| line |
stmt |
bran |
cond |
sub |
pod |
time |
code |
|
1
|
|
|
|
|
|
|
#################################################### |
|
2
|
|
|
|
|
|
|
# AI::NNFlex::Hopfield |
|
3
|
|
|
|
|
|
|
#################################################### |
|
4
|
|
|
|
|
|
|
# Hopfield network simulator |
|
5
|
|
|
|
|
|
|
#################################################### |
|
6
|
|
|
|
|
|
|
# |
|
7
|
|
|
|
|
|
|
# Version history |
|
8
|
|
|
|
|
|
|
# =============== |
|
9
|
|
|
|
|
|
|
# |
|
10
|
|
|
|
|
|
|
# 1.0 20050330 CColbourn New module |
|
11
|
|
|
|
|
|
|
# |
|
12
|
|
|
|
|
|
|
#################################################### |
|
13
|
|
|
|
|
|
|
package AI::NNFlex::Hopfield; |
|
14
|
|
|
|
|
|
|
|
|
15
|
1
|
|
|
1
|
|
672
|
use strict; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
35
|
|
|
16
|
1
|
|
|
1
|
|
617
|
use AI::NNFlex; |
|
|
1
|
|
|
|
|
2
|
|
|
|
1
|
|
|
|
|
35
|
|
|
17
|
1
|
|
|
1
|
|
9
|
use AI::NNFlex::Mathlib; |
|
|
1
|
|
|
|
|
1
|
|
|
|
1
|
|
|
|
|
32
|
|
|
18
|
1
|
|
|
1
|
|
1073
|
use Math::Matrix; |
|
|
1
|
|
|
|
|
13058
|
|
|
|
1
|
|
|
|
|
42
|
|
|
19
|
1
|
|
|
1
|
|
12
|
use base qw(AI::NNFlex AI::NNFlex::Mathlib); |
|
|
1
|
|
|
|
|
31
|
|
|
|
1
|
|
|
|
|
1080
|
|
|
20
|
|
|
|
|
|
|
|
|
21
|
|
|
|
|
|
|
#################################################### |
|
22
|
|
|
|
|
|
|
# AI::NNFlex::Hopfield::init |
|
23
|
|
|
|
|
|
|
#################################################### |
|
24
|
|
|
|
|
|
|
# |
|
25
|
|
|
|
|
|
|
# The hopfield network has connections from every |
|
26
|
|
|
|
|
|
|
# node to every other node, rather than being |
|
27
|
|
|
|
|
|
|
# arranged in distinct layers like a feedforward |
|
28
|
|
|
|
|
|
|
# network. We can retain the layer architecture to |
|
29
|
|
|
|
|
|
|
# give us blocks of nodes, but need to overload init |
|
30
|
|
|
|
|
|
|
# to perform full connections |
|
31
|
|
|
|
|
|
|
# |
|
32
|
|
|
|
|
|
|
##################################################### |
|
33
|
|
|
|
|
|
|
sub init |
|
34
|
|
|
|
|
|
|
{ |
|
35
|
|
|
|
|
|
|
|
|
36
|
1
|
|
|
1
|
1
|
8
|
my $network = shift; |
|
37
|
1
|
|
|
|
|
3
|
my @nodes; |
|
38
|
|
|
|
|
|
|
|
|
39
|
|
|
|
|
|
|
# Get a list of all the nodes in the network |
|
40
|
1
|
|
|
|
|
8
|
foreach my $layer (@{$network->{'layers'}}) |
