|
|
|
|
|
|
|
224
|
|
|
|
|
|
|
############################################################################### |
225
|
|
|
|
|
|
|
# AI::NNFlex::output |
226
|
|
|
|
|
|
|
############################################################################### |
227
|
|
|
|
|
|
|
sub output |
228
|
|
|
|
|
|
|
{ |
229
|
35
|
|
|
35
|
0
|
64
|
my $network = shift; |
230
|
35
|
|
|
|
|
50
|
my %params = @_; |
231
|
|
|
|
|
|
|
|
232
|
35
|
|
|
|
|
36
|
my $finalLayer = ${$$network{'layers'}}[-1]; |
|
35
|
|
|
|
|
64
|
|
233
|
|
|
|
|
|
|
|
234
|
35
|
|
|
|
|
35
|
my $outputLayer; |
235
|
|
|
|
|
|
|
|
236
|
35
|
50
|
|
|
|
70
|
if (defined $params{'layer'}) |
237
|
|
|
|
|
|
|
{ |
238
|
0
|
|
|
|
|
0
|
$outputLayer = ${$$network{'layers'}}[$params{'layer'}] |
|
0
|
|
|
|
|
0
|
|
239
|
|
|
|
|
|
|
} |
240
|
|
|
|
|
|
|
else |
241
|
|
|
|
|
|
|
{ |
242
|
35
|
|
|
|
|
41
|
$outputLayer = $finalLayer |
243
|
|
|
|
|
|
|
} |
244
|
|
|
|
|
|
|
|
245
|
35
|
|
|
|
|
64
|
my $output = AI::NNFlex::layer::layer_output($outputLayer); |
246
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
# Round outputs if required |
249
|
35
|
50
|
|
|
|
83
|
if ($network->{'round'}) |
250
|
|
|
|
|
|
|
{ |
251
|
0
|
|
|
|
|
0
|
foreach (@$output) |
252
|
|
|
|
|
|
|
{ |
253
|
0
|
0
|
|
|
|
0
|
if ($_ > 0.5) |
|
|
0
|
|
|
|
|
|
254
|
|
|
|
|
|
|
{ |
255
|
0
|
|
|
|
|
0
|
$_ = 1; |
256
|
|
|
|
|
|
|
} |
257
|
|
|
|
|
|
|
elsif ($_ < -0.5) |
258
|
|
|
|
|
|
|
{ |
259
|
0
|
|
|
|
|
0
|
$_=-1; |
260
|
|
|
|
|
|
|
} |
261
|
|
|
|
|
|
|
else |
262
|
|
|
|
|
|
|
{ |
263
|
0
|
|
|
|
|
0
|
$_=0; |
264
|
|
|
|
|
|
|
} |
265
|
|
|
|
|
|
|
} |
266
|
|
|
|
|
|
|
} |
267
|
|
|
|
|
|
|
|
268
|
35
|
|
|
|
|
129
|
return $output; |
269
|
|
|
|
|
|
|
} |
270
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
################################################################################ |
272
|
|
|
|
|
|
|
# sub init |
273
|
|
|
|
|
|
|
################################################################################ |
274
|
|
|
|
|
|
|
sub init |
275
|
|
|
|
|
|
|
{ |
276
|
|
|
|
|
|
|
|
277
|
|
|
|
|
|
|
#Revised version of init for NNFlex |
278
|
|
|
|
|
|
|
|
279
|
4
|
|
|
4
|
1
|
511
|
my $network = shift; |
280
|
4
|
|
|
|
|
8
|
my @layers = @{$network->{'layers'}}; |
|
4
|
|
|
|
|
15
|
|
281
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
# if network debug state not set, set it to null |
283
|
4
|
50
|
|
|
|
32
|
if (!$network->{'debug'}) |
284
|
|
|
|
|
|
|
{ |
285
|
0
|
|
|
|
|
0
|
$network->{'debug'} = []; |
286
|
|
|
|
|
|
|
} |
287
|
4
|
|
|
|
|
10
|
my @debug = @{$network->{'debug'}}; |
|
4
|
|
|
|
|
11
|
|
288
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
|
290
|
|
|
|
|
|
|
# implement the bias node |
291
|
4
|
50
|
|
|
|
21
|
if ($network->{'bias'}) |
292
|
|
|
|
|
|
|
{ |
293
|
4
|
|
|
|
|
38
|
my $biasNode = AI::NNFlex::node->new({'activation function'=>'linear'}); |
294
|
4
|
|
|
|
|
19
|
$$network{'biasnode'} = $biasNode; |
295
|
4
|
|
|
|
|
10
|
$$network{'biasnode'}->{'activation'} = 1; |
296
|
4
|
|
|
|
|
14
|
$$network{'biasnode'}->{'nodeid'} = "bias"; |
297
|
|
|
|
|
|
|
} |
298
|
|
|
|
|
|
|
|
299
|
4
|
|
|
|
|
8
|
my $nodeid = 1; |
300
|
4
|
|
|
|
|
8
|
my $currentLayer=0; |
301
|
|
|
|
|
|
|
# foreach layer, we need to examine each node |
302
|
4
|
|
|
|
|
12
|
foreach my $layer (@layers) |
303
|
|
|
|
|
|
|
{ |
304
|
|
|
|
|
|
|
# Foreach node we need to make connections east and west |
305
|
6
|
|
|
|
|
9
|
foreach my $node (@{$layer->{'nodes'}}) |
|
6
|
|
|
|
|
16
|
|
306
|
|
|
|
|
|
|
{ |
307
|
12
|
|
|
|
|
28
|
$node->{'nodeid'} = $nodeid; |
308
|
|
|
|
|
|
|
# only initialise to the west if layer > 0 |
309
|
12
|
100
|
|
|
|
33
|
if ($currentLayer > 0 ) |
310
|
|
|
|
|
|
|
{ |
311
|
4
|
|
|
|
|
11
|
foreach my $westNodes (@{$network->{'layers'}->[$currentLayer -1]->{'nodes'}}) |
|
4
|
|
|
|
|
12
|
|
312
|
|
|
|
|
|
|
{ |
313
|
8
|
|
|
|
|
10
|
foreach my $connectionFromWest (@{$westNodes->{'connectedNodesEast'}->{'nodes'}}) |
|
8
|
|
|
|
|
17
|
|
314
|
|
|
|
|
|
|
{ |
315
|
16
|
100
|
|
|
|
47
|
if ($connectionFromWest eq $node) |
316
|
|
|
|
|
|
|
{ |
317
|
8
|
|
|
|
|
14
|
my $weight = $network->calcweight; |
318
|
|
|
|
|
|
|
|
319
|
8
|
|
|
|
|
8
|
push @{$node->{'connectedNodesWest'}->{'nodes'}},$westNodes; |
|
8
|
|
|
|
|
25
|
|
320
|
8
|
|
|
|
|
9
|
push @{$node->{'connectedNodesWest'}->{'weights'}},$weight; |
|
8
|
|
|
|
|
13
|
|
321
|
8
|
50
|
|
|
|
31
|
if (scalar @debug > 0) |
|
0
|
|
|
|
|
0
|
|
322
|
|
|
|
|
|
|
{$network->dbug ("West to east Connection - ".$westNodes->{'nodeid'}." to ".$node->{'nodeid'},2);} |
323
|
|
|
|
|
|
|
} |
324
|
|
|
|
|
|
|
} |
325
|
|
|
|
|
|
|
} |
326
|
|
|
|
|
|
|
} |
327
|
|
|
|
|
|
|
|
328
|
|
|
|
|
|
|
# Now initialise connections to the east (if not last layer) |
329
|
12
|
100
|
|
|
|
39
|
if ($currentLayer < (scalar @layers)-1) |
330
|
|
|
|
|
|
|
{ |
331
|
4
|
|
|
|
|
6
|
foreach my $eastNodes (@{$network->{'layers'}->[$currentLayer+1]->{'nodes'}}) |
|
4
|
|
|
|
|
15
|
|
332
|
|
|
|
|
|
|
{ |
333
|
8
|
50
|
33
|
|
|
27
|
if (!$network->{'randomconnections'} || $network->{'randomconnections'} > rand(1)) |
334
|
|
|
|
|
|
|
{ |
335
|
8
|
|
|
|
|
30
|
my $weight = $network->calcweight; |
336
|
8
|
|
|
|
|
11
|
push @{$node->{'connectedNodesEast'}->{'nodes'}},$eastNodes; |
|
8
|
|
|
|
|
21
|
|
337
|
8
|
|
|
|
|
8
|
push @{$node->{'connectedNodesEast'}->{'weights'}}, $weight; |
|
8
|
|
|
|
|
17
|
|
338
|
8
|
50
|
|
|
|
26
|
if (scalar @debug > 0) |
|
0
|
|
|
|
|
0
|
|
339
|
|
|
|
|
|
|
{$network->dbug ("East to west Connection ".$node->{'nodeid'}." to ".$eastNodes->{'nodeid'},2);} |
340
|
|
|
|
|
|
|
} |
341
|
|
|
|
|
|
|
} |
342
|
|
|
|
|
|
|
} |
343
|
12
|
|
|
|
|
589
|
$nodeid++; |
344
|
|
|
|
|
|
|
} |
345
|
6
|
|
|
|
|
15
|
$currentLayer++; |
346
|
|
|
|
|
|
|
} |
347
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
|
349
|
|
|
|
|
|
|
# add bias node to westerly connections |
350
|
4
|
50
|
|
|
|
19
|
if ($network->{'bias'}) |
351
|
|
|
|
|
|
|
{ |
352
|
4
|
|
|
|
|
8
|
foreach my $layer (@{$network->{'layers'}}) |
|
4
|
|
|
|
|
14
|
|
353
|
|
|
|
|
|
|
{ |
354
|
6
|
|
|
|
|
10
|
foreach my $node (@{$layer->{'nodes'}}) |
|
6
|
|
|
|
|
21
|
|
355
|
|
|
|
|
|
|
{ |
356
|
12
|
|
|
|
|
543
|
push @{$node->{'connectedNodesWest'}->{'nodes'}},$network->{'biasnode'}; |
|
12
|
|
|
|
|
37
|
|
357
|
12
|
|
|
|
|
46
|
my $weight = $network->calcweight; |
358
|
|
|
|
|
|
|
|
359
|
12
|
|
|
|
|
16
|
push @{$node->{'connectedNodesWest'}->{'weights'}},$weight; |
|
12
|
|
|
|
|
608
|
|
360
|
12
|
50
|
|
|
|
49
|
if (scalar @debug > 0) |
|
0
|
|
|
|
|
0
|
|
361
|
|
|
|
|
|
|
{$network->dbug ("West to east Connection - bias to ".$node->{'nodeid'}." weight = $weight",2);} |
362
|
|
|
|
|
|
|
} |
363
|
|
|
|
|
|
|
} |
364
|
|
|
|
|
|
|
} |
365
|
|
|
|
|
|
|
|
366
|
|
|
|
|
|
|
|
367
|
|
|
|
|
|
|
|
368
|
4
|
|
|
|
|
17
|
return 1; # return success if we get to here |
369
|
|
|
|
|
|
|
|
370
|
|
|
|
|
|
|
|
371
|
|
|
|
|
|
|
} |
372
|
|
|
|
|
|
|
|
373
|
|
|
|
|
|
|
############################################################################### |
374
|
|
|
|
|
|
|
# sub $network->dbug |
375
|
|
|
|
|
|
|
############################################################################### |
376
|
|
|
|
|
|
|
sub dbug |
377
|
|
|
|
|
|
|
{ |
378
|
70
|
|
|
70
|
0
|
86
|
my $network = shift; |
379
|
70
|
|
|
|
|
67
|
my $message = shift; |
380
|
70
|
|
|
|
|
75
|
my $level = shift; |
381
|
|
|
|
|
|
|
|
382
|
|
|
|
|
|
|
|
383
|
70
|
|
|
|
|
97
|
my @DEBUGLEVELS; |
384
|
|
|
|
|
|
|
# cover for debug calls before the network is created |
385
|
70
|
100
|
|
|
|
135
|
if (!$network->{'debug'}) |
386
|
|
|
|
|
|
|
{ |
387
|
28
|
|
|
|
|
50
|
@DEBUGLEVELS=@DEBUG; |
388
|
|
|
|
|
|
|
} |
389
|
|
|
|
|
|
|
else |
390
|
|
|
|
|
|
|
{ |
391
|
42
|
|
|
|
|
37
|
@DEBUGLEVELS = @{$network->{'debug'}}; |
|
42
|
|
|
|
|
74
|
|
392
|
|
|
|
|
|
|
} |
393
|
|
|
|
|
|
|
|
394
|
|
|
|
|
|
|
|
395
|
|
|
|
|
|
|
# 0 is error so ALWAYS display |
396
|
70
|
50
|
|
|
|
152
|
if (!(grep /0/,@DEBUGLEVELS)){push @DEBUGLEVELS,0} |
|
70
|
|
|
|
|
91
|
|
397
|
|
|
|
|
|
|
|
398
|
70
|
|
|
|
|
98
|
foreach (@DEBUGLEVELS) |
399
|
|
|
|
|
|
|
{ |
400
|
|
|
|
|
|
|
|
401
|
70
|
50
|
|
|
|
308
|
if ($level == $_) |
402
|
|
|
|
|
|
|
{ |
403
|
0
|
|
|
|
|
0
|
print "$message\n"; |
404
|
|
|
|
|
|
|
} |
405
|
|
|
|
|
|
|
} |
406
|
|
|
|
|
|
|
} |
407
|
|
|
|
|
|
|
|
408
|
|
|
|
|
|
|
|
409
|
|
|
|
|
|
|
############################################################################### |
410
|
|
|
|
|
|
|
# AI::NNFlex::dump_state |
411
|
|
|
|
|
|
|
############################################################################### |
412
|
|
|
|
|
|
|
sub dump_state |
413
|
|
|
|
|
|
|
{ |
414
|
1
|
|
|
1
|
0
|
67
|
my $network = shift; |
415
|
1
|
|
|
|
|
4
|
my %params =@_; |
416
|
|
|
|
|
|
|
|
417
|
1
|
|
|
|
|
1
|
my $filename = $params{'filename'}; |
418
|
1
|
|
|
|
|
2
|
my $activations = $params{'activations'}; |
419
|
|
|
|
|
|
|
|
420
|
|
|
|
|
|
|
|
421
|
1
|
50
|
|
|
|
125
|
open (OFILE,">$filename") or return "Can't create weights file $filename"; |
422
|
|
|
|
|
|
|
|
423
|
|
|
|
|
|
|
|
424
|
1
|
|
|
|
|
3
|
foreach my $layer (@{$network->{'layers'}}) |
|
1
|
|
|
|
|
3
|
|
425
|
|
|
|
|
|
|
{ |
426
|
2
|
|
|
|
|
2
|
foreach my $node (@{$layer->{'nodes'}}) |
|
2
|
|
|
|
|
5
|
|
427
|
|
|
|
|
|
|
{ |
428
|
4
|
50
|
|
|
|
7
|
if ($activations) |
429
|
|
|
|
|
|
|
{ |
430
|
4
|
|
|
|
|
32
|
print OFILE $node->{'nodeid'}." activation = ".$node->{'activation'}."\n"; |
431
|
|
|
|
|
|
|
} |
432
|
4
|
|
|
|
|
5
|
my $connectedNodeCounter=0; |
433
|
4
|
|
|
|
|
4
|
foreach my $connectedNode (@{$node->{'connectedNodesEast'}->{'nodes'}}) |
|
4
|
|
|
|
|
8
|
|
434
|
|
|
|
|
|
|
{ |
435
|
9
|
|
|
|
|
9
|
my $weight = ${$node->{'connectedNodesEast'}->{'weights'}}[$connectedNodeCounter]; |
|
9
|
|
|
|
|
13
|
|
436
|
9
|
|
|
|
|
79
|
print OFILE $node->{'nodeid'}." <- ".$connectedNode->{'nodeid'}." = ".$weight."\n"; |
437
|
9
|
|
|
|
|
15
|
$connectedNodeCounter++; |
438
|
|
|
|
|
|
|
} |
439
|
|
|
|
|
|
|
|
440
|
4
|
50
|
|
|
|
11
|
if ($node->{'connectedNodesWest'}) |
441
|
|
|
|