|
|
1
|
|
|
|
|
3
|
|
|
41
|
|
|
|
|
|
|
{ |
|
42
|
2
|
|
|
|
|
3
|
foreach my $node (@{$layer->{'nodes'}}) |
|
|
2
|
|
|
|
|
4
|
|
|
43
|
|
|
|
|
|
|
{ |
|
44
|
|
|
|
|
|
|
# cover the assumption that some inherited code |
|
45
|
|
|
|
|
|
|
# will require an activation function |
|
46
|
4
|
50
|
|
|
|
11
|
if (!$node->{'activationfunction'}) |
|
47
|
|
|
|
|
|
|
{ |
|
48
|
4
|
|
|
|
|
7
|
$node->{'activationfunction'}= 'hopfield_threshold'; |
|
49
|
4
|
|
|
|
|
7
|
$node->{'activation'} =0; |
|
50
|
4
|
|
|
|
|
7
|
$node->{'lastactivation'} = 0; |
|
51
|
|
|
|
|
|
|
} |
|
52
|
4
|
|
|
|
|
9
|
push @nodes,$node; |
|
53
|
|
|
|
|
|
|
} |
|
54
|
|
|
|
|
|
|
} |
|
55
|
|
|
|
|
|
|
|
|
56
|
|
|
|
|
|
|
# we'll probably need this later |
|
57
|
1
|
|
|
|
|
2
|
$network->{'nodes'} = \@nodes; |
|
58
|
|
|
|
|
|
|
|
|
59
|
1
|
|
|
|
|
3
|
foreach my $node (@nodes) |
|
60
|
|
|
|
|
|
|
{ |
|
61
|
4
|
|
|
|
|
6
|
my @connectedNodes; |
|
62
|
4
|
|
|
|
|
6
|
foreach my $connectedNode (@nodes) |
|
63
|
|
|
|
|
|
|
{ |
|
64
|
16
|
|
|
|
|
23
|
push @connectedNodes,$connectedNode; |
|
65
|
|
|
|
|
|
|
} |
|
66
|
4
|
|
|
|
|
6
|
my @weights; |
|
67
|
4
|
|
|
|
|
16
|
$node->{'connectednodes'}->{'nodes'} = \@connectedNodes; |
|
68
|
4
|
|
|
|
|
9
|
for (0..(scalar @nodes)-1) |
|
69
|
|
|
|
|
|
|
{ |
|
70
|
16
|
|
|
|
|
44
|
push @weights,$network->calcweight(); |
|
71
|
|
|
|
|
|
|
} |
|
72
|
4
|
|
|
|
|
13
|
$node->{'connectednodes'}->{'weights'} = \@weights |
|
73
|
|
|
|
|
|
|
} |
|
74
|
|
|
|
|
|
|
|
|
75
|
1
|
|
|
|
|
3
|
return 1; |
|
76
|
|
|
|
|
|
|
|
|
77
|
|
|
|
|
|
|
} |
|
78
|
|
|
|
|
|
|
|
|
79
|
|
|
|
|
|
|
########################################################## |
|
80
|
|
|
|
|
|
|
# AI::NNFlex::Hopfield::run |
|
81
|
|
|
|
|
|
|
########################################################## |
|
82
|
|
|
|
|
|
|
# apply activation patterns & calculate activation |
|
83
|
|
|
|
|
|
|
# through the network |
|
84
|
|
|
|
|
|
|
########################################################## |
|
85
|
|
|
|
|
|
|
sub run |
|
86
|
|
|
|
|
|
|
{ |
|
87
|
1
|
|
|
1
|
1
|
7
|
my $network = shift; |
|
88
|
|
|
|
|
|
|
|
|
89
|
1
|
|
|
|
|
2
|
my $inputPatternRef = shift; |
|
90
|
|
|
|
|
|
|
|
|
91
|
1
|
|
|
|
|
4
|
my @inputpattern = @$inputPatternRef; |