|
|
|
{ |
442
|
4
|
|
|
|
|
3
|
my $connectedNodeCounter=0; |
443
|
4
|
|
|
|
|
5
|
foreach my $connectedNode (@{$node->{'connectedNodesWest'}->{'nodes'}}) |
|
4
|
|
|
|
|
8
|
|
444
|
|
|
|
|
|
|
{ |
445
|
|
|
|
|
|
|
#FIXME - a more easily read format would be connectedNode first in the file |
446
|
13
|
|
|
|
|
9
|
my $weight = ${$node->{'connectedNodesWest'}->{'weights'}}[$connectedNodeCounter]; |
|
13
|
|
|
|
|
21
|
|
447
|
13
|
|
|
|
|
47
|
print OFILE $node->{'nodeid'}." -> ".$connectedNode->{'nodeid'}." = ".$weight."\n"; |
448
|
|
|
|
|
|
|
} |
449
|
|
|
|
|
|
|
} |
450
|
|
|
|
|
|
|
} |
451
|
|
|
|
|
|
|
} |
452
|
|
|
|
|
|
|
|
453
|
|
|
|
|
|
|
|
454
|
|
|
|
|
|
|
|
455
|
|
|
|
|
|
|
|
456
|
1
|
|
|
|
|
58
|
close OFILE; |
457
|
|
|
|
|
|
|
} |
458
|
|
|
|
|
|
|
|
459
|
|
|
|
|
|
|
############################################################################### |
460
|
|
|
|
|
|
|
# sub load_state |
461
|
|
|
|
|
|
|
############################################################################### |
462
|
|
|
|
|
|
|
sub load_state |
463
|
|
|
|
|
|
|
{ |
464
|
1
|
|
|
1
|
0
|
55
|
my $network = shift; |
465
|
|
|
|
|
|
|
|
466
|
1
|
|
|
|
|
3
|
my %config = @_; |
467
|
|
|
|
|
|
|
|
468
|
1
|
|
|
|
|
2
|
my $filename = $config{'filename'}; |
469
|
|
|
|
|
|
|
|
470
|
1
|
50
|
|
|
|
26
|
open (IFILE,$filename) or return "Error: unable to open $filename because $!"; |
471
|
|
|
|
|
|
|
|
472
|
|
|
|
|
|
|
# we have to build a map of nodeids to objects |
473
|
1
|
|
|
|
|
2
|
my %nodeMap; |
474
|
1
|
|
|
|
|
1
|
foreach my $layer (@{$network->{'layers'}}) |
|
1
|
|
|
|
|
3
|
|
475
|
|
|
|
|
|
|
{ |
476
|
2
|
|
|
|
|
2
|
foreach my $node (@{$layer->{'nodes'}}) |
|
2
|
|
|
|
|
4
|
|
477
|
|
|
|
|
|
|
{ |
478
|
4
|
|
|
|
|
10
|
$nodeMap{$node->{'nodeid'}} = $node; |
479
|
|
|
|
|
|
|
} |
480
|
|
|
|
|
|
|
} |
481
|
|
|
|
|
|
|
|
482
|
|
|
|
|
|
|
# Add the bias node into the map |
483
|
1
|
50
|
|
|
|
3
|
if ($network->{'bias'}) |
484
|
|
|
|
|
|
|
{ |
485
|
1
|
|
|
|
|
2
|
$nodeMap{'bias'} = $network->{'biasnode'}; |
486
|
|
|
|
|
|
|
} |
487
|
|
|
|
|
|
|
|
488
|
|
|
|
|
|
|
|
489
|
1
|
|
|
|
|
1
|
my %stateFromFile; |
490
|
|
|
|
|
|
|
|
491
|
1
|
|
|
|
|
22
|
while () |
492
|
|
|
|
|
|
|
{ |
493
|
26
|
|
|
|
|
27
|
chomp $_; |
494
|
26
|
|
|
|
|
21
|
my ($activation,$nodeid,$destNode,$weight); |
495
|
|
|
|
|
|
|
|
496
|
26
|
100
|
|
|
|
128
|
if ($_ =~ /(.*) activation = (.*)/) |
|
|
100
|
|
|
|
|
|
|
|
50
|
|
|
|
|
|
497
|
|
|
|
|
|
|
{ |
498
|
4
|
|
|
|
|
7
|
$nodeid = $1; |
499
|
4
|
|
|
|
|
5
|
$activation = $2; |
500
|
4
|
|
|
|
|
9
|
$stateFromFile{$nodeid}->{'activation'} = $activation; |
501
|
4
|
|
|
|
|
11
|
$network->dbug("Loading $nodeid = $activation",2); |
502
|
|
|
|
|
|
|
} |
503
|
|
|
|
|
|
|
elsif ($_ =~ /(.*) -> (.*) = (.*)/) |
504
|
|
|
|
|
|
|
{ |
505
|
13
|
|
|
|
|
16
|
$nodeid = $1; |
506
|
13
|
|
|
|
|
14
|
$destNode = $2; |
507
|
13
|
|
|
|
|
17
|
$weight = $3; |
508
|
13
|
|
|
|
|
34
|
$network->dbug("Loading $nodeid -> $destNode = $weight",2); |
509
|
13
|
|
|
|
|
16
|
push @{$stateFromFile{$nodeid}->{'connectedNodesWest'}->{'weights'}},$weight; |
|
13
|
|
|
|
|
32
|
|
510
|
13
|
|
|
|
|
13
|
push @{$stateFromFile{$nodeid}->{'connectedNodesWest'}->{'nodes'}},$nodeMap{$destNode}; |
|
13
|
|
|
|
|
61
|
|
511
|
|
|
|
|
|
|
} |
512
|
|
|
|
|
|
|
elsif ($_ =~ /(.*) <- (.*) = (.*)/) |
513
|
|
|
|
|
|
|
{ |
514
|
9
|
|
|
|
|
13
|
$nodeid = $1; |
515
|
9
|
|
|
|
|
9
|
$destNode = $2; |
516
|
9
|
|
|
|
|
15
|
$weight = $3; |
517
|
9
|
|
|
|
|
5
|
push @{$stateFromFile{$nodeid}->{'connectedNodesEast'}->{'weights'}},$weight; |
|
9
|
|
|
|
|
23
|
|
518
|
9
|
|
|
|
|
8
|
push @{$stateFromFile{$nodeid}->{'connectedNodesEast'}->{'nodes'}},$nodeMap{$destNode}; |
|
9
|
|
|
|
|
23
|
|
519
|
9
|
|
|
|
|
28
|
$network->dbug("Loading $nodeid <- $destNode = $weight",2); |
520
|
|
|
|
|
|
|
} |
521
|
|
|
|
|
|
|
} |
522
|
|
|
|
|
|
|
|
523
|
1
|
|
|
|
|
9
|
close IFILE; |
524
|
|
|
|
|
|
|
|
525
|
|
|
|
|
|
|
|
526
|
|
|
|
|
|
|
|
527
|
|
|
|
|
|
|
|
528
|
1
|
|
|
|
|
1
|
my $nodeCounter=1; |
529
|
|
|
|
|
|
|
|
530
|
1
|
|
|
|
|
2
|
foreach my $layer (@{$network->{'layers'}}) |
|
1
|
|
|
|
|
2
|
|
531
|
|
|
|
|
|
|
{ |
532
|
2
|
|
|
|
|
2
|
foreach my $node (@{$layer->{'nodes'}}) |
|
2
|
|
|
|
|
3
|
|
533
|
|
|
|
|
|
|
{ |
534
|
4
|
|
|
|
|
8
|
$node->{'activation'} = $stateFromFile{$nodeCounter}->{'activation'}; |
535
|
4
|
|
|
|
|
5
|
$node->{'connectedNodesEast'} = $stateFromFile{$nodeCounter}->{'connectedNodesEast'}; |
536
|
4
|
|
|
|
|
9
|
$node->{'connectedNodesWest'} = $stateFromFile{$nodeCounter}->{'connectedNodesWest'}; |
537
|
4
|
|
|
|
|
11
|
$nodeCounter++; |
538
|
|
|
|
|
|
|
} |
539
|
|
|
|
|
|
|
} |
540
|
1
|
|
|
|
|
6
|
return 1; |
541
|
|
|
|
|
|
|
} |
542
|
|
|
|
|
|
|
|
543
|
|
|
|
|
|
|
############################################################################## |
544
|
|
|
|
|
|
|
# sub lesion |
545
|
|
|
|
|
|
|
############################################################################## |
546
|
|
|
|
|
|
|
sub lesion |
547
|
|
|
|
|
|
|
{ |
548
|
|
|
|
|
|
|
|
549
|
0
|
|
|
0
|
1
|
0
|
my $network = shift; |
550
|
|
|
|
|
|
|
|
551
|
0
|
|
|
|
|
0
|
my %params = @_; |
552
|
0
|
|
|
|
|
0
|
my $return; |
553
|
0
|
|
|
|
|
0
|
$network->dbug("Entered AI::NNFlex::lesion with %params",2); |
554
|
|
|
|
|
|
|
|
555
|
0
|
|
|
|
|
0
|
my $nodeLesion = $params{'nodes'}; |
556
|
0
|
|
|
|
|
0
|
my $connectionLesion = $params{'connections'}; |
557
|
|
|
|
|
|
|
|
558
|
|
|
|
|
|
|
# go through the layers & node inactivating random nodes according |
559
|
|
|
|
|
|
|
# to probability |
560
|
|
|
|
|
|
|
|
561
|
0
|
|
|
|
|
0
|
foreach my $layer (@{$network->{'layers'}}) |
|
0
|
|
|
|
|
0
|
|
562
|
|
|
|
|
|
|
{ |
563
|
0
|
|
|
|
|
0
|
$return = $layer->lesion(%params); |
564
|
|
|
|
|
|
|
} |
565
|
|
|
|
|
|
|
|
566
|
0
|
|
|
|
|
0
|
return $return; |
567
|
|
|
|
|
|
|
|
568
|
|
|
|
|
|
|
} |
569
|
|
|
|
|
|
|
|
570
|
|
|
|
|
|
|
######################################################################## |
571
|
|
|
|
|
|
|
# AI::NNFlex::connect |
572
|
|
|
|
|
|
|
######################################################################## |
573
|
|
|
|
|
|
|
# |
574
|
|
|
|
|
|
|
# Joins layers or nodes together. |
575
|
|
|
|
|
|
|
# |
576
|
|
|
|
|
|
|
# takes fromlayer=>INDEX, tolayer=>INDEX or |
577
|
|
|
|
|
|
|
# fromnode=>[LAYER,NODE],tonode=>[LAYER,NODE] |
578
|
|
|
|
|
|
|
# |
579
|
|
|
|
|
|
|
# returns success or failure |
580
|
|
|
|
|
|
|
# |
581
|
|
|
|
|
|
|
# |
582
|
|
|
|
|
|
|
######################################################################### |
583
|
|
|
|
|
|
|
sub connect |
584
|
|
|
|
|
|
|
{ |
585
|
4
|
|
|
4
|
1
|
748
|
my $network = shift; |
586
|
4
|
|
|
|
|
14
|
my %params = @_; |
587
|
4
|
|
|
|
|
6
|
my $result = 0; |
588
|
|
|
|
|
|
|
|
589
|
4
|
100
|
|
|
|
18
|
if ($params{'fromnode'}) |
|
|
50
|
|
|
|
|
|
590
|
|
|
|
|
|
|
{ |
591
|
2
|
|
|
|
|
18
|
$result = $network->connectnodes(%params); |
592
|
|
|
|
|
|
|
} |
593
|
|
|
|
|
|
|
elsif ($params{'fromlayer'}) |
594
|
|
|
|
|
|
|
{ |
595
|
2
|
|
|
|
|
22
|
$result = $network->connectlayers(%params); |
596
|
|
|
|
|
|
|
} |
597
|
4
|
|
|
|
|
13
|
return $result; |
598
|
|
|
|
|
|
|
|
599
|
|
|
|
|
|
|
} |
600
|
|
|
|
|
|
|
|
601
|
|
|
|
|
|
|
######################################################################## |
602
|
|
|
|
|
|
|
# AI::NNFlex::connectlayers |
603
|
|
|
|
|
|
|
######################################################################## |
604
|
|
|
|
|
|
|
sub connectlayers |
605
|
|
|
|
|
|
|
{ |
606
|
2
|
|
|
2
|
0
|
4
|
my $network=shift; |
607
|
2
|
|
|
|
|
6
|
my %params = @_; |
608
|
|
|
|
|
|
|
|
609
|
2
|
|
|
|
|
5
|
my $fromlayerindex = $params{'fromlayer'}; |
610
|
2
|
|
|
|
|
3
|
my $tolayerindex = $params{'tolayer'}; |
611
|
|
|
|
|
|
|
|
612
|
2
|
|
|
|
|
4
|
foreach my $node (@{$network->{'layers'}->[$tolayerindex]->{'nodes'}}) |
|
2
|
|
|
|
|
7
|
|
613
|
|
|
|
|
|
|
{ |
614
|
4
|
|
|
|
|
3
|
foreach my $connectedNode ( @{$network->{'layers'}->[$fromlayerindex]->{'nodes'}}) |
|
4
|
|
|
|
|
11
|
|
615
|
|
|
|
|
|
|
{ |
616
|
8
|
|
|
|
|
16
|
my $weight1 = $network->calcweight; |
617
|
8
|
|
|
|
|
15
|
my $weight2 = $network->calcweight; |
618
|
8
|
|
|
|
|
10
|
push @{$node->{'connectedNodesWest'}->{'nodes'}},$connectedNode; |
|
8
|
|
|
|
|
17
|
|
619
|
8
|
|
|
|
|
9
|
push @{$connectedNode->{'connectedNodesEast'}->{'nodes'}},$node; |
|
8
|
|
|
|
|
16
|
|
620
|
8
|
|
|
|
|
11
|
push @{$node->{'connectedNodesWest'}->{'weights'}},$weight1; |
|
8
|
|
|
|
|
15
|
|
621
|
8
|
|
|
|
|
8
|
push @{$connectedNode->{'connectedNodesEast'}->{'weights'}},$weight2; |
|
8
|
|
|
|
|
25
|
|
622
|
|
|
|
|
|
|
} |
623
|
|
|
|
|
|
|
} |
624
|
|
|
|
|
|
|
|
625
|
2
|
|
|
|
|
6
|
return 1; |
626
|
|
|
|
|
|
|
} |
627
|
|
|
|
|
|
|
|
628
|
|
|
|
|
|
|
############################################################## |
629
|
|
|
|
|
|
|
# sub AI::NNFlex::connectnodes |
630
|
|
|
|
|
|
|
############################################################## |
631
|
|
|
|
|
|
|
sub connectnodes |
632
|
|
|
|
|
|
|
{ |
633
|
2
|
|
|
2
|
0
|
4
|
my $network = shift; |
634
|
2
|
|
|
|
|
5
|
my %params = @_; |
635
|
|
|
|
|
|
|
|
636
|
2
|
|
|
|
|
8
|
$params{'tonode'} =~ s/\'//g; |
637
|
2
|
|
|
|
|
6
|
$params{'fromnode'} =~ s/\'//g; |
638
|
2
|
|
|
|
|
11
|
my @tonodeindex = split /,/,$params{'tonode'}; |
639
|
2
|
|
|
|
|
8
|
my @fromnodeindex = split /,/,$params{'fromnode'}; |
640
|
|
|
|
|
|
|
|
641
|
|
|
|
|
|
|
#make the connections |
642
|
2
|
|
|
|
|
8
|
my $node = $network->{'layers'}->[$tonodeindex[0]]->{'nodes'}->[$tonodeindex[1]]; |
643
|
2
|
|
|
|
|
19
|
my $connectedNode = $network->{'layers'}->[$fromnodeindex[0]]->{'nodes'}->[$fromnodeindex[1]]; |
644
|
|
|
|
|
|
|
|
645
|
2
|
|
|
|
|
6
|
my $weight1 = $network->calcweight; |
646
|
2
|
|
|
|
|
7
|
my $weight2 = $network->calcweight; |
647
|
|
|
|
|
|
|
|
648
|
2
|
|
|
|
|
32
|
push @{$node->{'connectedNodesWest'}->{'nodes'}},$connectedNode; |
|
2
|
|
|
|
|
9
|
|
649
|
2
|
|
|
|
|
3
|
push @{$connectedNode->{'connectedNodesEast'}->{'nodes'}},$node; |
|
2
|
|
|
|
|
5
|
|
650
|
2
|
|
|
|
|
4
|