|
92
|
|
|
|
|
|
|
|
|
93
|
1
|
50
|
|
|
|
2
|
if (scalar @inputpattern != scalar @{$network->{'nodes'}}) |
|
|
1
|
|
|
|
|
5
|
|
|
94
|
|
|
|
|
|
|
{ |
|
95
|
0
|
|
|
|
|
0
|
return "Error: input pattern does not match number of nodes" |
|
96
|
|
|
|
|
|
|
} |
|
97
|
|
|
|
|
|
|
|
|
98
|
|
|
|
|
|
|
# apply the pattern to the network |
|
99
|
1
|
|
|
|
|
2
|
my $counter=0; |
|
100
|
1
|
|
|
|
|
2
|
foreach my $node (@{$network->{'nodes'}}) |
|
|
1
|
|
|
|
|
3
|
|
|
101
|
|
|
|
|
|
|
{ |
|
102
|
4
|
|
|
|
|
8
|
$node->{'activation'} = $inputpattern[$counter]; |
|
103
|
4
|
|
|
|
|
6
|
$counter++; |
|
104
|
|
|
|
|
|
|
} |
|
105
|
|
|
|
|
|
|
|
|
106
|
|
|
|
|
|
|
# Now update the network with activation flow |
|
107
|
1
|
|
|
|
|
49
|
foreach my $node (@{$network->{'nodes'}}) |
|
|
1
|
|
|
|
|
5
|
|
|
108
|
|
|
|
|
|
|
{ |
|
109
|
4
|
|
|
|
|
8
|
$node->{'activation'}=0; |
|
110
|
4
|
|
|
|
|
6
|
my $counter=0; |
|
111
|
4
|
|
|
|
|
7
|
foreach my $connectedNode (@{$node->{'connectednodes'}->{'nodes'}}) |
|
|
4
|
|
|
|
|
9
|
|
|
112
|
|
|
|
|
|
|
{ |
|
113
|
|
|
|
|
|
|
# hopfield nodes don't have recursive connections |
|
114
|
16
|
100
|
|
|
|
40
|
unless ($node == $connectedNode) |
|
115
|
|
|
|
|
|
|
{ |
|
116
|
12
|
|
|
|
|
27
|
$node->{'activation'} += $connectedNode->{'activation'} * $node->{'connectednodes'}->{'weights'}->[$counter]; |
|
117
|
|
|
|
|
|
|
|
|
118
|
|
|
|
|
|
|
} |
|
119
|
16
|
|
|
|
|
30
|
$counter++; |
|
120
|
|
|
|
|
|
|
} |
|
121
|
|
|
|
|
|
|
|
|
122
|
|
|
|
|
|
|
|
|
123
|
|
|
|
|
|
|
# bias |
|
124
|
4
|
|
|
|
|
11
|
$node->{'activation'} += 1 * $node->{'connectednodes'}->{'weights'}->[-1]; |
|
125
|
|
|
|
|
|
|
|
|
126
|
4
|
|
|
|
|
7
|
my $activationfunction = $node->{'activationfunction'}; |
|
127
|
4
|
|
|
|
|
21
|
$node->{'activation'} = $network->$activationfunction($node->{'activation'}); |
|
128
|
|
|
|
|
|
|
|
|
129
|
|
|
|
|
|
|
} |
|
130
|
|
|
|
|
|
|
|
|
131
|
1
|
|
|
|
|
5
|
return $network->output; |
|
132
|
|
|
|
|
|
|
} |
|
133
|
|
|
|
|
|
|
|
|
134
|
|
|
|
|
|
|
####################################################### |
|
135
|
|
|
|
|
|
|
# AI::NNFlex::Hopfield::output |
|
136
|
|
|
|
|
|
|
####################################################### |
|
137
|
|
|
|
|
|
|