push @{$node->{'connectedNodesWest'}->{'weights'}},$weight1; |
|
2
|
|
|
|
|
5
|
|
651
|
2
|
|
|
|
|
3
|
push @{$connectedNode->{'connectedNodesEast'}->{'weights'}},$weight2; |
|
2
|
|
|
|
|
5
|
|
652
|
|
|
|
|
|
|
|
653
|
|
|
|
|
|
|
|
654
|
2
|
|
|
|
|
7
|
return 1; |
655
|
|
|
|
|
|
|
} |
656
|
|
|
|
|
|
|
|
657
|
|
|
|
|
|
|
|
658
|
|
|
|
|
|
|
|
659
|
|
|
|
|
|
|
############################################################## |
660
|
|
|
|
|
|
|
# AI::NNFlex::calcweight |
661
|
|
|
|
|
|
|
############################################################## |
662
|
|
|
|
|
|
|
# |
663
|
|
|
|
|
|
|
# calculate an initial weight appropriate for the network |
664
|
|
|
|
|
|
|
# settings. |
665
|
|
|
|
|
|
|
# takes no parameters, returns weight |
666
|
|
|
|
|
|
|
############################################################## |
667
|
|
|
|
|
|
|
sub calcweight |
668
|
|
|
|
|
|
|
{ |
669
|
64
|
|
|
64
|
0
|
83
|
my $network= shift; |
670
|
64
|
|
|
|
|
68
|
my $weight; |
671
|
64
|
50
|
|
|
|
171
|
if ($network->{'fixedweights'}) |
|
|
100
|
|
|
|
|
|
672
|
|
|
|
|
|
|
{ |
673
|
0
|
|
|
|
|
0
|
$weight = $network->{'fixedweights'}; |
674
|
|
|
|
|
|
|
} |
675
|
|
|
|
|
|
|
elsif ($network->{'randomweights'}) |
676
|
|
|
|
|
|
|
{ |
677
|
48
|
|
|
|
|
307
|
$weight = (rand(2*$network->{'randomweights'}))-$network->{'randomweights'}; |
678
|
|
|
|
|
|
|
} |
679
|
|
|
|
|
|
|
else |
680
|
|
|
|
|
|
|
{ |
681
|
16
|
|
|
|
|
83
|
$weight = (rand(2))-1; |
682
|
|
|
|
|
|
|
} |
683
|
|
|
|
|
|
|
|
684
|
|
|
|
|
|
|
|
685
|
64
|
|
|
|
|
124
|
return $weight; |
686
|
|
|
|
|
|
|
} |
687
|
|
|
|
|
|
|
|
688
|
|
|
|
|
|
|
|
689
|
|
|
|
|
|
|
|
690
|
|
|
|
|
|
|
|
691
|
|
|
|
|
|
|
|
692
|
|
|
|
|
|
|
############################################################################### |
693
|
|
|
|
|
|
|
############################################################################### |
694
|
|
|
|
|
|
|
# Package AI::NNFlex::layer |
695
|
|
|
|
|
|
|
############################################################################### |
696
|
|
|
|
|
|
|
############################################################################### |
697
|
|
|
|
|
|
|
package AI::NNFlex::layer; |
698
|
|
|
|
|
|
|
|
699
|
|
|
|
|
|
|
|
700
|
|
|
|
|
|
|
############################################################################### |
701
|
|
|
|
|
|
|
# AI::NNFlex::layer::new |
702
|
|
|
|
|
|
|
############################################################################### |
703
|
|
|
|
|
|
|
sub new |
704
|
|
|
|
|
|
|
{ |
705
|
8
|
|
|
8
|
|
14
|
my $class = shift; |
706
|
8
|
|
|
|
|
15
|
my $params = shift; |
707
|
8
|
|
|
|
|
19
|
my $layer ={}; |
708
|
|
|
|
|
|
|
|
709
|
8
|
|
|
|
|
20
|
foreach (keys %{$params}) |
|
8
|
|
|
|
|
37
|
|
710
|
|
|
|
|
|
|
{ |
711
|
44
|
|
|
|
|
121
|
$$layer{$_} = $$params{$_} |
712
|
|
|
|
|
|
|
} |
713
|
8
|
|
|
|
|
30
|
bless $layer,$class; |
714
|
|
|
|
|
|
|
|
715
|
8
|
|
|
|
|
109
|
my $numNodes = $$params{'nodes'}; |
716
|
|
|
|
|
|
|
|
717
|
8
|
|
|
|
|
13
|
my @nodes; |
718
|
|
|
|
|
|
|
|
719
|
8
|
|
|
|
|
47
|
for (1..$numNodes) |
720
|
|
|
|
|
|
|
{ |
721
|
16
|
|
|
|
|
69
|
push @nodes, AI::NNFlex::node->new($params); |
722
|
|
|
|
|
|
|
} |
723
|
|
|
|
|
|
|
|
724
|
8
|
|
|
|
|
39
|
$$layer{'nodes'} = \@nodes; |
725
|
|
|
|
|
|
|
|
726
|
8
|
|
|
|
|
38
|
AI::NNFlex::dbug($params,"Created layer $layer",2); |
727
|
8
|
|
|
|
|
23
|
return $layer; |
728
|
|
|
|
|
|
|
} |
729
|
|
|
|
|
|
|
|
730
|
|
|
|
|
|
|
############################################################################### |
731
|
|
|
|
|
|
|
# AI::NNFlex::layer::layer_output |
732
|
|
|
|
|
|
|
############################################################################## |
733
|
|
|
|
|
|
|
sub layer_output |
734
|
|
|
|
|
|
|
{ |
735
|
35
|
|
|
35
|
|
47
|
my $layer = shift; |
736
|
35
|
|
|
|
|
38
|
my $params = shift; |
737
|
|
|
|
|
|
|
|
738
|
|
|
|
|
|
|
|
739
|
35
|
|
|
|
|
32
|
my @outputs; |
740
|
35
|
|
|
|
|
36
|
foreach my $node (@{$$layer{'nodes'}}) |
|
35
|
|
|
|
|
71
|
|
741
|
|
|
|
|
|
|
{ |
742
|
70
|
|
|
|
|
155
|
push @outputs,$$node{'activation'}; |
743
|
|
|
|
|
|
|
} |
744
|
|
|
|
|
|
|
|
745
|
35
|
|
|
|
|
85
|
return \@outputs; |
746
|
|
|
|
|
|
|
} |
747
|
|
|
|
|
|
|
|
748
|
|
|
|
|
|
|
|
749
|
|
|
|
|
|
|
|
750
|
|
|
|
|
|
|
############################################################################## |
751
|
|
|
|
|
|
|
# sub lesion |
752
|
|
|
|
|
|
|
############################################################################## |
753
|
|
|
|
|
|
|
sub lesion |
754
|
|
|
|
|
|
|
{ |
755
|
|
|
|
|
|
|
|
756
|
0
|
|
|
0
|
|
0
|
my $layer = shift; |
757
|
|
|
|
|
|
|
|
758
|
0
|
|
|
|
|
0
|
my %params = @_; |
759
|
0
|
|
|
|
|
0
|
my $return; |
760
|
|
|
|
|
|
|
|
761
|
|
|
|
|
|
|
|
762
|
0
|
|
|
|
|
0
|
my $nodeLesion = $params{'nodes'}; |
763
|
0
|
|
|
|
|
0
|
my $connectionLesion = $params{'connections'}; |
764
|
|
|
|
|
|
|
|
765
|
|
|
|
|
|
|
# go through the layers & node inactivating random nodes according |
766
|
|
|
|
|
|
|
# to probability |
767
|
|
|
|
|
|
|
|
768
|
0
|
|
|
|
|
0
|
foreach my $node (@{$layer->{'nodes'}}) |
|
0
|
|
|
|
|
0
|
|
769
|
|
|
|
|
|
|
{ |
770
|
0
|
|
|
|
|
0
|
$return = $node->lesion(%params); |
771
|
|
|
|
|
|
|
} |
772
|
|
|
|
|
|
|
|
773
|
0
|
|
|
|
|
0
|
return $return; |
774
|
|
|
|
|
|
|
|
775
|
|
|
|
|
|
|
} |
776
|
|
|
|
|
|
|
|
777
|
|
|
|
|
|
|
|
778
|
|
|
|
|
|
|
|
779
|
|
|
|
|
|
|
############################################################################### |
780
|
|
|
|
|
|
|
############################################################################### |
781
|
|
|
|
|
|
|
# package AI::NNFlex::node |
782
|
|
|
|
|
|
|
############################################################################### |
783
|
|
|
|
|
|
|
############################################################################### |
784
|
|
|
|
|
|
|
package AI::NNFlex::node; |
785
|
|
|
|
|
|
|
|
786
|
|
|
|
|
|
|
|
787
|
|
|
|
|
|
|
############################################################################### |
788
|
|
|
|
|
|
|
# AI::NNFlex::node::new |
789
|
|
|
|
|
|
|
############################################################################### |
790
|
|
|
|
|
|
|
sub new |
791
|
|
|
|
|
|
|
{ |
792
|
20
|
|
|
20
|
|
32
|
my $class = shift; |
793
|
20
|
|
|
|
|
27
|
my $params = shift; |
794
|
20
|
|
|
|
|
32
|
my $node = {}; |
795
|
|
|
|
|
|
|
|
796
|
20
|
|
|
|
|
30
|
foreach (keys %{$params}) |
|
20
|
|
|
|
|
59
|
|
797
|
|
|
|
|
|
|
{ |
798
|
92
|
|
|
|
|
208
|
$$node{$_} = $$params{$_} |
799
|
|
|
|
|
|
|
} |
800
|
|
|
|
|
|
|
|
801
|
20
|
50
|
|
|
|
78
|
if ($$params{'randomactivation'}) |
802
|
|
|
|
|
|
|
{ |
803
|
0
|
|
|
|
|
0
|
$$node{'activation'} = |
804
|
|
|
|
|
|
|
rand($$params{'random'}); |
805
|
0
|
|
|
|
|
0
|
AI::NNFlex::dbug($params,"Randomly activated at ".$$node{'activation'},2); |
806
|
|
|
|
|
|
|
} |
807
|
|
|
|
|
|
|
else |
808
|
|
|
|
|
|
|
{ |
809
|
20
|
|
|
|
|
59
|
$$node{'activation'} = 0; |
810
|
|
|
|
|
|
|
} |
811
|
20
|
|
|
|
|
61
|
$$node{'active'} = 1; |
812
|
|
|
|
|
|
|
|
813
|
20
|
|
|
|
|
50
|
$$node{'error'} = 0; |
814
|
|
|
|
|
|
|
|
815
|
20
|
|
|
|
|
57
|
bless $node,$class; |
816
|
20
|
|
|
|
|
131
|
AI::NNFlex::dbug($params,"Created node $node",2); |
817
|
20
|
|
|
|
|
63
|
return $node; |
818
|
|
|
|
|
|
|
} |
819
|
|
|
|
|
|
|
|
820
|
|
|
|
|
|
|
############################################################################## |
821
|
|
|
|
|
|
|
# sub lesion |
822
|
|
|
|
|
|
|
############################################################################## |
823
|
|
|
|
|
|
|
sub lesion |
824
|
|
|
|
|
|
|
{ |
825
|
|
|
|
|
|
|
|
826
|
0
|
|
|
0
|
|
|
my $node = shift; |
827
|
|
|
|
|
|
|
|
828
|
0
|
|
|
|
|
|
my %params = @_; |
829
|
|
|
|
|
|
|
|
830
|
|
|
|
|
|
|
|
831
|
0
|
|
|
|
|
|
my $nodeLesion = $params{'nodes'}; |
832
|
0
|
|
|
|
|
|
my $connectionLesion = $params{'connections'}; |
833
|
|
|
|
|
|
|
|
834
|
|
|
|
|
|
|
# go through the layers & node inactivating random nodes according |
835
|
|
|
|
|
|
|
# to probability |
836
|
|
|
|
|
|
|
|
837
|
0
|
0
|
|
|
|
|
if ($nodeLesion) |
838
|
|
|
|
|
|
|
{ |
839
|
0
|
|
|
|
|
|
my $probability = rand(1); |
840
|
0
|
0
|
|
|
|
|
if ($probability < $nodeLesion) |
841
|
|
|
|
|
|
|
{ |
842
|
0
|
|
|
|
|
|
$node->{'active'} = 0; |
843
|
|
|
|
|
|
|
} |
844
|
|
|
|
|
|
|
} |
845
|
|
|
|
|
|
|
|
846
|
0
|
0
|
|
|
|
|
if ($connectionLesion) |
847
|
|
|
|
|
|
|
{ |
848
|
|
|
|
|
|
|
# init works from west to east, so we should here too |
849
|
0
|
|
|
|
|
|
my $nodeCounter=0; |
850
|
0
|
|
|
|
|
|
foreach my $connectedNode (@{$node->{'connectedNodesEast'}->{'nodes'}}) |
|
0
|
|
|
|
|
|
|
851
|
|
|
|
|
|
|
{ |
852
|
0
|
|
|
|
|
|
my $probability = rand(1); |
853
|
0
|
0
|
|
|
|
|
if ($probability < $connectionLesion) |
854
|
|
|
|
|
|
|
{ |
855
|
0
|
|
|
|
|
|
my $reverseNodeCounter=0; # maybe should have done this differntly in init, but 2 late now! |
856
|
0
|
|
|
|
|
|
${$node->{'connectedNodesEast'}->{'nodes'}}[$nodeCounter] = undef; |
|
0
|
|
|
|
|
|
|
857
|
0
|
|
|
|
|
|
foreach my $reverseConnection (@{$connectedNode->{'connectedNodesWest'}->{'nodes'}}) |
|
0
|
|
|
|
|
|
|
858
|
|
|
|
|
|
|
{ |
859
|
0
|
0
|
|
|
|
|
if ($reverseConnection == $node) |
860
|
|
|
|
|
|
|
{ |
861
|
0
|
|
|
|
|
|
${$connectedNode->{'connectedNodesEast'}->{'nodes'}}[$reverseNodeCounter] = undef; |
|
0
|
|
|
|
|
|
|
862
|
|
|
|
|
|
|
} |
863
|
0
|
|
|
|
|
|
$reverseNodeCounter++; |
864
|
|
|
|
|
|
|
} |
865
|
|
|
|
|
|
|
|
866
|
|
|
|
|
|
|
} |
867
|
|
|
|
|
|
|
|
868
|
0
|
|
|
|
|
|
$nodeCounter++; |
869
|
|
|
|
|
|
|
} |
870
|
|
|
|
|
|
|
|
871
|
|
|
|
|
|
|
|
872
|
|
|
|
|
|
|
} |
873
|
|
|
|
|
|
|
|
874
|
|
|
|
|
|
|
|
875
|
0
|
|
|
|
|
|
return 1; |
876
|
|
|
|
|
|
|
} |
877
|
|
|
|
|
|
|
|
878
|
|
|
|
|
|
|
1; |
879
|
|
|
|
|
|
|
|
880
|
|
|
|
|
|
|
=pod |
881
|
|
|
|
|
|
|
|
882
|
|
|
|
|
|
|
=head1 NAME |
883
|
|
|
|
|
|
|
|
884
|
|
|
|
|
|
|
AI::NNFlex - A base class for implementing neural networks |
885
|
|
|
|
|
|
|
|
886
|
|
|
|
|
|
|
=head1 SYNOPSIS |
887
|
|
|
|
|
|
|
|
888
|
|
|
|
|
|
|
use AI::NNFlex; |
889
|
|
|
|
|
|
|
|
890
|
|
|
|
|
|
|