# This needs to be overloaded, because the default |
|
138
|
|
|
|
|
|
|
# nnflex output method returns only the rightmost layer |
|
139
|
|
|
|
|
|
|
####################################################### |
|
140
|
|
|
|
|
|
|
sub output |
|
141
|
|
|
|
|
|
|
{ |
|
142
|
1
|
|
|
1
|
0
|
2
|
my $network = shift; |
|
143
|
|
|
|
|
|
|
|
|
144
|
1
|
|
|
|
|
2
|
my @array; |
|
145
|
1
|
|
|
|
|
1
|
foreach my $node (@{$network->{'nodes'}}) |
|
|
1
|
|
|
|
|
4
|
|
|
146
|
|
|
|
|
|
|
{ |
|
147
|
4
|
|
|
|
|
9
|
unshift @array,$node->{'activation'}; |
|
148
|
|
|
|
|
|
|
} |
|
149
|
|
|
|
|
|
|
|
|
150
|
1
|
|
|
|
|
5
|
return \@array; |
|
151
|
|
|
|
|
|
|
} |
|
152
|
|
|
|
|
|
|
|
|
153
|
|
|
|
|
|
|
######################################################## |
|
154
|
|
|
|
|
|
|
# AI::NNFlex::Hopfield::learn |
|
155
|
|
|
|
|
|
|
######################################################## |
|
156
|
|
|
|
|
|
|
sub learn |
|
157
|
|
|
|
|
|
|
{ |
|
158
|
1
|
|
|
1
|
0
|
238
|
my $network = shift; |
|
159
|
|
|
|
|
|
|
|
|
160
|
1
|
|
|
|
|
2
|
my $dataset = shift; |
|
161
|
|
|
|
|
|
|
|
|
162
|
|
|
|
|
|
|
# calculate the weights |
|
163
|
|
|
|
|
|
|
# turn the dataset into a matrix |
|
164
|
1
|
|
|
|
|
2
|
my @matrix; |
|
165
|
1
|
|
|
|
|
2
|
foreach (@{$dataset->{'data'}}) |
|
|
1
|
|
|
|
|
4
|
|
|
166
|
|
|
|
|
|
|
{ |
|
167
|
2
|
|
|
|
|
5
|
push @matrix,$_; |
|
168
|
|
|
|
|
|
|
} |
|
169
|
1
|
|
|
|
|
11
|
my $patternmatrix = Math::Matrix->new(@matrix); |
|
170
|
|
|
|
|
|
|
|
|
171
|
1
|
|
|
|
|
33
|
my $inversepattern = $patternmatrix->transpose; |
|
172
|
|
|
|
|
|
|
|
|
173
|
1
|
|
|
|
|
78
|
my @minusmatrix; |
|
174
|
|
|
|
|
|
|
|
|
175
|
1
|
|
|
|
|
3
|
for (my $rows=0;$rows <(scalar @{$network->{'nodes'}});$rows++) |
|
|
5
|
|
|
|
|
18
|
|
|
176
|
|
|
|
|
|
|
{ |
|
177
|
4
|
|
|
|
|
5
|
my @temparray; |
|
178
|
4
|
|
|
|
|
7
|
for (my $cols=0;$cols <(scalar @{$network->{'nodes'}});$cols++) |
|
|
20
|
|
|
|
|
53
|
|
|
179
|
|
|
|
|
|
|
{ |
|
180
|
16
|
100
|
|
|
|
32
|
if ($rows == $cols) |
|
181
|
|
|
|
|
|
|
{ |
|
182
|
4
|
|
|
|
|
6
|
my $numpats = scalar @{$dataset->{'data'}}; |
|
|
4
|
|
|
|
|
8
|
|
|
183
|
4
|
|
|
|
|
9
|
push @temparray,$numpats; |
|
184
|
|
|
|
|
|
|
} |
|
185
|
|
|
|
|
|
|
else |
|
186
|
|
|
|
|
|
|
{ |
|
187
|
12
|
|
|
|
|
25
|
push @temparray,0; |
|
188
|
|
|
|
|
|
|
} |
|
189
|
|
|
|
|
|
|
} |
|
190
|
4
|
|
|
|
|
10
|
push @minusmatrix,\@temparray; |
|
191
|
|
|
|
|
|
|
} |
|
192
|
|
|
|
|
|
|
|
|
193
|
1
|
|
|
|
|
9
|
my $minus = Math::Matrix->new(@minusmatrix); |
|
194
|
|
|
|
|
|
|
|
|
195
|
1
|
|
|
|
|
37
|
my $product = $inversepattern->multiply($patternmatrix); |
|
196
|
|
|
|
|
|
|
|
|
197
|
1
|
|
|
|
|
244
|
my $weights = $product->subtract($minus); |
|
198
|
|
|
|
|
|
|
|
|
199
|
1
|
|
|
|
|
223
|
my @element = ('1'); |
|
200
|
1
|
|
|
|
|
2
|
my @truearray; |
|
201
|
1
|
|
|
|
|
2
|
for (1..scalar @{$dataset->{'data'}}){push @truearray,"1"} |
|
|
1
|
|
|
|
|
4
|
|
|
|
2
|
|
|
|
|
6
|
|
|
202
|
|
|
|
|
|
|
|
|
203
|
1
|
|
|
|
|
6
|
my $truematrix = Math::Matrix->new(\@truearray); |
|
204
|
|
|
|
|
|
|
|
|
205
|
1
|
|
|
|
|
21
|
my $thresholds = $truematrix->multiply($patternmatrix); |
|
206
|
|
|
|
|
|
|
#$thresholds = $thresholds->transpose(); |
|
207
|
|
|
|
|
|
|
|
|
208
|
1
|
|
|
|
|
93
|
my $counter=0; |
|
209
|
1
|
|
|
|
|
2
|
foreach (@{$network->{'nodes'}}) |
|
|
1
|
|
|
|
|
3
|
|
|
210
|
|
|
|
|
|
|
{ |
|
211
|
4
|
|
|
|
|
6
|
my @slice; |
|
212
|
4
|
|
|
|
|
5
|
foreach (@{$weights->slice($counter)}) |
|
|
4
|
|
|
|
|
14
|
|
|
213
|
|
|
|
|
|
|
{ |
|
214
|
16
|
|
|
|
|
169
|
push @slice,$$_[0]; |
|
215
|
|
|
|
|
|
|
} |
|
216
|
|
|
|
|
|
|
|
|
217
|
4
|
|
|
|
|
13
|
push @slice,${$thresholds->slice($counter)}[0][0]; |
|
|
4
|
|
|
|
|
12
|
|
|
218
|
|
|
|
|
|
|
|
|
219
|
4
|
|
|
|
|
121
|
$_->{'connectednodes'}->{'weights'} = \@slice; |
|
220
|
4
|
|
|
|
|
12
|
$counter++; |
|
221
|
|
|
|
|
|
|
} |
|
222
|
|
|
|
|
|
|
|
|
223
|
1
|
|
|
|
|
12
|
return 1; |
|
224
|
|
|
|
|
|
|
|
|
225
|
|
|
|
|
|
|
} |
|
226
|
|
|
|
|
|
|
|
|
227
|
|
|
|
|
|
|
|
|
228
|
|
|
|
|
|
|
|
|
229
|
|
|
|
|
|
|
1; |
|
230
|
|
|
|
|
|
|
|
|
231
|
|
|
|
|
|
|
=pod |
|
232
|
|
|
|
|
|
|
|
|
233
|
|
|
|
|
|
|
=head1 NAME |
|
234
|
|
|
|
|
|
|
|
|
235
|
|
|
|
|
|
|
AI::NNFlex::Hopfield - a fast, pure perl Hopfield network simulator |
|
236
|
|
|
|
|
|
|
|
|
237
|
|
|
|
|
|
|
=head1 SYNOPSIS |
|
238
|
|
|
|
|
|
|
|
|
239
|
|
|
|
|
|
|
use AI::NNFlex::Hopfield; |
|
240
|
|
|
|
|
|
|
|
|
241
|
|
|
|
|
|
|
my $network = AI::NNFlex::Hopfield->new(config parameter=>value); |