my $network = AI::NNFlex->new(config parameter=>value); |
891
|
|
|
|
|
|
|
|
892
|
|
|
|
|
|
|
$network->add_layer( nodes=>x, |
893
|
|
|
|
|
|
|
activationfunction=>'function'); |
894
|
|
|
|
|
|
|
|
895
|
|
|
|
|
|
|
$network->init(); |
896
|
|
|
|
|
|
|
|
897
|
|
|
|
|
|
|
$network->lesion( nodes=>PROBABILITY, |
898
|
|
|
|
|
|
|
connections=>PROBABILITY); |
899
|
|
|
|
|
|
|
|
900
|
|
|
|
|
|
|
$network->dump_state (filename=>'badgers.wts'); |
901
|
|
|
|
|
|
|
|
902
|
|
|
|
|
|
|
$network->load_state (filename=>'badgers.wts'); |
903
|
|
|
|
|
|
|
|
904
|
|
|
|
|
|
|
my $outputsRef = $network->output(layer=>2,round=>1); |
905
|
|
|
|
|
|
|
|
906
|
|
|
|
|
|
|
|
907
|
|
|
|
|
|
|
=head1 DESCRIPTION |
908
|
|
|
|
|
|
|
|
909
|
|
|
|
|
|
|
AI::NNFlex is a base class for constructing your own neural network modules. To implement a neural network, start with the documentation for AI::NNFlex::Backprop, included in this distribution |
910
|
|
|
|
|
|
|
|
911
|
|
|
|
|
|
|
=head1 CONSTRUCTOR |
912
|
|
|
|
|
|
|
|
913
|
|
|
|
|
|
|
=head2 AI::NNFlex->new ( parameter => value ); |
914
|
|
|
|
|
|
|
|
915
|
|
|
|
|
|
|
|
916
|
|
|
|
|
|
|
randomweights=>MAXIMUM VALUE FOR INITIAL WEIGHT |
917
|
|
|
|
|
|
|
|
918
|
|
|
|
|
|
|
fixedweights=>WEIGHT TO USE FOR ALL CONNECTIONS |
919
|
|
|
|
|
|
|
|
920
|
|
|
|
|
|
|
debug=>[LIST OF CODES FOR MODULES TO DEBUG] |
921
|
|
|
|
|
|
|
|
922
|
|
|
|
|
|
|
round=>0 or 1, a true value sets the network to round output values to nearest of 1, -1 or 0 |
923
|
|
|
|
|
|
|
|
924
|
|
|
|
|
|
|
|
925
|
|
|
|
|
|
|
The constructor implements a fairly generalised network object with a number of parameters. |
926
|
|
|
|
|
|
|
|
927
|
|
|
|
|
|
|
|
928
|
|
|
|
|
|
|
The following parameters are optional: |
929
|
|
|
|
|
|
|
randomweights |
930
|
|
|
|
|
|
|
fixedweights |
931
|
|
|
|
|
|
|
debug |
932
|
|
|
|
|
|
|
round |
933
|
|
|
|
|
|
|
|
934
|
|
|
|
|
|
|
|
935
|
|
|
|
|
|
|
(Note, if randomweights is not specified the network will default to a random value from 0 to 1. |
936
|
|
|
|
|
|
|
|
937
|
|
|
|
|
|
|
=head1 METHODS |
938
|
|
|
|
|
|
|
|
939
|
|
|
|
|
|
|
This is a short list of the main methods implemented in AI::NNFlex. |
940
|
|
|
|
|
|
|
|
941
|
|
|
|
|
|
|
=head2 AI::NNFlex |
942
|
|
|
|
|
|
|
|
943
|
|
|
|
|
|
|
=head3 add_layer |
944
|
|
|
|
|
|
|
|
945
|
|
|
|
|
|
|
Syntax: |
946
|
|
|
|
|
|
|
|
947
|
|
|
|
|
|
|
$network->add_layer( nodes=>NUMBER OF NODES IN LAYER, |
948
|
|
|
|
|
|
|
persistentactivation=>RETAIN ACTIVATION BETWEEN PASSES, |
949
|
|
|
|
|
|
|
decay=>RATE OF ACTIVATION DECAY PER PASS, |
950
|
|
|
|
|
|
|
randomactivation=>MAXIMUM STARTING ACTIVATION, |
951
|
|
|
|
|
|
|
threshold=>NYI, |
952
|
|
|
|
|
|
|
activationfunction=>"ACTIVATION FUNCTION", |
953
|
|
|
|
|
|
|
randomweights=>MAX VALUE OF STARTING WEIGHTS); |
954
|
|
|
|
|
|
|
|
955
|
|
|
|
|
|
|
Add layer adds whatever parameters you specify as attributes of the layer, so if you want to implement additional parameters simply use them in your calling code. |
956
|
|
|
|
|
|
|
|
957
|
|
|
|
|
|
|
Add layer returns success or failure, and if successful adds a layer object to the $network->{'layers'} array. This layer object contains an attribute $layer->{'nodes'}, which is an array of nodes in the layer. |
958
|
|
|
|
|
|
|
|
959
|
|
|
|
|
|
|
=head3 init |
960
|
|
|
|
|
|
|
|
961
|
|
|
|
|
|
|
Syntax: |
962
|
|
|
|
|
|
|
|
963
|
|
|
|
|
|
|
$network->init(); |
964
|
|
|
|
|
|
|
|
965
|
|
|
|
|
|
|
Initialises connections between nodes, sets initial weights. The base AI::NNFlex init method implementes connections backwards and forwards from each node in each layer to each node in the preceeding and following layers. |
966
|
|
|
|
|
|
|
|
967
|
|
|
|
|
|
|
init adds the following attributes to each node: |
968
|
|
|
|
|
|
|
|
969
|
|
|
|
|
|
|
=over |
970
|
|
|
|
|
|
|
|
971
|
|
|
|
|
|
|
=item * |
972
|
|
|
|
|
|
|
{'connectedNodesWest'}->{'nodes'} - an array of node objects connected to this node on the west/left |
973
|
|
|
|
|
|
|
|
974
|
|
|
|
|
|
|
=item * |
975
|
|
|
|
|
|
|
{'connectedNodesWest'}->{'weights'} - an array of scalar numeric weights for the connections to these nodes |
976
|
|
|
|
|
|
|
|
977
|
|
|
|
|
|
|
|
978
|
|
|
|
|
|
|
=item * |
979
|
|
|
|
|
|
|
{'connectedNodesEast'}->{'nodes'} - an array of node objects connected to this node on the east/right |
980
|
|
|
|
|
|
|
|
981
|
|
|
|
|
|
|
=item * |
982
|
|
|
|
|
|
|
{'connectedNodesEast'}->{'weights'} - an array of scalar numeric weights for the connections to these nodes |
983
|
|
|
|
|
|
|
|
984
|
|
|
|
|
|
|
=back |
985
|
|
|
|
|
|
|
|
986
|
|
|
|
|
|
|
The connections to easterly nodes are not used in feedforward networks. |
987
|
|
|
|
|
|
|
Init also implements the Bias node if specified in the network config. |
988
|
|
|
|
|
|
|
|
989
|
|
|
|
|
|
|
=head3 connect |
990
|
|
|
|
|
|
|
|
991
|
|
|
|
|
|
|
Syntax: |
992
|
|
|
|
|
|
|
$network->connect(fromlayer=>1,tolayer=>0); |
993
|
|
|
|
|
|
|
$network->connect(fromnode=>'1,1',tonode=>'0,0'); |
994
|
|
|
|
|
|
|
|
995
|
|
|
|
|
|
|