|
242
|
|
|
|
|
|
|
|
|
243
|
|
|
|
|
|
|
$network->add_layer(nodes=>x); |
|
244
|
|
|
|
|
|
|
|
|
245
|
|
|
|
|
|
|
$network->init(); |
|
246
|
|
|
|
|
|
|
|
|
247
|
|
|
|
|
|
|
|
|
248
|
|
|
|
|
|
|
|
|
249
|
|
|
|
|
|
|
use AI::NNFlex::Dataset; |
|
250
|
|
|
|
|
|
|
|
|
251
|
|
|
|
|
|
|
my $dataset = AI::NNFlex::Dataset->new([ |
|
252
|
|
|
|
|
|
|
[INPUTARRAY], |
|
253
|
|
|
|
|
|
|
[INPUTARRAY]]); |
|
254
|
|
|
|
|
|
|
|
|
255
|
|
|
|
|
|
|
$network->learn($dataset); |
|
256
|
|
|
|
|
|
|
|
|
257
|
|
|
|
|
|
|
my $outputsRef = $dataset->run($network); |
|
258
|
|
|
|
|
|
|
|
|
259
|
|
|
|
|
|
|
my $outputsRef = $network->output(); |
|
260
|
|
|
|
|
|
|
|
|
261
|
|
|
|
|
|
|
=head1 DESCRIPTION |
|
262
|
|
|
|
|
|
|
|
|
263
|
|
|
|
|
|
|
AI::NNFlex::Hopfield is a Hopfield network simulator derived from the AI::NNFlex class. THIS IS THE FIRST ALPHA CUT OF THIS MODULE! Any problems, let me know and I'll fix them. |
|
264
|
|
|
|
|
|
|
|
|
265
|
|
|
|
|
|
|
Hopfield networks differ from feedforward networks in that they are effectively a single layer, with all nodes connected to all other nodes (except themselves), and are trained in a single operation. They are particularly useful for recognising corrupt bitmaps etc. I've left the multi layer architecture in this module (inherited from AI::NNFlex) for convenience of visualising 2d bitmaps, but effectively its a single layer. |
|
266
|
|
|
|
|
|
|
|
|
267
|
|
|
|
|
|
|
Full documentation for AI::NNFlex::Dataset can be found in the modules own perldoc. It's documented here for convenience only. |
|
268
|
|
|
|
|
|
|
|
|
269
|
|
|
|
|
|
|
=head1 CONSTRUCTOR |
|
270
|
|
|
|
|
|
|
|
|
271
|
|
|
|
|
|
|
=head2 AI::NNFlex::Hopfield->new(); |
|
272
|
|
|
|
|
|
|
|
|
273
|
|
|
|
|
|
|
=head2 AI::NNFlex::Dataset |
|
274
|
|
|
|
|
|
|
|
|
275
|
|
|
|
|
|
|
new ( [[INPUT VALUES],[INPUT VALUES], |
|
276
|
|
|
|
|
|
|
[INPUT VALUES],[INPUT VALUES],..]) |
|
277
|
|
|
|
|
|
|
|
|
278
|
|
|
|
|
|
|
=head2 INPUT VALUES |
|
279
|
|
|
|
|
|
|
|
|
280
|
|
|
|
|
|
|
These should be comma separated values. They can be applied to the network with ::run or ::learn |
|
281
|
|
|
|
|
|
|
|
|
282
|
|
|
|
|
|
|
=head2 OUTPUT VALUES |
|
283
|
|
|
|
|
|
|
|
|
284
|
|
|
|
|
|
|
These are the intended or target output values. Comma separated. These will be used by ::learn |
|
285
|
|
|
|
|
|
|
|
|
286
|
|
|
|
|
|
|
|
|
287
|
|
|
|
|
|
|
=head1 METHODS |
|
288
|
|
|
|
|
|
|
|
|
289
|
|
|
|
|
|
|
This is a short list of the main methods implemented in AI::NNFlex::Hopfield. |
|
290
|
|
|
|
|
|
|
|
|
291
|
|
|
|
|
|
|
=head2 AI::NNFlex::Hopfield |
|
292
|
|
|
|
|
|
|
|
|
293
|
|
|
|
|
|
|
=head2 add_layer |
|
294
|
|
|
|
|
|
|
|
|
295
|
|
|
|
|
|
|
Syntax: |
|
296
|
|
|
|
|
|
|
|
|
297
|
|
|
|
|
|
|
$network->add_layer( nodes=>NUMBER OF NODES IN LAYER ); |
|
298
|
|
|
|
|
|
|
|
|
299
|
|
|
|
|
|
|
=head2 init |
|
300
|
|
|
|
|
|
|
|
|
301
|
|
|
|
|
|
|
Syntax: |
|
302
|
|
|
|
|
|
|
|
|
303
|
|
|
|
|
|
|
$network->init(); |
|
304
|
|
|
|
|
|
|
|
|
305
|
|
|
|
|
|
|
Initialises connections between nodes. |
|
306
|
|
|
|
|
|
|
|
|
307
|
|
|
|
|
|
|
=head2 run |
|
308
|
|
|
|
|
|
|
|
|
309
|
|
|
|
|
|
|
$network->run($dataset) |
|
310
|
|
|
|
|
|
|
|
|
311
|
|
|
|
|
|
|
Runs the dataset through the network and returns a reference to an array of output patterns. |
|
312
|
|
|
|
|
|
|
|
|
313
|
|
|
|
|
|
|
=head1 EXAMPLES |
|
314
|
|
|
|
|
|
|
|
|
315
|
|
|
|
|
|
|
See the code in ./examples. |
|
316
|
|
|
|
|
|
|
|
|
317
|
|
|
|
|
|
|
|
|
318
|
|
|
|
|
|
|
=head1 PREREQs |
|
319
|
|
|
|
|
|
|
|
|
320
|
|
|
|
|
|
|
Math::Matrix |
|
321
|
|
|
|
|
|
|
|
|
322
|
|
|
|
|
|
|
=head1 ACKNOWLEDGEMENTS |
|
323
|
|
|
|
|
|
|
|
|
324
|
|
|
|
|
|
|
=head1 SEE ALSO |
|
325
|
|
|
|
|
|
|
|
|
326
|
|
|
|
|
|
|
AI::NNFlex |
|
327
|
|
|
|
|
|
|
AI::NNFlex::Backprop |
|
328
|
|
|
|
|
|
|
|
|
329
|
|
|
|
|
|
|
|
|
330
|
|
|
|
|
|
|
=head1 TODO |
|
331
|
|
|
|
|
|
|
|
|
332
|
|
|
|
|
|
|
More detailed documentation. Better tests. More examples. |
|
333
|
|
|
|
|
|
|
|
|
334
|
|
|
|
|
|
|
=head1 CHANGES |
|
335
|
|
|
|
|
|
|
|
|
336
|
|
|
|
|
|
|
v0.1 - new module |
|
337
|
|
|
|
|
|
|
|
|
338
|
|
|
|
|
|
|
=head1 COPYRIGHT |
|
339
|
|
|
|
|
|
|
|
|
340
|
|
|
|
|
|
|
Copyright (c) 2004-2005 Charles Colbourn. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. |
|
341
|
|
|
|
|
|
|
|
|
342
|
|
|
|
|
|
|
=head1 CONTACT |
|
343
|
|
|
|
|
|
|
|
|
344
|
|
|
|
|
|
|
charlesc@nnflex.g0n.net |
|
345
|
|
|
|
|
|
|
|
|
346
|
|
|
|
|
|
|
|
|
347
|
|
|
|
|
|
|
|
|
348
|
|
|
|
|
|
|
=cut |