Connect allows you to manually create connections between layers or nodes, including recurrent connections back to the same layer/node. Node indices must be LAYER,NODE, numbered from 0. |
996
|
|
|
|
|
|
|
|
997
|
|
|
|
|
|
|
Weight assignments for the connection are calculated based on the network wide weight policy (see INIT). |
998
|
|
|
|
|
|
|
|
999
|
|
|
|
|
|
|
=head3 lesion |
1000
|
|
|
|
|
|
|
|
1001
|
|
|
|
|
|
|
$network->lesion (nodes=>PROBABILITY,connections=>PROBABILITY) |
1002
|
|
|
|
|
|
|
|
1003
|
|
|
|
|
|
|
Damages the network. |
1004
|
|
|
|
|
|
|
|
1005
|
|
|
|
|
|
|
B |
1006
|
|
|
|
|
|
|
|
1007
|
|
|
|
|
|
|
A value between 0 and 1, denoting the probability of a given node or connection being damaged. |
1008
|
|
|
|
|
|
|
|
1009
|
|
|
|
|
|
|
Note: this method may be called on a per network, per node or per layer basis using the appropriate object. |
1010
|
|
|
|
|
|
|
|
1011
|
|
|
|
|
|
|
=head1 EXAMPLES |
1012
|
|
|
|
|
|
|
|
1013
|
|
|
|
|
|
|
See the code in ./examples. For any given version of NNFlex, xor.pl will contain the latest functionality. |
1014
|
|
|
|
|
|
|
|
1015
|
|
|
|
|
|
|
|
1016
|
|
|
|
|
|
|
=head1 PREREQs |
1017
|
|
|
|
|
|
|
|
1018
|
|
|
|
|
|
|
None. NNFlex should run OK on any version of Perl 5 >. |
1019
|
|
|
|
|
|
|
|
1020
|
|
|
|
|
|
|
|
1021
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
1022
|
|
|
|
|
|
|
|
1023
|
|
|
|
|
|
|
Phil Brierley, for his excellent free java code, that solved my backprop problem |
1024
|
|
|
|
|
|
|
|
1025
|
|
|
|
|
|
|
Dr Martin Le Voi, for help with concepts of NN in the early stages |
1026
|
|
|
|
|
|
|
|
1027
|
|
|
|
|
|
|
Dr David Plaut, for help with the project that this code was originally intended for. |
1028
|
|
|
|
|
|
|
|
1029
|
|
|
|
|
|
|
Graciliano M.Passos for suggestions & improved code (see SEE ALSO). |
1030
|
|
|
|
|
|
|
|
1031
|
|
|
|
|
|
|
Dr Scott Fahlman, whose very readable paper 'An empirical study of learning speed in backpropagation networks' (1988) has driven many of the improvements made so far. |
1032
|
|
|
|
|
|
|
|
1033
|
|
|
|
|
|
|
=head1 SEE ALSO |
1034
|
|
|
|
|
|
|
|
1035
|
|
|
|
|
|
|
AI::NNFlex::Backprop |
1036
|
|
|
|
|
|
|
AI::NNFlex::Feedforward |
1037
|
|
|
|
|
|
|
AI::NNFlex::Mathlib |
1038
|
|
|
|
|
|
|
AI::NNFlex::Dataset |
1039
|
|
|
|
|
|
|
|
1040
|
|
|
|
|
|
|
AI::NNEasy - Developed by Graciliano M.Passos |
1041
|
|
|
|
|
|
|
(Shares some common code with NNFlex) |
1042
|
|
|
|
|
|
|
|
1043
|
|
|
|
|
|
|
|
1044
|
|
|
|
|
|
|
=head1 TODO |
1045
|
|
|
|
|
|
|
|
1046
|
|
|
|
|
|
|
Lots of things: |
1047
|
|
|
|
|
|
|
|
1048
|
|
|
|
|
|
|
clean up the perldocs some more |
1049
|
|
|
|
|
|
|
write gamma modules |
1050
|
|
|
|
|
|
|
write BPTT modules |
1051
|
|
|
|
|
|
|
write a perceptron learning module |
1052
|
|
|
|
|
|
|
speed it up |
1053
|
|
|
|
|
|
|
write a tk gui |
1054
|
|
|
|
|
|
|
|
1055
|
|
|
|
|
|
|
=head1 CHANGES |
1056
|
|
|
|
|
|
|
|
1057
|
|
|
|
|
|
|
v0.11 introduces the lesion method, png support in the draw module and datasets. |
1058
|
|
|
|
|
|
|
|
1059
|
|
|
|
|
|
|
v0.12 fixes a bug in reinforce.pm & adds a reflector in feedforward->run to make $network->run($dataset) work. |
1060
|
|
|
|
|
|
|
|
1061
|
|
|
|
|
|
|
v0.13 introduces the momentum learning algorithm and fixes a bug that allowed training to proceed even if the node activation function module can't be loaded |
1062
|
|
|
|
|
|
|
|
1063
|
|
|
|
|
|
|
v0.14 fixes momentum and backprop so they are no longer nailed to tanh hidden units only. |
1064
|
|
|
|
|
|
|
|
1065
|
|
|
|
|
|
|
v0.15 fixes a bug in feedforward, and reduces the debug overhead |
1066
|
|
|
|
|
|
|
|
1067
|
|
|
|
|
|
|
v0.16 changes some underlying addressing of weights, to simplify and speed |
1068
|
|
|
|
|
|
|
|
1069
|
|
|
|
|
|
|
v0.17 is a bugfix release, plus some cleaning of UI |
1070
|
|
|
|
|
|
|
|
1071
|
|
|
|
|
|
|
v0.20 changes AI::NNFlex to be a base class, and ships three different network types (i.e. training algorithms). Backprop & momentum are both networks of the feedforward class, and inherit their 'run' method from feedforward.pm. 0.20 also fixes a whole raft of bugs and 'not nices'. |
1072
|
|
|
|
|
|
|
|
1073
|
|
|
|
|
|
|
v0.21 cleans up the perldocs more, and makes nnflex more distinctly a base module. There are quite a number of changes in Backprop in the v0.21 distribution. |
1074
|
|
|
|
|
|
|
|
1075
|
|
|
|
|
|
|
v0.22 introduces the ::connect method, to allow creation of recurrent connections, and manual control over connections between nodes/layers. |
1076
|
|
|
|
|
|
|
|
1077
|
|
|
|
|
|
|
v0.23 includes a Hopfield module in the distribution. |
1078
|
|
|
|
|
|
|
|
1079
|
|
|
|
|
|
|
v0.24 fixes a bug in the bias weight calculations |
1080
|
|
|
|
|
|
|
|
1081
|
|
|
|
|
|
|
=head1 COPYRIGHT |
1082
|
|
|
|
|
|
|
|
1083
|
|
|
|
|
|
|
Copyright (c) 2004-2005 Charles Colbourn. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
1084
|
|
|
|
|
|
|
|
1085
|
|
|
|
|
|
|
=head1 CONTACT |
1086
|
|
|
|
|
|
|
|
1087
|
|
|
|
|
|
|
charlesc@nnflex.g0n.net |
1088
|
|
|
|
|
|
|
|
1089
|
|
|
|
|
|
|
=cut |